

LAURENT YOUNES

Presented by Kexue Liu 11/28/00

Overview

- Introduction
- Comparison of plane curves
- Definition of distances with invariance restrictions
- The Case of closed curves
- Experiments

- Why need measure distances between shapes?
 Human eyes can easily figure out the differences and similarities between shapes, but in computer vision and recognition, need some measurements(distance!)
- The definition of the distance is crucial.
- Base the comparison on the whole outline, considered as a plane curve.
- Related to snakes: Active contour model .
- Minimal energy required to deform one curve into another! It is formally defined from a left invariant Riemannian distance on an infinite dimensional group acting on the curves, which can be explicitly, easily computed.

Principles of the approach

- From group action cost to deformation cost (distance between two curves)
- From distance on G to group action cost
- A suitable distance on G: which corresponds the energy to transform one curve to another.

Principles of the approach

From group action cost to deformation cost

- C: the object space, each object in it can be deformed into another.
- The deformation is represented by a *group action* $G \times \mathfrak{C} -> \mathfrak{C}$, (a,C)->a.C on \mathfrak{C} i.e. for all $a,b \in G$, $C \in \mathfrak{C}$, a.(b.C)=(ab).C, e.C=C
- Transitive : for all C_1 , $C_2 \in \mathfrak{C}$, there exist $a \in G$, s.t $a.C_1 = C_2$.
- $\Gamma(a,C)$: the cost of the transformation $C \rightarrow a.C$ (1) $d(C_1, C_2) = \inf\{ \Gamma(a,C_1), C_2 = a.C_1 \},$

the smallest cost required to deform C₁ to C₂

Principles of the approach

- Proposition 1:Assume G acts transitively on C and that Γ is a function defined on G x $\mathfrak C$, taking values in $[0,+\infty[$, s.t.
 - i) for all $C \in \mathfrak{C}$, $\Gamma(e,C) = 0$.
 - ii) for all $a \in G$, $C \in \mathfrak{C}$, $\Gamma(a, C) = \Gamma(a^{-1}, a.C)$
 - iii) for all $a,b \in G$, $C \in \mathfrak{C}$, $a.C_1 = C_2$, $\Gamma(ab,C) \leqslant \Gamma(b,C) + \Gamma(a,b.C)$

then d defined by (1) is symmetric, satisfies the triangle inequality, and is such that d(C,C)=0 for $C \in \mathfrak{C}$

Principles of the approach

From distance on G to group action cost

■ From elementary group theory, $\mathfrak C$ can be identified to a coset space on G, fix $C_0 \in \mathfrak C$, $H_0 = \{h \in G, h.C_0 = C_0\}$, $\mathfrak C$ can be identified to G/H_0 through the well-defined correspondence $a.H_0 \leftrightarrow a.C_0$

Proposition 2:Let d_G be a distance on G. Assume that there exists $\gamma \colon G \to \mathbb{R}$ s.t $\gamma(h)=1$ if $h \in H_0$ and ,for all $a, b, c \in G$,

(2)
$$d_G$$
 (ca, cb)= γ (c) d_G (a, b)

For $C \in \mathfrak{C}$, with $C = b.C_0$

(3)
$$\Gamma(a, C) = d_G(e, a^{-1})/\gamma(b)$$

then Γ satisfies i), ii), iii) of proposition 1. The obtained distance is, $d(C, C') = \gamma(b)^{-1} \inf\{ d_G(e, a), aC' = C \}$, where $C = b.C_0$

Principles of the approach

A suitable distance on G.

- If $a = (a(t), t \in [0,1])$ is such a path subject to suitable regularity conditions, we define the length L(a) and then set $d_G(a_0,a_1)=\inf\{L(a),a(0)=a_0,a(1)=a_1\}$ the infimum being computed over some set of *admissible* paths, d_G is symmetrical and satisfies the triangle inequality.
 - If a(t), $t \in [0,1]$ is admissible, so is a(1-t), $t \in [0,1]$ and they have the same length.
 - If a(.) and $\tilde{a}(.)$ are admissible, so is their concatenation, equal to a(2t) for $t \in [0,1/2]$ and to $\tilde{a}(2t-1)$ for $t \in [1/2,1]$ and the length of the concatenation is the sum of the lengths.

