

SVR, Southampton, UK

Hugues Hoppe Microsoft Research

Presented by Zhihui Tang

Introduction

- Several techniques have been developed for geometrically simplify them. Relatively few techniques account for appearance attributes during simplification.
- Metric introduced by Garland and Hecbert is fast and reasonably accurate. They can deal with appearance attribute.
- In this paper, developed an improved quadric error metric for simplifying meshes with attributes.

Advantage of the new metric:

- intuitively measures error by geometric correspondence
- less storage (linear on no. of attributes)
- evaluate fast (sparse quadric matrix)
- more accurate simplifications(experiments)

What	is Triangle	Meshe	es		
	Vertex 1 x ₁ y ₁ z ₁	Face 1	1	2	3
	Vertex 2 x ₂ y ₂ z ₂	Face 2	1	2	4
	Vertex 3 x ₃ y ₃ z ₃	Face 3	2	4	5
	Geometry p? R ³ attributes normals, colors, texture coords,				

Notation

- A triangle mesh M is described by: V , F.
- Each vertex v in V has a geometric position p_v in \mathbf{R}^3 and A set of m attribute scalars s_v in \mathbf{R}^m . That is v is in \mathbf{R}^{m+3} .

Simplification of Geometry $\mathcal{Q}^{v}(\mathbf{v}) = \sum_{f \ni v} \operatorname{area}(f) \cdot \mathcal{Q}^{f}(\mathbf{v})$ $Q^{v}(v) = Q^{v}(v) + Q^{v}(v)$ $Q^{f}(v=(p)) = (n^{t}v+d)^{2} = v^{t}(nn^{t})v + 2dn^{t}v + d^{2}$ $= (A,b,c) = ((nn^{t}),(dn),d^{2})$ $Q^{f} \text{ is stored using 10 coefficients.}$ Vertex position v_{min} minimizing $Q^{v}(v)$ is the solution of Av = -b

Simplification of Geometry and Attributes

- This approach is to generalize the distancesto-plane metric in R³ to a distance-tohyperplane in R^{3+m}.
- $Q^{f}(v) = ||v-v'||^{2} = ||p-p'||^{2} + ||s-s'||^{2}$
- Storage requires (4+m)(5+m)/2 coefficients

Example	m	Previous Q	New Q
geometry	0	10	10
+ color	3	28	23
+ normals	6	55	35
+ texture coord.	8	78	43
in general	m > 0	(4+m)(5+m)/2	11+4m

Wedge(II)

$$Q^{w}(\mathbf{v}) = \sum_{f \ni w} \operatorname{area}(f) \cdot Q^{f}(\mathbf{v}) ,$$

$$Q^{v}(\mathbf{p}, \mathbf{s}^{1}, \dots, \mathbf{s}^{k}) = \sum_{i=1}^{k} Q^{w_{i}}(\mathbf{p}, \mathbf{s}^{i}) .$$

Volume preservation(II)

$$\mathbf{g}_{rot}^{T} \mathbf{p} + d_{rot} = 0$$

 $\begin{pmatrix} \mathbf{A} & \mathbf{g}_{rot} \\ \mathbf{g}_{rot}^{T} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{min} \\ \gamma \end{pmatrix} = \begin{pmatrix} -\mathbf{b} \\ -d_{rot} \end{pmatrix}.$

Results(I)

- Distance between two meshes M_1 and M_2 is obtained by sampling a collection of points from M_1 and measuring the distances to the closest points on M_2 plus the distances of the same number of points from M_2 to M_1
- Statistics are reported using L₂ norm and L-infinity norm
 For meshes with attributes, we also sample attributes at the
- same points and measure the divisions from the values linearly interpolated at the closest point on the other mesh.

