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Abstract. We define distances between geometric curves by the square root of the minimal
energy required to transform one curve into the other. The energy is formally defined from a left
invariant Riemannian distance on an infinite dimensional group acting on the curves, which can be
explicitly computed. The obtained distance boils down to a variational problem for which an optimal
matching between the curves has to be computed. An analysis of the distance when the curves are
polygonal leads to a numerical procedure for the solution of the variational problem, which can
efficiently be implemented, as illustrated by experiments.
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1. Introduction.

1.1. Generalities. The problem of matching two objects together is very impor-
tant in computer vision and shape recognition. In many cases, recognition is based
on shapes (outlines), with the help of some suitably designed distance. A general
principle is to associate with any pair (O1, O2) of objects to be compared a measure
of discrepancy d(O1, O2) . The recognition of an observed object O may be done by
finding, from a dictionary of “templates,” the previously recorded object Otemp, for
which d(O,Otemp) is minimal. Clearly, the definition of the distance is the crucial
step of the method, and much research has been done in this direction. We shall
not try here to provide a review of the huge literature existing on the subject (see,
for example, [17]) but rather focus on methods related to deformable templates, with
which we are directly concerned.

Instead of basing recognition on a finite collection of points of interest (primitives)
taken from the outline of an object (corners, inflexion points, etc.), which is a popular
way of handling the problem, our purpose is to base the comparison on the whole
outline, considered as a plane curve. The distance we shall define incorporates some
deformation energy between the curves. The approach, as we will see, turns out to
be intrinsic and robust to usual Euclidean transformations.

The method is related to the wide literature on “snakes” [14], [7], [21] etc. in
the way that our distance corresponds to some continuous process of deformation of
one curve into another. It is also related to papers on elastic matching, such as [8];
however, we provide an elastic matching algorithm which is based on a true distance
between intrinsic properties of the shapes, taking into account possible invariance to
scaling or Euclidean transformations in the case they are required. From this point
of view, our results are indebted to the seminal work of Grenander on group theory
applied to pattern recognition (cf. [10] and [11], in particular; see also [1], [2], 12).

Another source of inspiration may come from mathematical physics, since we are
going to look to the path (process) of lowest energy which deforms one object into
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another, as studied, for example, in fluid mechanics (least action principle; cf. [19],
[5]). A good general formulation may be found in the appendix of [3].

1.2. Principles of the approach. We denote by C our object space. Assuming
that each object in C can in some way be deformed into another, our purpose is to
define a distance measuring the amount of deformation which is necessary for this
operation. The deformations are represented by a group action

G× C −→ C,
(a,C) −→ a.C

on C, where G is a group (the fact that we have a group action means that, for all
a, b ∈ G and for all C ∈ C, a.(b.C) = (ab).C and e.C = C, e being the identity element
of G). The fact that each object can be deformed into another means that the group
action is transitive; that is, we assume that, for all C1, C2 in C, there exists a in G
such that a.C1 = C2.

Assume that we have some way of measuring the cost of the transformation
C → a.C, and denote this cost by Γ(a,C). To compare two objects, we put

d(C1, C2) = inf{Γ(a,C1), C2 = a.C1},(1)

which is the smaller cost required to deform C1 into C2. The following proposition
then is almost obvious.

PROPOSITION 1. Assume that G acts transitively on C and that Γ is a function
defined on G× C, taking values in [0,+∞[, such that

i) for all C ∈ C, Γ(e, C) = 0,
ii) for all a ∈ G, C ∈ C, Γ(a,C) = Γ(a−1, a.C),
iii) for all a, b ∈ G, C ∈ C, Γ(ab, C) ≤ Γ(b, C) + Γ(a, bC).
Then d defined by (1) is symmetric, satisfies the triangle inequality, and is such

that d(C,C) = 0 for all C ∈ C.
When G acts transitively on C, we know from elementary group theory that C can

be identified (at least as a set) to a coset space on G. Indeed, fixing some reference
element C0 ∈ C and, letting H0 = {h ∈ G, h.C0 = C0}, C can be identified to G/H0
through the well-defined correspondence a.H0 ↔ a.C0. Using this identification, the
following proposition provides a way to define a suitable cost function Γ provided that
G itself is equipped with a left-invariant distance.

PROPOSITION 2. Let dG be a distance on G. Assume that there exists γ0 : G→ R
such that γ0(h) = 1 if h ∈ H0 and, for all a, b, c ∈ G,

dG(ca, cb) = γ(c)dG(a, b).(2)

Define for C ∈ C, with C = b.C0,

Γ0(a,C) = dG(e, a−1)/γ(b) .(3)

Then Γ0 satisfies properties i), ii), and iii) of Proposition 1. The obtained distance is,
if C = b.C0,

d0(C,C ′) = γ(b)−1 inf{d(e, a), aC ′ = C} .

Proof. Here again the proof is almost obvious. Note first that γ must satisfy
γ(ab) = γ(a)γ(b). Γ0 is well defined, since C = b.C0 = b̃.C0 implies that b−1b̃ ∈ H
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so that γ(b) = γ(b̃). Let us check, for example, property iii), leaving i) and ii) to the
reader. We have, if C = b.C0,

Γ0(aa′, C) = γ(b)−1dG(e, (aa′)−1) ≤ γ(b)−1[dG(e, (a′)−1) + dG((a′)−1, (aa′)−1)]
= Γ0(a′, C) + γ(a′b)−1d(e, a−1) = Γ0(a′, C) + Γ0(a, a′C) .

Finally, we have

d0(C,C ′) = γ(b)−1 inf{d(e, a−1), C ′ = a.C} = γ(b)−1 inf{d(e, a), a.C ′ = C} .

If we had chosen another reference object C1 instead of C0, yielding another
identification of C (by G/H1), we have, if C1 = a1C0, H1 = a1H0a

−1
1 so that γ ≡ 1

also on H1 and the obtained cost function is, if C = b.C1,

Γ1(a,C) = d(e, a−1)/γ(b) = γ(a1)Γ0(a,C) ,

so that the cost function is canonical up to a multiplicative factor.
The problem is then to define a suitable left-invariance distance on G. Our

intuition will come from standard constructions of differential geometry. We think
of G as a Lie group acting on O, on which we define an invariant metric characterized
by its trace on the Lie algebra of G. Our objects being plane curves, the group
G (which must act transitively on C) must be infinite dimensional. In fact, it will
appear that a natural way to define it will be as a quotient space of a dense subset
of an infinite dimensional Hilbertian manifold (either a Hilbert space or a Hilbert
sphere) so that G itself will not even be a manifold. For these reasons, and because
we want to keep this paper as elementary as possible, we will refrain from speaking
with differential geometric terms, but rather use the following kind of argument.

To define a geodesic distance on G, we need only to know how to compute the
lengths of smooth paths in G. If a = (a(t), t ∈ [0, 1]) is such a path subject to suitable
regularity conditions which will depend on the context, we must define the length
L(a) and then set

dG(a0, a1) = inf{L(a),a(0) = a0,a(1) = a1},

the infimum being computed over some set of admissible paths. As soon as the fol-
lowing hold:

a) if a(t), t ∈ [0, 1] is admissible, so is a(1− t), t ∈ [0, 1] and both paths have the
same length, and

b) if a(.) and ã(.) are admissible, so is their concatenation, equal to a(2t) for
t ∈ [0, 1/2] and to ã(2t− 1) for t ∈ [1/2, 1], and the length of the concatenation is the
sum of the lengths of O and Õ,
the function dG is symmetrical and satisfies the triangle inequality.