Principles of the approach

We define the length of the path by the formula

$$L(\mathbf{a}) = \int_0^1 \left\| \dot{\mathbf{a}}_t(t) \right\| dt$$

For some norm. Thinking of $\dot{a}_t(t)$ as a way to represent the portion of path between a(t) and a(t+ dt), defining a norm corresponds to defining the cost of a small variation of a(t). We must have

$$d_{\mathcal{G}}(\mathbf{a}(t), \mathbf{a}(t+dt)) = \gamma(\mathbf{a}(t)) d_{\mathcal{G}}(e, \mathbf{a}(t)^{-1}\mathbf{a}(t+dt))$$

so the problem is to define γ and the cost of a small variation from the identity.

Infinitesimal deformations

Energy Functional

• $C = \{m(s)=(x(s),y(s)), s \in [0,l]\}$

The parametrization is done by arc-length, so we have: $\dot{x}_s^2 + \dot{y}_s^2 = 1$

 $V(s)=\{u(s),v(s)\}$ considered as a vector starting at the point m(s)

$$\widetilde{\mathbf{c}} = \{ \widetilde{\mathbf{m}}(s) = (\mathbf{x}(s) + \mathbf{u}(s), \mathbf{y}(s) + \mathbf{v}(s) \}$$

The field V (and its derivatives) is infinitely small.

We define the energy of this deformation is:

$$\delta E^{(3)}(V) = \int_0^l \left\| \overrightarrow{V}_s(s) \right\|^2 ds$$

 $g^*:[0,l]->[0,\widetilde{l}]$ which associates s with the arc length \widetilde{s} in \widetilde{C} of the point m(s)+V(s)

Infinitesimal deformations

At order one, we have:

(5)
$$\dot{g}_{s}^{*} = 1 + \dot{u}_{s}\dot{x}_{s} + \dot{v}_{s}\dot{y}_{s}$$

■ Denote $\theta^*(s)$ the angle between tangent to C at point m(s) and the x-axis. Let $\widetilde{\theta}^*(\widetilde{s})$ be the similar function defined for \widetilde{C} , we have $\cos(\theta^*) = \dot{x}_s$, $\sin(\theta^*) = \dot{y}_s$ and(at order one)

$$\cos \widetilde{\theta}^* \circ g^* = (\dot{x}_s + \dot{u}_s)(1 - \dot{u}_s \dot{x}_s - \dot{v}_s \dot{y}_s) \approx \dot{x}_s - \dot{y}_s(-\dot{y}_s \dot{u}_s + \dot{x}_s \dot{v}_s)$$

$$\sin \widetilde{\theta}^* \circ g^* = (\dot{y}_s + \dot{v}_s)(1 - \dot{u}_s \dot{x}_s - \dot{v}_s \dot{y}_s) \approx \dot{y}_s + \dot{x}_s(-\dot{y}_s \dot{u}_s + \dot{x}_s \dot{v}_s)$$

Let $D^* = -\dot{y}_s \dot{u}_s + \dot{x}_s \dot{v}_s$, it is the normal component of \dot{V}_s at order one, we may write

Comparison of the plane curves Infinitesimal deformations

$$\cos \tilde{\theta}^* \circ g^* \approx \cos(\theta^* + D^*)$$

$$\sin \tilde{\theta}^* \circ g^* \approx \sin(\theta^* + D^*)$$
hence,
$$(6) \ \tilde{\theta}^* \circ g^* - \theta^* = D^* = -\dot{y}_s \dot{u}_s + \dot{x}_s \dot{v}_s$$
• $\delta E^{(3)} = \int_0^l (\dot{g}_s^* - 1)^2 ds + \int_0^l (\tilde{\theta}^* \circ g^*(s) - \theta^*(s))^2 ds$
• Set $g(s) = g(ls)/\tilde{l}, \lambda = \tilde{l}/l, \theta(s) = \theta^*(ls)$ and $\tilde{\theta}(\tilde{s}) = \tilde{\theta}^*(\tilde{l}\tilde{s})$

$$\delta E^{(3)} = l \int_0^l (\lambda \dot{g}_s - 1)^2 ds + l \int_0^l (\tilde{\theta} \circ g(s) - \theta(s))^2 ds \text{ (True Equality)}$$

Set
$$D(s) = \tilde{\theta} \circ g(s) - \theta(s)$$

$$\delta E^{(3)}(\lambda, g, D, l) = l \int_0^l [(\lambda \dot{g}_s - 1)^2 + D^2] ds$$

Infinitesimal deformations

Taking the first order, we have:

$$\delta E^{(3)}(\lambda, g, D, l) = l(\lambda - 1)^2 + l \int_0^l [(\dot{g}_s - 1)^2 + D^2] ds$$

- The functional involves some action on the curve C, $(l, \theta(.))$ characterizes a curve up to translations.
- Define $\zeta(s) = \dot{x}_s(s) + i\dot{y}_s(s)$, it is a function from [0,1] to the unit circle of \mathbb{C} (denote it as Γ_1), then we may represent our set of objects as:
- (7) $\mathfrak{C}=\{(l,\zeta), l>0, \zeta:[0,1]->\Gamma_1,\text{measurable}\}, \zeta \text{ is translation}$ and scale invariant.