We would like to define the length of a path t→ a(t) by the formula∫ 1

0
‖ȧt(t)‖dt(4)

for some norm. Thinking of ȧt(t)dt as a way to represent the portion of path between
a(t) and a(t + dt), defining the norm corresponds to defining the cost of a small
variation of a(t). Note that we must have

dG(a(t),a(t+ dt)) = γ(a(t))dG(e,a(t)−1a(t+ dt))

so that the problem is to define γ and the cost of a small variation from the identity.
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For this purpose, we will consider some small deformation of a plane curve C
into some plane curve C + δC. This deformation will easily be interpreted, and we
shall choose some natural way to define its cost Γ. We shall then try to represent
C → C + δC as a transformation C → a.C for some group action on C and identify
the cost Γ under the form Γ = γ̃(C)−1dG(e, a−1) at least for a close to identity. Now,
having chosen a reference curve C0 and expressed C = b.C0, we see that we have to
set γ(b) = γ̃(C).

2. Comparison of plane curves.

2.1. Infinitesimal deformations. Consider a plane curve in parametric form

C = {m(s) = (x(s), y(s)), s ∈ [0, l]} .

We assume that the parametrization is done by arc-length; that is (denoting by ḟs the
derivative of a function f with respect to s): ẋ2

s + ẏ2
s ≡ 1 , so that l is the Euclidean

length of the curve C. This is the only assumption which will be done concerning the
regularity of the curves which are compared.

We first justify, heuristically, the introduction of the group G and compute the
cost of an infinitesimal deformation of C. To start, assume that by some deformation
each point of C is moved, the displacement being given by some vector field carried
by C (i.e., a function V (s) = (u(s), v(s)), considered as a vector starting at the point
m(s)). A new curve is obtained, which is

C̃ = {m̃(s) = (x(s) + u(s), y(s) + v(s))} .

The field V (and its derivatives) is infinitely small.
• We define the energy of this deformation by

δE(3)(V ) =
∫ l

0
‖V̇s(s)‖2ds

and its cost by the square root of this energy. This cost is null if C̃ is a translation of
C, since in this case one may take V constant (we are in fact viewing curves modulo
translations). It is also rotation invariant and weakly scale invariant: if C and V are
simultaneously rotated and scaled by a common factor λ, the cost of the deformation
is scaled by

√
λ. We shall define in the sequel infinitesimal distances having more

robustness with respect to these operations.
We now see how the decomposition of V̇s on the tangential and normal direction

of C at m(s) can help to define a group action on plane curves. For this, denote by
g∗ the function g∗ : [0, l]→ [0, l̃], which associates with s the arc length s̃ in C̃ of the
point m(s) + V (s). At order 1, we have

ġ∗s = 1 + u̇sẋs + v̇sẏs .(5)

In other terms, ġ∗s − 1 is the tangential part of V̇s
Moreover, denote by θ∗(s) the angle between the tangent to C at point m(s) and

the axis y = 0. Let θ̃∗(s̃) be the similar function defined for C̃. We have{
cos θ∗ = ẋs,
sin θ∗ = ẏs

and (still at order 1){
cos θ̃∗ ◦ g∗ = (ẋs + u̇s)(1− u̇sẋs − v̇sẏs) ' ẋs − ẏs(−ẏsu̇s + ẋsv̇s),
sin θ̃∗ ◦ g∗ = (ẏs + v̇s)(1− u̇sẋs − v̇sẏs) ' ẏs + ẋs(−ẏsu̇s + ẋsv̇s).
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LetD∗ = −ẏsu̇s+ẋsv̇s; it is the normal component of V̇s. At order 1, sinD∗ = D∗,
cosD∗ = 1, and we may write{

cos θ̃∗ ◦ g∗ ' cos(θ∗ +D∗),
sin θ̃∗ ◦ g∗ ' sin(θ∗ +D∗),

hence,

θ̃∗ ◦ g∗ − θ∗ = D∗ = −ẏsu̇s + ẋsv̇s ;(6)

this equality is true modulo 2π. We can use the version of the left-hand term, which
is infinitely small of order 1, to induce a true equality. We therefore obtain another
expression for δE(3), which is

δE(3) =
∫ l

0
(ġ∗s − 1)2ds+

∫ l

0
(θ̃∗ ◦ g∗(s)− θ∗(s))2ds.

Note that g∗ and D∗ implicitly refer to l, the length of C, since both functions are
defined on [0, l]. We shall set g(s) = g∗(ls)/l̃, which is defined on [0, 1] and takes
values in [0, 1]. We let λ = l̃/l. We also let θ(s) = θ∗(ls) and θ̃(s̃) = θ̃∗(l̃s̃), which also
are defined on [0, 1]. We have ġs(s) = λ−1ġ∗s (ls) and θ̃∗ ◦ g∗(ls) = θ̃ ◦ g(s), so that

δE(3) = l

∫ 1

0
(λġs(s)− 1)2ds+ l

∫ 1

0
(θ̃ ◦ g(s)− θ(s))2ds .

Letting D(s) = θ̃ ◦ g(s)− θ(s), δE(3) may be seen as a function of λ, g, D and l. We
shall write

δE(3)(λ, g,D, l) = l

∫ 1

0

[
(λġs − 1)2 +D2] ds.

Finally, still taking terms of first order, this may be rewritten

δE(3)(λ, g,D, l) = l(λ− 1)2 + l

∫ 1

0

[
(ġs − 1)2 +D2] ds.

We now see how the functional δE(3) involves some action on the curve C. First we
note that the pair (l, θ(.)) characterizes a curve C up to translations. Since θ(.) is
defined modulo 2π, we make the identification of a curve C (modulo translations) and
a pair (l, ζ(.)) in which l ∈]0,+∞[ and ζ is a function defined on [0, 1] with values in
the unit circle of C. The relations between C and (l, ζ) is that l is the length of C,
and C = {(x(s), y(s)), s ∈ [0, l]}, where s is the arc-length parametrization of C and
ẋs = <(ζ) and ẏs = =(ζ) (the real and imaginary parts of ζ). From this remark, we
represent our set of objects as

C = {(l, ζ), l > 0, ζ : [0, 1]→ Γ1,measurable},(7)

where Γ1 is the unit circle of C. Note that in this representation, ζ is translation and
scale invariant, and the effect of a rotation on C = (l, ζ) corresponds to a multiplica-
tion of ζ by a constant complex number of modulus 1.

In view of the computations above, the transformation which can naturally be
associated to λ, g, and D is

(l, θ)→ (l/λ, θ ◦ g−1 +D ◦ g−1) = (l̃, θ̃) .(8)
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Now, define the action

(λ, g, r).(l, ζ) = (l/λ, r.ζ ◦ g),(9)

where λ > 0, g is a diffeomorphism of [0, 1] and r is a measurable function, defined on
[0, 1], with values in Γ1. Let G be the set composed with these 3-uples (we shall give
a precise definition of G below). Let us define the product (λ̃, g̃, r̃).(λ, g, r) so that

(λ̃, g̃, r̃)[(λ, g, r).(l, ζ)] = [(λ̃, g̃, r̃)(λ, g, r)].(l, ζ) ,

which yields

(λ̃, g̃, r̃).(λ, g, r) = (λλ̃, g ◦ g̃, r̃.r ◦ g̃) .(10)

This is a group operation, with identity eG = (1, Id,1) (where Id(s) = s and 1(s) = 1),
and inverse (λ, g, r)−1 = (1/λ, g−1, r ◦ g−1), where r is the complex conjugate of r
(r.r ≡ 1). Now, letting r = e−iD, the relation (9) may be rewritten

(l, θ)→ (λ, g, r)−1.(l, θ) .(11)

Our evaluation of small deformations implies that if (λ, g, r) is close to (1, Id,1), the
effect of the action on (l, θ) is

δE(3)(λ, g, r, l) = l(λ− 1)2 + l

∫ 1

0

[
(ġs − 1)2 + |r − 1|2

]
ds ,(12)

with the first order approximation |e−iD − 1| ' |D|.
Letting a = (λ, g, r), we thus have evaluated the cost of a small deformation

C → a−1.C by

Γ(a−1, C)2 = l(λ− 1)2 + l

∫ 1

0

[
(ġs − 1)2 + |r − 1|2

]
ds .

Let us choose a reference curve C0 as the horizontal plane segment of length 1; that
is, C0 = (1,1). The curve C = (l, ζ) is equal to b.C0 if and only if b = (λ, g, r) with
λ = 1/l and r = ζ. This above expression can be written

Γ(a−1, C)2 = dG(e, a)2/γ(b)2

with

γ(b) = 1/
√
l(13)

and

dG(e, a)2 = (λ− 1)2 +
∫ 1

0

[
(ġs − 1)2 + |r − 1|2

]
ds .(14)

We thus have defined our function γ and the distance between e and an element
a ∈ G infinitely close to e. Note that γ(bb′) = γ(b)γ(b′) and γ(b) = 1 if b.C0 = C0.

At this point, to extend the distance to arbitrary deformations, we have the
possibility to carry on by putting on G a structure of infinite dimensional Banach
manifold (restricting, for example, to C1 diffeomorphisms g), adding a Riemannian
structure consistently with our discussion, and computing the associated geodesic
distance (cf. [9], [16]). It will, however, be simpler and quicker to work in another
way, identifying G to some subset of a Hilbert space, which is the way we follow now
(see also [20] for a rigorous general construction of a distance in a similar context).
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2.2. Rigorous definition of G. We now give a precise definition of G, which
may seem rather awkward but will lead to very easy arguments and computations. We
start by considering the Hilbert space L2 = L2([0, 1],C) composed with all measurable
functions X, defined on [0, 1], with values in C, such that

‖X‖22 :=
∫ 1

0
|X(s)|2ds <∞ .

For X ∈ L2, we define

gX(s) =
∫ s

0
|X(s)|2ds/

∫ 1

0
|X(s)|2ds ,(15)

and consider the product in L2:

(X ? Y )(s) = X(s)Y ◦ gX(s) .(16)

For this product to be well defined, the result must not depend on the class of Y
modulo the sets of null measure, and this is equivalent to the condition that |X| > 0
almost everywhere. Thus, let

G̃ = {X ∈ L2, |X| > 0 almost everywhere}.(17)

We have the following proposition.
PROPOSITION 3. G̃ is a group for the operation ?.
Proof. We first prove that if X,Y ∈ G̃, then X ? Y ∈ G̃, and so compute∫ 1

0 |X(s)Y ◦ gX(s)|2ds . We make the change of variable u = gX(s) to get∫ 1

0
|X ? Y |2ds =

∫ 1

0
|X|2ds

∫ 1

0
|Y |2ds ,(18)

(the change of variables is valid since |X| > 0 almost everywhere; see [13, corollary
(20.5)], for example).

The fact that ? is associative may be proved by elementary arguments.
The function 1 clearly is an identity for ? and belongs to G̃. Assume that X ∈ G̃;

gX is then strictly increasing and its inverse h is well defined and strictly increasing.
However, with the change of variable v = gX(u), we have∫ s

0
|X ◦ h(v)|−2dv =

∫ h(s)

0
|X(u)|−2

[
|X(u)|2/

∫ 1

0
|X(v)|2dv

]
du;

that is,
∫ s

0 |X◦h(v)|−2dv = h(s)/
∫ 1

0 |X(v)|2dv. This implies that Y := 1/(X◦h) ∈ L2,
that ∫ s

0
|Y (v)|2dv = h(s)/

∫ 1

0
|X(u)|2du ,

and thus that h = gY . We have X ? Y = Y ? X = 1, and Y ∈ G̃. Thus, Y is the
inverse of X and the proof of Proposition 3 is completed.

We now put, for X ∈ G̃, λX =
∫ 1

0 |X|
2du, rX = X2/|X|2, which is defined almost

everywhere, and denote by Φ the mapping

Φ : X → (λX , gX , rX) .
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We shall define our group G acting on plane curves to be the image of G̃ by Φ, which
is the following definition.

DEFINITION 1. We denote by G the set of 3-uples (λ, g, r) subject to the conditions
• λ ∈]0,+∞[,
• g is continuous on [0, 1], with values in R, and is such that

• g(0) = 0, g(1) = 1;
• there exists a function q > 0 almost everywhere on [0, 1] such that

g(s) =
∫ s

0
q2(σ)dσ;

• r is measurable, r : [0, 1]→ Γ1, where Γ1 is the unit circle in C.
The product (10) is well defined on G, and the first basic remark is Proposition

4.
PROPOSITION 4. Φ : G̃→ G is a group homomorphism.
Proof. These are straightforward computations. We have λX?Y = λXλY by (18).

We also have

λX?Y gX?Y (s) =
∫ s

0
|X|2|Y ◦ gX |2du = λX

∫ gX(s)

0
|Y (u)|2du = λXλY gY ◦ gX(s) .

Thus, gX?Y = gY ◦ gX(s) and the fact that rX?Y = rXrY ◦ gX is obvious.
Note that Φ is not one to one: we have Φ(X) = Φ(Y ) if and only if X2 = Y 2

almost everywhere. Denoting by R the equivalence relation X2 = Y 2, we can identify
G with the quotient space G̃/R.