Infinitesimal deformations

• The transformation which can naturally be associated to λ ,g,D:

$$(l,\theta) - > (l\lambda, \theta \circ g^{-1} + D \circ g^{-1}) = (\tilde{l}, \tilde{\theta})$$

Define the action:

(9)
$$(\lambda,g,r).(l,\zeta)=(l\lambda,r.\zeta\circ g)$$

where $\lambda > 0$, g is a diffeomorphism of [0,1] and r is a measurable function, defined on[0,1] and with values in Γ_1 .

 Let G be the set composed with these 3-uples, it is embedded product

(10)
$$(\lambda_1, g_1, r_1).(\lambda_2, g_2, r_2) = (\lambda_1 \lambda_2, g_2 \circ g_1, r_1. r_2 \circ g_1)$$
 with identity $e_G = (1, Id, 1)$ and inverse $(\lambda^{-1}, g^{-1}, \ \mathring{r} \circ g^{-1}), \ \mathring{r}$ is the complex conjugate of r .

Infinitesimal deformations

• If (λ, g, r) is close to (1, Id, 1), then the energy functional is:

$$\delta E^{(3)}(\lambda, g, D, l) = l(\lambda - 1)^2 + l \int_0^l [(\dot{g}_s - 1)^2 + |r - 1|^2] ds$$

with first order approximation $\left| e^{-iD} - 1 \right| = \left| D \right|$

- $a = (\lambda, g, r)$, we evaluate the cost of a small deformation C-> a^{-1} C by $\Gamma(a^{-1}, C)^2 = l(\lambda 1)^2 + l \int_0^l [(\dot{g}_s 1)^2 + |r 1|^2] ds$
- Let $C_0 = (1,1)$, $b = (1/l, Id, \zeta)$, then $C = (l, \zeta) = b \cdot C_0$ $\Gamma(a^{-1}, C)^2 = d_G(e, a)^2 / \gamma(b)^2$
- With

(13)
$$\gamma(b) = 1/\sqrt{l}$$

(14)
$$d_G(e,a)^2 = (\lambda - 1)^2 + \int_0^l [(\dot{g}_s - 1)^2 + |r - 1|^2] ds$$

Comparison of the plane curves Rigorous definition of G

- Consider Hilbert Space: $\mathcal{L}^2 = L^2([0, 1], \mathbb{C})$ with norm: $\|X\|_2^2 := \int_0^1 |X(s)| ds$
- Define (15) $g^{X}(s) = \int_{0}^{s} |X(s)|^{2} ds / \int_{0}^{1} |X(s)|^{2} ds$
- Product

(16)
$$(X * Y)(s) = X(s)Y \circ g^{X}(s)$$

It is well defined on

(17)
$$\widetilde{G} = \{X \in \mathcal{L}^2, |X| > 0 \text{ almost everywhere}\}$$

Rigorous definition of G

- Proposition 3 \tilde{G} is a group for the operation *
- Proof:

(18)
$$\int_0^1 |X * Y|^2 ds = \int_0^1 |X|^2 ds \int_0^1 |Y|^2 ds$$

Let the inverse of g^X is h, both of them are strictly increasing.

$$\int_0^s |X \circ h(v)|^{-2} dv = \int_0^{h(s)} |X(u)|^{-2} \left[|X(u)|^2 / \int_0^1 |X(v)|^2 dv \right] du$$

$$= h(s) / \int_0^1 |X(v)|^2 ds$$

Let
$$Y := 1/(X \circ h)$$
 ,then $\int_0^s |Y(v)|^2 dv = h(s) / \int_0^1 |X(u)|^2 du$