We therefore have an identification between G and G̃/R, and the crucial remark
is that the usual L2-norm on G̃ (up to a scalar factor) is the correct counterpart of
the distance dG(e, a) which has been obtained for a ' e from heuristic considerations;
that is, our identification is (in an informal sense) isometric in the neighborhood of
the identity. Thus, let us check how the L2 norm on L2 is consistent with formula
(14). For this, consider a small perturbation of 1 in L2, of the kind Y = 1 +X, and
assume that |X(s)| is small for all s. We have

λY − 1 ' 2
∫ 1

0
<(X) ,

ġYs − 1 = |Y |2/λY − 1 ' 2<(X)− 2
∫ 1

0
<(X),

and

rY − 1 = Y 2/|Y |2 − 1 ' 2=(X)

so that

(λY − 1)2 +
∫ 1

0

[
(ġYs − 1)2 + |rY − 1|2

]
' 4

∫ 1

0
|X|2;

that is, we retrieve formula (14) up to a factor 4. Thus, dG(e,Φ(Y )) is identified for
Y ' 1 to 2‖Y − 1‖2. Note also that if Φ(Ỹ ) = Φ(Y ) and Y (s) is close to 1 for all s,
necessarily ‖Ỹ − 1‖2 ≥ ‖Y − 1‖2, so that dG(e, a) for a close to e is the infimum of
2‖Y − 1‖ over all Y such that Φ(Y ) = a, which is the quotient distance on G̃/R.
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Now, we check left translation compatibility in order to translate the above remark
to the neighborhood of any point a ∈ G. If X ∈ G̃, let TX : Y → X ? Y be the left
translation on G̃; TX is linear and can be extended to all Y ∈ L2. However, we have
for X ∈ G̃, Y ∈ L2,

‖TXY ‖22 =
∫ 1

0
|X|2|Y ◦ gX |2ds = λX

∫ 1

0
|Y |2ds = λX‖Y ‖22 .

This means that if a = Φ(X) and b = Φ(Y ) with X ' Y , we have, from (13),
γ(a) = 1/

√
λX and

dG(a, b) = γ(a)dG(e, a−1b) = (2/
√
λX)‖1−X−1 ? Y ‖2 = 2‖X − Y ‖2 .

Thus, the norm of a small variation Φ(X) → Φ(Y ) in G is given by 2‖X − Y ‖2.
This will enable us to easily define the lengths of a path in G from the length of
corresponding paths in G̃.

2.3. Admissible paths in G. We therefore have a representation of our prob-
lem within a Hilbert space context. We can use this representation to define admissible
paths on which lengths can be computed. We start with admissible paths in L2

DEFINITION 2. A path (X(t, .), t ∈ [0, 1]) is said to be admissible in L2 (X(t, .) ∈
L2 for all t) if there exists a path, denoted (Ẋt(t, .), t ∈ [0, 1]), such that
• for all φ ∈ L2, the scalar function

t→
∫ 1

0
X(t, s)φ(s)ds

is differentiable in the generalized sense [6], and its derivative is

t→
∫ 1

0
Ẋt(t, s)φ(s)ds.

• The total energy is finite:∫ 1

0

∫ 1

0
|Ẋt(t, s)|2dtds <∞.

(X(t, .), t ∈ [0, 1]) is admissible in G̃ if it is admissible in L2 and (s→ X(t, s)) ∈ G̃
for all t.

The length of an admissible path in L2 is

L̃(X) =
∫ 1

0

[∫ 1

0
|Ẋt(t, s)|2ds

]1/2

dt.(19)

This definition obviously satisfies the natural properties with respect to time reversal
and concatenation.

Passing to G, we have the following definition.
DEFINITION 3. A path a(t), t ∈ [0, 1] is admissible in G if and only if there exists

a path X(t, .), t ∈ [0, 1] which is admissible in G̃ and such that, for all t, Φ(X(t, .)) =
a(t). We now define the length of a path a in G acting on C = (l, θ) (denoted Ll[a])
as 2
√
l times the length of a corresponding path in G̃ such that Φ(X(t, .)) = a(t).

Because of the following proposition, there is no ambiguity.
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PROPOSITION 5. If two admissible paths in L2, X(t, .) and Y(t, .) satisfy

X(t, .)2 = Y(t, .)2

for all t, then

Ẋt(t, .)2 = Ẏt(t, .)2 .

This proposition is proved in section 4.

2.4. Invariant distance associated with G. We now can compute explicitly
the distance between two elements a and b in G as the length of the shortest admissible
path in G joining them. According to the previous paragraph, this is the minimum
among the lengths of the shortest paths in G̃ joining any X and Y such that Φ(X) = a
and Φ(Y ) = b.

Paths of shortest length in L are straight lines, but, if X,Y ∈ G̃, the straight line
t → tX + (1 − t)Y does not necessarily stay within G̃; however, the length of this
straight line is ‖X − Y ‖2, and we always have

dG(a, b) ≥ 2 min{‖X − Y ‖2, X, Y ∈ G̃,Φ(X) = a,Φ(Y ) = b} .(20)

Equality will be true provided that we show that the minimum in the right-hand term
is attained for some X,Y such that t→ tX + (1− t)Y stays within G̃; however, since
‖X−Y ‖22 =

∫ 1
0 (|X|2+|Y |2−2

∫ 1
0 <(XY )) = λX+λY −2

∫ 1
0 <(XY ), and since the signs

of X and Y are arbitrary, the minimum in (20) is attained for X and Y with <(XY ) ≥
0 everywhere. This implies, however, that |tX + (1 − t)Y |2 ≥ t2|X|2 + (1 − t)2|Y |2
and is thus positive almost everywhere. Putting everything together, we obtain the
following theorem.

THEOREM 1. One defines a distance on G by (for a = (λ, g, ei∆), b = (µ, h, ei∆̃))

d
(3)
G (a, b) = 2

(
λ+ µ− 2

√
λµ

∫ 1

0

√
ġsḣs

∣∣∣∣∣cos

(
∆− ∆̃

2

)∣∣∣∣∣ ds
)1/2

.(21)

One defines a distance between two plane curves C = (l, eiθ) and C̃ = (l̃, eiθ̃),

d(3)(C, C̃) =

(
l + l̃ − 2

√
ll̃ sup

g

∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds
)1/2

,(22)

the supremum being taken over functions g which are increasing diffeomorphisms of
[0, 1].

Proof. We have obtained d
(3)
G by computing ‖X − Y ‖ for Φ(X) = a, Φ(Y ) = b

and <(XY ) ≥ 0.
If C = (l, ζ), we have C = b.C0 with b = (l, Id, ζ), and we thus have γ(b) = 1/

√
(l).

By Proposition 2, we have

d(3)(C, C̃) =
√
l inf{d(3)(e, a), a.C̃ = C},

but a.(l̃, eiθ̃) = (l, eiθ) if and only if a = (l̃/l, g, eiθ−iθ̃◦g) (cf. equation (8), which yields
formula (22)).

It therefore only remains to prove Lemma 1.
LEMMA 1. One has

d3(C, C̃) = 0⇒ l = l̃ and θ = θ̃ .

This is proved in section 4.
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2.5. Remark. We can also interpret G as the set of parametric curves; that is,
one can associate with an element (λ, g, r) ∈ G the parametric curve

Cλ,g,r : [0, 1]→ R2 ' C

u→ 1/λ
∫ g(u)

0
r(v)dv.

We first see that an element of C is identified to the set of all parametric curves modulo
a change of parameter, that is, to a geometric curve, as could have been expected.
We can rewrite the left action of G on itself as

(λ, g, r).Cl,ψ,ζ : [0, 1]→ C,

u→ (1/lλ)
∫ ψ◦g(u)

0
r(v)ζ ◦ g(v)dv.