Rigorous definition of G

thus
$$h = g^Y$$
 and $X * Y = Y * X = 1$

- For $X \in \widetilde{G}, \lambda^X = \int_0^1 |X(s)|^2 ds, r^X = X^2 / |X|^2$
- Denote the mapping $\Phi: X \to (\lambda^X, g^X, r^X)$
- DEFINITION 1: Denote by G the set of 3-uples (λ,g,r) subject to the conditions:
 - 1) *i*∈]0,+∞[
 - 2) g is continuous on [0,1] with values in \mathbb{R} and such that
 - g(0)=0, g(1)=1
 - There exist a function q>0, a.e. on [0,1] such that $g(s) = \int_{0}^{s} q^{2}(\sigma) d\sigma$
 - 3) r is measurable, $r:[0,1] \to \Gamma_1$, Γ_1 is the unit circle in $\mathbb C$

Comparison of the plane curves Rigorous definition of G

- Proposition 4. $\Phi: \widetilde{G} -> G$ is a group homomorphism.
- Remarks:
 - $\Phi(X) = \Phi(Y)$ iff $X^2 = Y^2$ Denoting by \mathcal{R} the equivalence relation $X^2 = Y^2$ then we can identity G with the quotient space $\widetilde{G}/\mathcal{R}$ The consistency of norm on \mathcal{L}^2 with formula (14).
 - Y=1+X, a small perturbation of 1 in \mathcal{L}^2 , and assume |X(s)| is small for all s.

$$\lambda^{Y} - 1 \approx 2 \int_{0}^{1} \Re(X), \dot{g}_{s}^{Y} - 1 = |Y|^{2} / \lambda^{Y} - 1 \approx 2 \Re(X) - 2 \int_{0}^{1} \Re(X)$$
and $r^{Y} - 1 = Y^{2} / |Y|^{2} - 1 \approx 2 \Im(X)$, so that
$$(\lambda^{Y} - 1)^{2} + \int_{0}^{1} \left[(\dot{g}_{s}^{Y})^{2} + |r^{Y} - 1|^{2} \right] \approx 4 \int_{0}^{1} |X|^{2}$$

Comparison of the plane curves Rigorous definition of G

thus $d_G(e, \Phi(Y))$ is identified for $Y \approx 1$ to $2\|Y - 1\|_2$ Furthermore, $d_G(e,a)$ for a close to e is the infimum of 2||Y-1|| over all Y s.t $\Phi(Y) = a$, which is the quotient distance on $\widetilde{G}/\mathcal{R}$

■ If $X \in \widetilde{G}$, let $T_X : Y - > X * Y$ be the left translation on \widetilde{G} . and T_X is linear and can be extended to all $Y \in \mathcal{L}^2$ and we have

$$||T_X(Y)||_2^2 = \int_0^1 |X|^2 |Y \circ g^X|^2 ds = \lambda^X \int_0^1 |Y|^2 ds = \lambda^X ||Y||^2$$

this means if $a = \Phi(X), b = \Phi(Y)$ with $X \approx Y$, From (13)

$$\gamma(a) = \sqrt{\lambda^X}$$
 and

$$d_G(a,b) = \gamma(a)d_G(e,a^{-1}b) = 2\sqrt{\lambda^X} \left\| 1 - X^{-1} * Y \right\|_2 = 2 \|X - Y\|_2$$

Admissible paths in *G*

Definition 2:

A path $(X(t,.), t \in [0,1])$ is said to admissible in $\mathcal{L}^2(X(t,.) \in \mathcal{L}^2)$ for all t if there exists a path, denoted $(\dot{X}_t(t,.), t \in [0,1])$, s.t.

- For all $\phi \in \mathcal{L}^2$, the scalar function $t \to \int_0^1 X(t,s)\overline{\phi}(s)ds$ is differentiable in the general sense, and the derivative is $t \to \int_0^1 \dot{X}_t(t,s)\overline{\phi}(s)ds$
- The total energy is finite: $\int_0^1 \int_0^1 \left| \dot{X}_t(t,s) \right|^2 ds dt < \infty$

The length of an admissible path is:

$$\tilde{L}(X) = \int_0^1 \left[\int_0^1 |\dot{X}_t(t,s)|^2 \, ds \right]^{1/2} dt$$

- If a path is admissible in \mathfrak{L}^2 and $(t \to X(t,s)) \in \widetilde{G}$ for all t then it is admissible in \widetilde{G}
- This definition satisfies the natural properties w.r.t. time reversal and concatenation.