Let us give an interpretation of this formula, which may be a little more intuitive.
Assume that it is possible to program a car so that it will follow a certain path with
given variation of speed without any operation of the driver. Assume moreover that
there exist robot-drivers which can be programmed to drive a car in order to follow
another path with another kind of speed variation. Let the programmed robot drive
the programmed car so that both commands are combined: the obtained path and
speed variation are the products of the first two as we have defined it.

3. Definition of distances with invariance restrictions. We now modify
the previous distance by requiring some additional Euclidean invariance properties.
Let us fix some terminology. A distance d on C is said to be invariant by a group of
transformations Σ acting on C if, for all σ ∈ Σ, for all C1, C2, we have

d(σC1, σC2) = d(C1, C2) .

The distance is said to be weakly invariant if there exists a function σ → q(σ)
such that for all σ, C1, C2, we have

d(σC1, σC2) = q(σ)d(C1, C2) .

The distance is said to be defined modulo Σ (of up to Σ, or insensitive to Σ, etc.)
if for all σ, C we have d(σC,C) = 0. (Note that in the literature, the term “invariant”
is often used for the last definition).

For example, the distance d(3) is invariant by rotation, and weakly scale invariant
(with q(σ) =

√
λ when σ is a scaling with factor λ). This distance, however, is not

defined modulo these transformations. We now show how modifications can be made
to obtain distances which see shapes modulo scaling and/or rotations.

3.1. Scale invariance. To obtain a scale-invariant expression for the infinitesi-
mal energy (12), it is natural to normalize it by l. This yields

δE(2)(λ, g, r) = (λ− 1)2 +
∫ 1

0

[
(ġs − 1)2 + |r − 1|2

]
ds.(23)

For this energy we need another kind of Hilbertian isometric identification ofG. Define
L2

0 to be the unit sphere of L2; that is,

L2
0 =

{
X,X ∈ L2,

∫ 1

0
|X|2ds = 1

}
.
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Admissible paths in L2
0 are taken to be admissible paths in L2 which stay in L2

0, and
we define Φ0 : L2

0 → G to be the restriction of Φ to L2
0. We also denote by G0 the

set of all (g, r) such that (1, g, r) ∈ G, and G̃0 = L2
0 ∩ G̃. We may, with a slight

abuse of language, also consider Φ0 as a map from L2
0 to G0. We can also identify

L2 to ]0,+∞[×L2
0, G to ]0,+∞[×G0 and Φ to the map, between ]0,+∞[×G̃0 and

]0,+∞[×G0, which associates (λ,Φ0(X)) with a couple (λ,X).
The left-invariant distance on ]0,+∞[ such that the infinitesimal norm is |α|

is d(λ, λ̃) = | log λ − log λ̃|. Moreover, the shortest paths in L2
0 are, like in finite

dimension, the great circles (this may be proved by elementary arguments). The
length of the shortest great circle linking X and Y is arccos

∫ 1
0 <(X(s).Y (s))ds . Like

in the previous paragraph, minimizing this expression among all X and Y in L2
0 such

that Φ(X) = a and Φ(Y ) = b leads to the choice of X and Y such that <(XY ) ≥ 0
everywhere. An elementary computation provides the equation of the arc of great
circle between X and Y :

t→ sin[L(1− t)]
sinL

X +
sinLt
sinL

Y ,

with sinL > 0 (L is the length of the path). It is easily seen that if <(XY ) ≥ 0, the
above path stays in G̃0 for all t. We thus have the following theorem.

THEOREM 2. One defines a distance on G by (for a = (λ, g, ei∆), b = (µ, h, ei∆̃))

d
(2)
G (a, b) =

| log λ− logµ|2 + 4

(
arccos

∫ 1

0

√
ġsḣs

∣∣∣∣∣cos

(
∆− ∆̃

2

)∣∣∣∣∣ ds
)2
1/2

.

(24)
One defines a scale-invariant distance between two plane curves C and C̃, with

normalized angle functions θ and θ̃, by putting

d(2)(C, C̃) =

| log l − log l̃|2 + 4

[
inf
g

arccos
∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds
]2


1/2

,

(25)
the infimum being taken over functions g which are strictly increasing diffeomorphisms
of [0, 1].

The proof is straightforward once it has been noticed that d(2)
G is left-invariant

with γ(a) ≡ 1.
To define a distance which is defined modulo scale, one simply needs to drop the

term | log l − log l̃| since the angle function θ characterizes a curve up to translation
and scaling. Moreover, this choice is optimal (relatively to our distance). The best
way to match two curves C and C̃ modulo the scale is to renormalize them so that
their length is the same. We have the following theorem.

THEOREM 3. One defines a distance (modulo translations and homotheties) be-
tween two plane curves C and C̃, with normalized angle functions θ and θ̃, by putting

d(1)(C, C̃) = 2 inf
g

arccos
∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds,(26)

the infimum being taken over functions g which are strictly increasing diffeomorphisms
of [0, 1].
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3.2. Rotation invariance. The distances above are rotation invariant but not
defined modulo rotation (the action of a rotation on a pair (g, r) ∈ G0 being defined by
(g, r)→ (g, eicr) where c is the angle of rotation). However, because of this invariance,
the quotient distances on G0, which are

d
(0)
G (a, b) = inf{d(1)

G (a,Rb), R plane rotation},

and on plane curves,

d(0)(C, C̃) = inf{d(1)(C,RC̃), R plane rotation},

are distances modulo similarities (rotations, scalings, and translations). Since rota-
tions merely translate the angle functions, this yields the following theorem.

THEOREM 4. One defines a distance on G0 by (for a = (g, ei∆), b = (h, ei∆̃))

d
(0)
G (a, b) = 2 min

c∈]−π,π]

[
arccos

∫ 1

0

√
ġsḣs

∣∣∣∣∣cos

(
∆− ∆̃− c

2

)∣∣∣∣∣ ds
]

1/2.(27)

One defines a distance (modulo similarities) between two plane curves C and C̃,
with normalized angle functions θ and θ̃, by putting

d(0)(C, C̃) = 2 inf
g

min
c∈]−π,π]

arccos
∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)− c

2

∣∣∣∣∣ ds .(28)

This distance may also be interpreted as the length of a shortest path. We
consider again small displacements in the neighborhood of eG but do it directly on
L2

0 since G0 and L2
0 are identified. The cost of an infinitesimal displacement 1 →

1 + ξdt was 4dt2
∫ 1

0 |ξ|
2ds. Making an infinitesimal rotation e−icdt yields the cost

4dt2
∫ 1

0 |ξ− ic|
2ds, and this is minimized by taking c =

∫ 1
0 =(ξ)ds. So, the cost of this

infinitesimal translation is

δd(1,1 + ξdt)2 = 4dt2
∫ 1

0

∣∣∣∣ξ − i∫ 1

0
=(ξ)ds

∣∣∣∣2 ds .
By left-translation, the cost of an infinitesimal translation X → X + ηdt must be

δd(X,X + ηdt)2 = δd

(
1,1 +

η ◦ g−1
X

X ◦ g−1
X

dt

)2

= 4dt2
∫ 1

0

∣∣∣∣η − iX ∫ 1

0
=(η)Xds

∣∣∣∣2 ds
after a change of variable. By construction, the length of a curve X(t, .) is the mini-
mum, over all choices of c(t), of