Admissible paths in *G*

- Definition 3: A path a(t), t∈[0,1] is admissible in G iff there exists a path X(t,.), t∈[0,1] which is admissible in \widetilde{G} and such that for all t, $\Phi(X(t,.))=a(t)$. We now define the length of a path a in G acting on C=(l, θ)(denoted L_l[a]) as $2\sqrt{l}$ times the length of a corresponding path in \widetilde{G} .
- Proposition 5: If two admissible paths in \mathcal{L}^2 , X(t,.) and Y(t,.), satisfy: $X(t,.)^2 = Y(t,.)^2$ for all t, then

Invariant distance associated with G

- Compute the distance between two elements in G as the length of the shortest admissible path in G joining them.
- $d_G(a,b)=2 \operatorname{Inf}\{||X-Y||_2, X,Y \in \check{G},\Phi(X)=a,\Phi(Y)=b \}$, the Inf is over all the shortest paths in \check{G} joining X and Y.
- Paths of shortest length in \mathcal{L}^2 are straight lines but if X,Y \in Ğ, the straight line t \rightarrow tX+(1-t)Y does not necessarily stay within Ğ, however, the length of this straight line is $||X-Y||_2$. So we always have $d_G(a,b) \geqslant 2\min\{||X-Y||_2, X,Y \in \check{G},\Phi(X)=a,\Phi(Y)=b\}$.
- Equality is true provided the minimum in the right hand term is attainted for some X, Y such that $t\rightarrow tX+(1-t)Y$ stays in Ğ.

-

Comparison of the plane curves

Invariant distance associated with G

- Because $||X Y||_2^2 = \lambda^X + \lambda^Y 2\int_0^1 \Re(X\overline{Y})$, the min is attained for $\Re(X\overline{Y}) \ge 0$
- Theorem 1: One define a distance on *G* by

$$d_G^{(3)}(a,b) = 2 \left(\lambda + \mu - 2\sqrt{\lambda\mu} \int_0^1 \sqrt{\dot{g}_s \dot{h}_s} \left| \cos\left(\frac{\Delta - \tilde{\Delta}}{2}\right) ds \right)^{1/2}$$

for $a = (\lambda, g, e^{i\Delta})$, $b = (\mu, h, e^{i\tilde{\Delta}})$

Invariant distance associated with G

One defines a distance between two plane curves by

$$d_G^{(3)}(C,\tilde{C}) = \left(l + \tilde{l} - 2\sqrt{l\tilde{l}} \sup_{0} \int_{0}^{1} \sqrt{\dot{g}_s} \left| \cos\left(\frac{\tilde{\theta} \circ g(s) - \theta(s)}{2}\right) ds\right)^{1/2}$$
for $C = (l,e^{i\theta})$, $\tilde{C} = (\tilde{l},e^{i\tilde{\theta}})$.

the supremum being taken over functions g which are increasing diffeomorphisms of [0,1].

Invariant distance associated with G

- The following lemma guarantee it is a distance!
- Lemma 1: one has

$$d^{(3)}(C, \widetilde{C}) = 0 \Rightarrow l = \widetilde{l} \text{ and } \theta = \widetilde{\theta}$$

Distances with invariance restrictions

Definition of invariant

- Invariant: A distance d on $\mathfrak C$ is said to be invariant by a group of transformations Σ acting on $\mathfrak C$, if for all $\sigma \in \Sigma$, for all C_1 , C_2 , we have $d(\sigma C_1, \sigma C_2) = d(C_1, C_2)$.
- Weakly invariant: if there exists a function $\sigma \rightarrow q(\sigma)$ s.t. for all σ , C_1 , C_2 , we have $d(\sigma C_1, \sigma C_2) = q(\sigma)d(C_1, C_2)$.
- Defined module Σ : If for all σ , C we have $d(\sigma C, C) = d(C, C)$. In the literature, the term 'invariant' is often used for the last definition.

Scale invariance

- By using appropriate energy definition and subspace of \mathcal{L}^2 , we get a scale invariant distant.
- Theorem 2: One defines a distance on *G* by

$$d_G^{(2)}(a,b) = \left(\left| \log \lambda - \log \mu \right|^2 + 4 \left(\arccos \int_0^1 \sqrt{\dot{g}_s \dot{h}_s} \left| \cos \left(\frac{\Delta - \tilde{\Delta}}{2} \right) \right| ds \right)^2 \right)^{1/2}$$
for $a = (\lambda, g, e^{i\Delta})$, $b = (\mu, h, e^{i\tilde{\Delta}})$

Scale invariance

One defines a scale invariant distance between two plane curves by

$$d_G^{(2)}(C, \tilde{C}) = \left(\left| \log l - \log \tilde{l} \right|^2 + 4 \left[\operatorname{Inf} \arccos \int_0^1 \sqrt{\dot{g}_s(s)} \left| \cos \left(\frac{\tilde{\theta} \circ g(s) - \theta(s)}{2} \right) \right| ds \right]^2 \right)^{1/2}$$
for $C = (l, e^{i\theta})$, $\tilde{C} = (\tilde{l}, e^{i\tilde{\theta}})$.

the infimum being taken over functions g which are strictly increasing diffeomorphisms of [0,1].

Modulo translations and scales

 Theorem 3: One defines a distance (modulo translations and scales) between two plane curves with normalized angle functions by:

$$d_G^{(1)}(C, \tilde{C}) = 2 \operatorname{Inf} \operatorname{arc} \cos \int_0^1 \sqrt{\dot{g}_s(s)} \left| \cos \left(\frac{\tilde{\theta} \circ g(s) - \theta(s)}{2} \right) \right| ds$$

$$\operatorname{for} C = (l, e^{i\theta}), \tilde{C} = (\tilde{l}, e^{i\tilde{\theta}}).$$

the infimum being taken over functions g which are strictly increasing diffeomorphisms of [0,1].

Modulo similarities

- Rotation invariance, the above distance is rotation invariant but not defined modulo rotation. Since rotations merely translate the angle functions.
- Theorem 4: one defines a distance by

$$d_G^{(0)}(a,b) = 2 \min \left[\arccos \int_0^1 \sqrt{\dot{g}_s \dot{h}_s} \left| \cos \left(\frac{\Delta - \tilde{\Delta} - c}{2} \right) \right| ds \right]$$

for a =
$$(g,e^{i\Delta})$$
, b = $(h,e^{i\Delta})$, the min is c over $]-\pi,\pi]$

Modulo similarities

 One defines a distance(modulo similarities) between two plane curves with normalized angle functions by:

$$d_G^{(0)}(C, \tilde{C}) = 2 \operatorname{Inf \ min \ arc \ cos} \int_0^1 \sqrt{\dot{g}_s(s)} \left| \cos \left(\frac{\tilde{\theta} \circ g(s) - \theta(s) - c}{2} \right) \right| ds$$

for
$$C = (l, e^{i\theta})$$
, $\tilde{C} = (\tilde{l}, e^{i\tilde{\theta}})$, with inf over g , and min over $c \in]-\pi,\pi]$.

Case of closed curves

- Object set consists of all sufficiently smooth plane curves, including closed curves. So the distance we have used need to be valid for comparing closed curves, but modification is required.
- In case of open cures, there are only two choices for the starting points to parameterize the curves. But in closed curve case, the starting point maybe anywhere.
- Define τ_u . ζ :[0,1]-> $\mathbb C$ s.t. τ_u . ζ (s)= ζ (s+u). for C_1 =(l_1 , ζ_1) and C_2 =(l_2 , ζ_2), d_c (C_1 , C_2) =inf d(τ_u . C_1 , C_2) where inf is over all u.

Experiments

- Database composed with eight outlines of airplanes for four types of airplanes.
- The shapes have been extracted from 3- dimentional synthesis images under two slightly different view angles for each airplane.
- Apply some stochastic noise to the outlines in order to obtain variants of the same shape which look more realistic.
- The lengths of the curves have been computed after smoothing(using cubic spline representation).

Experiments

COMPUTABLE ELASTIC DISTANCES BETWEEN SHAPES

585

Fig. 1. Outlines of planes from 4 classes. For each type of plane—upper right: original view (from above); lower left: view from above degraded by smooth noise; lower right: slight variation of the angle of view and noise. The compared outlines are lower left and lower right.

Experiments

Table 1
Matrix of distances (in radian) within the plane database.

	sailp-1	sailp-2	aero-1	aero-2	x29-1	x29-2	bomb-1	bomb-2
sailp-1	0	0.25	0.43	0.46	0.79	0.73	0.9	0.81
sailp-2	0.25	0	0.47	0.48	0.71	0.69	0.77	0.82
aero-1	0.43	0.47	0	0.28	0.76	0.8	0.77	0.81
aero-2	0.46	0.48	0.28	0	0.79	0.77	0.78	0.76
x29-1	0.79	0.71	0.76	0.79	0	0.38	0.84	0.81
x29-2	0.73	0.69	0.8	0.77	0.38	0	0.82	0.8
bomb-1	0.9	0.77	0.77	0.78	0.84	0.82	0	0.29
bomb-2	0.81	0.82	0.81	0.76	0.81	0.8	0.29	0

cubic-spline representation). The complete matrix of distances has been computed on this database and is given in Table 1. We see that the distance between a plane and the other one from the same class is always smaller than between any plane in another