2
∫ 1

0

[∫ 1

0
|Ẋt − ic(t)X|2ds

]1/2

dt;(29)

Letting D(t) =
∫ t

0 c(u)du, however, this is precisely the length of the path e−iD(t)X(t, .),
for the usual norm on L2

0. In other terms, within the family of admissible paths going
from the class of X(0, .) modulo rotations to the class of X(1, .) modulo rotations, we
can find one of which the length, as given by (29), is the same as its geodesic length
on L2

0.
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3.3. Remark. In [15], a study of 2-dimensional shapes is made. In this reference,
a shape is the class of a labeled k-ad of points in the plane modulo similarities. The
space of shapes with k vertices is then identified with CP k−2. Identifying the plane
with C, it is obtained that if z = (z1, . . . , zk) and w = (w1, . . . , wk) are two sequences
of k points in C, their distance, or more precisely, the distance of their class modulo,
the action of similarities is

dK(z, w) = arccos

∣∣∣∣∣∣
k∑
j=1

z∗jw
∗
j

∣∣∣∣∣∣
 ,(30)

where z∗ (and, similarly, w∗) is the centered and normalized version of z:

z∗l =
zl −

∑
j zj/k√∑

j |zj |2/k
.

This is also equal to

dK(z, w) = arccos

max
c

 k∑
j=1

<(z∗jw
∗
je
−ic)

 .(31)

This distance is, at least formally, very close to the distance d(0), which has
just been computed, although the last one leaves the possibility to compare k-ads
with k′-ads, for k 6= k′, and does not require (even if k = k′) that vertices are
matched together. It is, however, instructive to look at what is obtained when k = k′

and vertices are constrained to be matched together (which can also make sense, for
example, if some information is carried by the vertices). So, let z and w be k-ads as
above, and define Z and W as the k − 1-ads formed by the edges of z and w (i.e.,
Zj = zj+1 − zj); our distance is (the optimal matching is piecewise linear; cf. section
6)

d̃(0)(Z,W ) = arccos

max
c

k−1∑
j=1

∣∣∣∣< [(e−icZ?jW ?

j

)1/2
]∣∣∣∣
 ,(32)

where the normalization now is such that
∑
j |Z?j | = 1.

So, in addition to the transformation z → Z (so that k-ads are represented by
edges rather than vertices), we see that the main difference between the distances is
the apparition of the square root in (32). In fact, we have

d̃(0)(Z,W ) = inf dK(U, V ) ,

the minimum being searched among all U, V such that U2
j = Zj and V 2

j = Wj .
Consider now that our k-ads are piecewise linear interpolations of two plane curves

C and C̃ with length 1, and angle functions θ and θ̃, such that, for some diffeomor-
phism g : [0, 1]→ [0, 1], the arc-length parameters sj of zj and s̃j of wj are such that
s̃j = g(sj). Making the approximations Zj = (sj − sj−1)eiθ(sj), we can rewrite (32)
as

d̃(0)(Z,W ) = arccos

[
max
c

(∫ 1

0

√
ġs

∣∣∣∣∣cos

(
θ − θ̃ ◦ g − c

2

)∣∣∣∣∣ ds
)]

,(33)
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which gives back d(0) if it is minimized with respect to g. Using (30), we get an
alternative expression for d(0) which is

d(0)(C, C̃) = arccos
[
sup
g

sup
ε

∣∣∣∣∫ 1

0
ε(s)

√
ġse

i θ−θ̃◦g2 ds

∣∣∣∣] ,(34)

where ε is a measurable function such that ε(s) = ±1.

4. Proofs of results. This paragraph provides the proof of two results which
have been stated above (Proposition 5 and Lemma 1). It may be skipped without
harming the understanding of the rest of the paper.

4.1. Proof of Proposition 5. We prove that if two admissible paths in L2,
X(t, .), and Y(t, .) satisfy X(t, .)2 = Y(t, .)2 for all t, then, Ẋt(t, .)2 = Ẏt(t, .)2.

We need a lemma.
LEMMA 2. Let q be a differentiable map from C into C, such that there exists a

constant A such that |q′(x)| ≤ A and for all h |q(x + h) − q(x) − q′(x).h| = A|h|2 .
Then, if X(t, .) is admissible in L2, q ◦X(t, .) is also admissible, and its derivative is

t→ q′(X(t, .)).Ẋt(t, .) ,

where q′ is the differential of q, identified with a 2× 2 matrix.
Let us see how Lemma 2 can be used to prove Proposition 5. Let Kn(u) be a

smooth function on R+ such that Kn(u) = 1 for 0 ≤ u ≤ n, Kn(u) = 0 for u > n+ 1,
and 0 ≤ Kn(u) ≤ 1 for all u. Set qn(x) = Kn(|x|2).x2. The hypotheses of Lemma
2 are true for qn. Moreover, since X2 = Y 2, qn(X) = qn(Y), and we get, after
differentiation, denoting by q′n the derivative of qn

q′n(X).Ẋt = q′n(Y ).Ẏt,

with q′n(x).z = 2Kn(|x|2)zx+ 2K ′n(|x|2)x2<(xz). This yields

2ẊtXKn(|X|2) + X2K ′n(|X|2)<(X̄Ẋt) = 2ẎtYKn(|Y|2) + Y2K ′n(|Y|2)<(ȲẎt) .

Since K ′n+1Kn = 0 and KnKn+1 = 1, we get, multiplying by Kn(|X|2) = Kn(|Y|2),
the above equation at n+ 1,

2ẊtXKn(|X|2) = 2ẎtYKn(|Y|2) .

Taking the squares and dividing by X2 = Y 2, which are positive almost everywhere
by assumption, we obtain that, for all n, Ẋ2

t (Kn(|X|2))2 = Ẏ2
t (Kn(|Y|2))2 which

implies that Ẋ2
t = Ẏ2

t .
We now prove Lemma 2. Note that, by hypothesis,∫ 1

0

∫ 1

0

∣∣∣q′(X(t, s))Ẋt(t, s)
∣∣∣2 dt ≤ A2

∫ 1

0

∫ 1

0
|Ẋt(t, s)|2dtds <∞ .

Fix φ ∈ L2 and consider the mapping

ξ : t→
∫ 1

0
q[X(t, s)]φ(s)ds .

We must check that ξ has a generalized derivative given by

ξ̇t : t→
∫ 1

0
q′(X(t, s))Ẋt(t, s)φ(s)ds .
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Let ψ be a C∞ function, with compact support included in ]0, 1[. We want to
show that

−
∫ 1

0

∫ 1

0
q[X(t, s)]φ(s)ψ̇t(t)dsdt =

∫ 1

0

∫ 1

0
q′(X(t, s))Ẋt(t, s)φ(s)ψ(t)dsdt .(35)

Clearly, it is enough to prove this for bounded φ. Assume that the support of ψ is
included in [δ, 1 − δ] for some δ > 0. The left-hand term of (35) is the limit, when ε
tends to 0, of ∫ 1

0
ξ(t).(ψ(t− ε)− ψ(t))/εdt ,

which is equal (for ε < δ) to∫ 1

0
ψ(t).(ξ(t+ ε)− ξ(t))/εdt;

however, we have

ξ(t+ ε)− ξ(t) =
∫ 1

0
[q[X(t+ ε, s)]− q[X(t, s)]]φ(s)ds

=
∫ 1

0
q′[X(t, s)]. [X(t+ ε, s)−X(t, s)]φ(s)ds+

∫ 1

0
R(t, s, ε)φ(s)ds,

where R(t, s, ε) is such that∫ 1

0
|R(t, s, ε)|φ(s)ds ≤ C

∫ 1

0
|X(t+ ε, s)−X(t, s)|2ds ,

using the fact that φ and ψ are bounded. Yet, for almost all s, X(t+ ε, s)−X(t, s) =∫ t+ε
t

Ẋt(u, s)du; thus,

(1/ε)
∫ 1

0

∫ 1

0
|R(t, s, ε)|φ(s)dsdt ≤ C

∫ 1

0

∫ 1

0

∫ t+ε

t

|Ẋt(u, s)|2dudtds,

which tends to 0 with ε. It remains, therefore, to show that

lim
ε→0

∫ 1

0

∫ 1

0
ψ(t)q′[X(t, s)].

[
X(t+ ε, s)−X(t, s)

ε

]
φ(s)dsdt

=
∫ 1

0

∫ 1

0
ψ(t)q′[X(t, s)].Ẋt(t, s)φ(s)dsdt.

More generally, however, we have, for any f such that f(t, s) = 0 when t ≤ δ or
t > 1− δ,

lim
ε→0

∫ 1

0

∫ 1

0
f(t, s).

[
X(t+ ε, s)−X(t, s)

ε

]
dsdt =

∫ 1

0

∫ 1

0
f(t, s)Ẋt(t, s)ds,(36)

provided that
∫ 1

0

∫ 1

0
|f(t, s)|2dsdt <∞. Indeed, still using the fact that

∫ 1−δ

δ

dt

∫ 1

0

∣∣∣∣X(t+ ε, s)−X(t, s)
ε

∣∣∣∣2 ds ≤ ∫ 1−δ

δ

dt

∫ 1

0

1
ε

∫ t+ε

ε

|Ẋt(u, s)|2duds

≤
∫ 1

0

∫ 1

0
|Ẋt(u, s)|2duds ,
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it suffices to show (36) for f in any dense subset of L2. This is true, by definition, for
any finite linear combination of functions of the kind ψ(t)φ(s), which form a dense
subset.

4.2. Proof of Lemma 1. We now prove that d(3) is a distance. Note that one
can write

[d(3)(C, C̃)]2 = (
√
l −
√
l̃)2 + 2

√
ll̃

(
1− sup

g

∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds
)

so that d(3)(C, C̃) = 0⇒ l = l̃, and we must prove that if

sup
g

∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds = 1,

then θ = θ̃. So, let gn be a sequence such that gn(s) =
∫ s

0 (qn(σ))2dσ, gn(1) = 1 and∫ 1

0
qn(s)

∣∣∣∣∣cos
θ ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣ ds→ 1 .

Note that we have

1−
∫ 1

0
qn(s)

∣∣∣∣∣cos
θ ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣ ds
=

1
2

∫ 1

0
(qn(s)− 1)2ds+

∫ 1

0
qn(s)

(
1−

∣∣∣∣∣cos
θ ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣
)
ds;

(37)

thus, qn tends to 1 in L2. Moreover, since gn(s) =
∫ s

0 (qn(s̃))2ds̃, gn converges to Id
uniformly on [0, 1]. In addition, with a change of variables s = gn(u)∫ 1

0

(
1

qn ◦ (gn)−1(s)
− 1
)2

ds =
∫ 1

0
(qn(u)− 1)2du ,

so that 1/qn ◦ (gn)−1 also converges to 1.
By (37), ∫ 1

0
qn(s)

(
1−

∣∣∣∣∣cos
θ ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣
)
ds

tends to 0. By Lusin’s theorem, there exists, for all ε > 0, a function θε which is
continuous on [0, 1] and equal to θ everywhere but on a set N ε of Lebesgue measure
smaller than ε. The quantity∫ 1

0
qn(s)

∣∣∣∣∣cos
θε ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣ ds
tends to ∫ 1

0

∣∣∣∣∣cos
θε(s)− θ̃(s)

2

∣∣∣∣∣ ds
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when n tends to infinity; however,∫ 1

0
qn(s)

∣∣∣∣∣
∣∣∣∣∣cos

θε ◦ gn(s)− θ̃(s)
2

∣∣∣∣∣−
∣∣∣∣∣cos

θ ◦ gn(s)− θ̃(s)
2

∣∣∣∣∣
∣∣∣∣∣ ds

is smaller than

2
∫ 1

0
qn(s)1gn(s)∈Nε = 2

∫ 1

0
(1/qn ◦ (gn)−1)1Nε(s)ds,

and this quantity tends to 2
∫ 1

0 1Nε ≤ 2ε when n tends to infinity. Similarly,∫ 1

0

∣∣∣∣∣
∣∣∣∣∣cos

θε(s)− θ̃(s)
2

∣∣∣∣∣−
∣∣∣∣∣cos

θ(s)− θ̃(s)
2

∣∣∣∣∣
∣∣∣∣∣ ds ≤ 2ε .

Thus,

lim
n

∫ 1

0

∣∣∣∣∣qn(s)

∣∣∣∣∣cos
θ ◦ gn(s)− θ̃(s)

2

∣∣∣∣∣−
∣∣∣∣∣cos

θ(s)− θ̃(s)
2

∣∣∣∣∣
∣∣∣∣∣ ds ≤ 4ε

for all ε > 0. This implies that
∫ 1

0 | cos θ(s)−θ̃(s)2 |ds = 1, and this is possible only if
θ(s) = θ̃(s) (modulo 2π) for almost all s.

5. The case of closed curves. Our object set C consists of all sufficiently
smooth plane curves, including also closed curves. This implies that the distances we
have used is also valid for comparing closed curves, but some modification is required
in order to obtain a pertinent comparison. Indeed, representing the curve by its
length and its angle function implicitly implies that some starting point was fixed for
the arc-length parametrization of our curves. In the case of open curves, there only
are two such choices, and each of them should be tried to get the best match. For
closed curves, the starting point may be anywhere, which complicates a little more the
computational problem (while leaving it feasible). This can be reformulated within a
more rigorous framework.

The subset Cc of closed curves in C is the set of all pairs (l, ζ) such that
∫ 1

0 ζ(s)ds =
0. Unfortunately, the group G does not act on Cc, since for no nontrivial a ∈ G we
have a.Cc ⊂ Cc, so that our previous construction cannot be applied to Cc. A little
can be done, however, by using the following remark: for any function ζ : [0, 1]→ C,
and any u ∈ R, we can define τu.ζ : [0, 1] → C such that τu.ζ(s) = ζ(s+ u) in which
it is assumed that ζ has been expanded as a periodic function defined over all R.
This defines a new action on C, and the main remark is that the distances we have
defined are invariant with respect to this action. This implies that, d being any of the
distances d(3) to d(0) above, one can define a distance on C modulo this last action by
setting, for C = (l, ζ), C̃ = (l̃, ζ̃)

dc(C, C̃) = inf
u
d(τuC, C̃),(38)

where τuC = (l, τuζ).
The action of τu on C does not have any natural geometric meaning unless C is

closed, in which case it simply corresponds to translating the origin of the arc-length
parametrization without modifying the geometric curve associated to C. The distance
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dc is therefore our candidate for comparing closed curves. It should be noticed, how-
ever, that there is no constraint ensuring that during the optimal deformation process
going from C to C̃ the curves remain closed. It is in fact authorized to “break” C
before reaching C̃.

6. Numerical implementation.

6.1. Case of polygonal curves. Given two functions θ and θ̃, the core of the
numerical problem is to compute

sup
g

∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds .
This is not trivial since the functional to maximize is not concave, and even

not differentiable because of the absolute value. The approach we have used is to
approximate our curves by polygons, for which some explicit computation may be
carried on, as we show now. So, assume that both curves are piecewise linear (i.e.,
that θ and θ̃ are piecewise constant).

Thus, there exists 0 = s0 < s1 < · · · < sm = 1 (resp. 0 = s̃0 < s̃1 < · · · < s̃n = 1)
and constants θ1, . . . , θm (resp. θ̃1, . . . , θ̃n) such that θ(s) ≡ θi on [si−1, si[ (resp.
θ̃(s) ≡ θ̃j on [s̃j−1, s̃j [). We have∫ 1

0

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θ(s)

2

∣∣∣∣∣ ds =
m∑
i=1

∫ si

si−1

√
ġs(s)

∣∣∣∣∣cos
θ̃ ◦ g(s)− θi

2

∣∣∣∣∣ ds.
We consider the points which match the si; that is, τi = g−1(si), i = 1, . . . ,m.

We begin by computing the best function g when the τi are fixed. Putting h = g−1,
the previous expression, which will be denoted by Q(g), writes

Q(g) =
m∑
i=1

∫ τi

τi−1

√
ḣs(s)

∣∣∣∣∣cos
θ̃(s)− θi

2

∣∣∣∣∣ ds.
For i = 0, . . . ,m, let j(i) be the index j for which τi ∈ [s̃j , s̃j+1[. Set k(i) = j(i+

1)− j(i) and αik = sj(i)+k, for k = 1, . . . , k(i). Let also αi0 = τi and αik(i)+1 = τi+1.
Finally, let βik = θ̃(αik) = θ̃j(i)+k+1 for k = 0, . . . , k(i). With these notations, we
have

Q(g) =
m∑
i=1

k(i)+1∑
k=1

∣∣∣∣cos
βik−1 − θi+1

2

∣∣∣∣ ∫ αik

αik−1

√
ḣs(s)ds.

This implies that Q(g) is maximal if h is linear on the intervals [αik−1, αik[, which
will be assumed from now. Let γik = h(αik). Note that we must have γi0 = si and
γik(i)+1 = si+1. We can write

Q(g) =
m∑
i=1

k(i)+1∑
k=1

∣∣∣∣cos
βik−1 − θi+1

2

∣∣∣∣√αik − αik−1
√
γik − γik−1

that is, putting cik =
∣∣∣cos βik−1−θi+1

2

∣∣∣√αik − αik−1 and δik =
√
γik − γik−1

Q(g) =
m∑
i=1

k(i)+1∑
k=1

cikδik.
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This expression may in turn be optimized with respect to the δik, with the con-
straints δik > 0 and

∑k(i)+1
k=1 δ2

ik = si+1 − si . This gives

δik =
cik
√
si+1 − si√∑k(i)+1
k=1 c2ik

,

and, for these δik,

Q(g) =
m∑
i=1

√√√√(si+1 − si)
k(i)+1∑
k=1

c2ik .(39)

This depends only on the τi. Returning to the initial notation, this is

Q(g) =
m∑
i=1

√
(si+1 − si)Qi,(40)

with

Qi = cos2 θ̃j(i)+1 − θi+1

2
(s̃j(i)+1 − τi) +

j(i+1)−1∑
j=j(i)+1

cos2 θ̃j+1 − θi+1

2
(s̃j+1 − s̃j)

+ cos2 θ̃j(i+1) − θi+1

2
(τi+1 − sj(i+1)).

We see that there exists a combinatorial part in the maximization of Q, which is
due to the j(i), i = 1, . . . ,m. Each j(i) may take any value between 1 and n, with the
constraint that j(1) ≤ j(2) ≤ · · · ≤ j(m). If the j(i) are fixed, the τi may be obtained
by the maximization of a smooth function, with the constraint that for all i,

max(s̃j(i), τi−1) ≤ τi < min(s̃j(i)+1, τi+1) .(41)

Now, Q(g), as given in equation (40), may very quickly be maximized by linear
programming, when the number of edges in the polygonal curve is not too large.
When the number of edges is large, a suboptimal steepest-descent procedure may be
used.

6.2. General curves. When one deals with general differentiable curves, each
of them may be replaced by a polygonal approximation. We generally use a multi-
scale approach, starting with a rough polygonal approximation for which dynamic
programming can be used, and then refine the result for enhanced approximations by
steepest-descent.

To estimate the rotation parameter c in the expression of d(0), we start with an
initial value c0, find the optimal g with this fixed c0, and then compute the best c
given g. The procedure can be iterated a few times.

7. Experiments. We present examples from a small database composed with
eight outlines of planes for four types of planes. The shapes have been extracted
from 3-dimensional synthesis images under two slightly different view angles for each
plane. We have applied some smooth stochastic noise to the outlines in order to obtain
variants of the same shape which look more realistic. The outlines are presented in
Figure 1. The lengths of the curves have been computed after smoothing (using a
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sailplan
aero

   x29

bomber

FIG. 1. Outlines of planes from 4 classes. For each type of plane—upper right: original view
(from above); lower left: view from above degraded by smooth noise; lower right: slight variation of
the angle of view and noise. The compared outlines are lower left and lower right.

TABLE 1
Matrix of distances (in radian) within the plane database.

sailp-1 sailp-2 aero-1 aero-2 x29-1 x29-2 bomb-1 bomb-2
sailp-1 0 0.25 0.43 0.46 0.79 0.73 0.9 0.81
sailp-2 0.25 0 0.47 0.48 0.71 0.69 0.77 0.82
aero-1 0.43 0.47 0 0.28 0.76 0.8 0.77 0.81
aero-2 0.46 0.48 0.28 0 0.79 0.77 0.78 0.76
x29-1 0.79 0.71 0.76 0.79 0 0.38 0.84 0.81
x29-2 0.73 0.69 0.8 0.77 0.38 0 0.82 0.8
bomb-1 0.9 0.77 0.77 0.78 0.84 0.82 0 0.29
bomb-2 0.81 0.82 0.81 0.76 0.81 0.8 0.29 0

cubic-spline representation). The complete matrix of distances has been computed on
this database and is given in Table 1. We see that the distance between a plane and
the other one from the same class is always smaller than between any plane in another
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class. The computed distance is d(0) (insensitive to rotations), since the orientations
of the planes vary.
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