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Introduction

- Why need measure distances between shapes?

Human eyes can easily figure out the differences and
similarities between shapes, but in computer vision and
recognition, need some measurements(distance!)

- The definition of the distance is crucial.

Base the comparison on the whole outline, considered as a
plane curve.

Related to snakes: Active contour model .
Minimal energy required to deform one curve into another!

It is formally defined from a left invariant Riemannian
distance on an infinite dimensional group acting on the
curves, which can be explicitly,easily computed.



Introduction
Principles of the approach

= From group action cost to deformation cost (distance
between two curves)

= From distance on ('to group action cost

= A suitable distance on & : which corresponds the
energy to transform one curve to another.



Introduction
Principles of the approach

From group action cost to deformation cost

= ¢ . the object space, each object in it can be deformed into

another.
= The deformation is represented by a group action

Gx€->¢€ (@aC)->aConc
l.e. forall a,b € G, Ce €, a.(h.C)=(ah).C, e.C=C

= Transitive : for all C,, C, ¢ €, there exist ac(, s.t a.C,=C,.

= ['(a,C): the cost of the transformation C -> a.C
(1) dc,, C,)=inf{ I'(a,C,), C,=a.C,},

the smallest cost required to deform C, to C,



Introduction

Principles of the approach

= Proposition 1:Assume ( acts transitively on C and that I is a
function defined on ¢ x €, taking values in [0,+o0[, S.t.

i) for all Ceg, I'(e,C)=0.
i) forall acG, Ce¢, I'(a, C)=I'(a’l,a.C)
iii) for all a,be G, Ce¢, a.C,=C, ,I'(ab,C)<I'(h,C)+I'(a,b.C)

then < defined by (1) is symmetric, satisfies the triangle
inequality, and is such that 4C,C)=0for C € ¢



Introduction
Principles of the approach

From distance on ('to group action cost

= From elementary group theory, ¢ can be identified to a coset
space on G, fix Cye €, Hy={h €, h.Cy= C,}, € can be identified to
G / Hy through the well-defined correspondence a./, <> a.C,

Proposition 2:Let d,. be a distance on (. Assume that there
exists v: G—> R 5.t ~(h)=1 if heH,and ,for all a, b, c €G,

(2) dg; (ca, cb)= v(C)d; (a, b)
For Ce ¢, with C=b.C,
(3) F(al C)= dG (el a-l)/7(b)

then T" satisfies i), ii), iii) of proposition 1. The obtained distance
is, d(C, C)=~(b)"inf{ d. (e, a), aC’= C}, where C=b.C,



Introduction

Principles of the approach

A suitable distance on & .
. If a = (a(t), tel0,1]) is such a path subject to suitable

reqgularity conditions, we define the length L(a) and then set
a{aya;)=inf{L(@),a(0)=aga(1)=a;}
the infimum being computed over some set of admissible

paths, d.is symmetrical and satisfies the triangle inequality.
If a(t), te[0,1] is admissible, so is a(1-t), te[0,1] and they

have the same length.

If a(.) and a(.) are admissible, so is their concatenatlon ecl ual to
a(2t) for te[0,1/2] and to 3(2t-1) for te[1/2,1] and the length

of the concatenation is the sum of the lengths.



Introduction
Principles of the approach

We define the length of the path by the formula

L(@) = [ [la )t

For some norm. Thinking of &, (t) as a way to represent the
portion of path between a(t) and a(t+ dt), defining a norm
corresponds to defining the cost of a small variation of a(t). We
must have

d{a(t),a(t+ dt))= vy(a(t)) d{e a(t)la(t+ dt))

so the problem is to define <y and the cost of a small variation
from the identity.



Comparison of the plane curves
Infinitesimal deformations

Energy Functional
* C={m(s)=(x(s),y(s)), s€l0,]] }
The parametrization is done by arc-length, so we have:xZ + y: =1
V(s)={u(s),v(s) } considered as a vector starting at the point m(s)
c = {m(s)=(x(s)+ u(s),y(s)+ v(s)}
The field V (and its derivatives) is infinitely small.
We define the energy of this deformation is :

SE W) = [V ()] as

g :[0,1]->[0, r] which associates s with the arc length s
in C of the point m(s)+V(s)
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Comparison of the plane curves
Infinitesimal deformations

= At order one, we have:
(5) Q. =1+UX + V.Y,

= Denote 8 (S) the angle between tangent to C at point m(s) _
and the x-axis. Letg" (S) bq the similar function defined for C
,we have cos(d') = x_,sIin( @) = y. and(at order one)
c0S8" o g’ = (X +U,) (1 U =V ¥,) = X, = V(= iU, + %)

SN o g = (¥, + V)L UX —V,¥,) = Ve + X (— Yol + XV,)

* Let D" =-yU, + XV, itis the normal component of V, .
at order one, we may write
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Comparison of the plane curves
Infinitesimal deformations

cosf og =~cos(@ +D")
sn@ og =sin(@ +D")
hence,

6)0 og -6 =D’ = =Yl + XV,
= SEO = J (9, -1%ds+ | (6"~ g'(s)- 6 (s))*ds
= Set @ S) g(ls)/l =1/l .0(s) =60 (Is) and H(S) 9" (Is)

SE® =| JO(/lgS —1)%ds+| jo(e o g(s) - 6(s))?ds (True Equality)

= Set D(s)=609(s)-6(s)
SE®(1,9,D,1) =| j;[(zgs _1)?+D?|ds
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Comparison of the plane curves
Infinitesimal deformations

Taking the first order, we have:

SE®(1,9,D,1) = |(1—1)2 +|j;[(gs _1)2+D?|ds

The functional involves some action on the curve C,

(I,6(.)) characterizesacurve up to translations.

Define %(S) = X.(S)+1y,(S) , itis a function from [0,1] to the
unit circle of C(aenote itas I';), then we may represent our set

of objects as:
(7) e={(1,0), />0, C:[0,1]-> T";,measurable}, { is translation
and scale invariant.
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Comparison of the plane curves
Infinitesimal deformations

= The transformation which can naturally be associated to \,g,D:
(1,0)->(11,00g+Dog™)=(,0)

= Define the action:
9 Ovgn).,8)=(UNrCg)
where X\ > O, g is a diffeomorphism of [0,1] and ris a
measurable function, defined on[0,1] and with values in T',.

= Let & be the set composed with these 3-uples, it is embedded
product
(10) (Nr€1,777) (N80, 1) =(N Ny, 800 81,777 PE)
with identity e.=(1,Id,1) and inverse (\1,g71, Fog™1), 7 is the
complex conjugate of .
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Comparison of the plane curves
Infinitesimal deformations

= If (\,g,r) is close to (1,Id,1), then the energy functional is:
SE®(1,0,D,1) = 1(A-1)° +|j;[(gs-1)2 +|r—171ds
with first order approximation |e ! ﬂ D|

= a=(\g,r), we evaluate the cost of a small deformation
C->a-lCby I'(a*,C)?=1(1-1)> +|j[(gs )2 +]r —1]ds

= Let C,=(1,1), b=(1/I, 1d, ), then C = (I ,{)=b.C,
I'(@™,C)?*=d,.(ea)’/y(b)’

= With

(13) 7(0) =1//1
(14) do(@8) = (A-1)?+ [ [(6, -1 +]r -1 ]ds

15



Comparison of the plane curves
Rigorous definition of G

= Consider Hilbert Space: L7 =1%([0, 1], C)
with norm: ||X| 2:= IO|X (s)|ds

= Define . ,
(15) 9% (9)=[]X(sds/ [|X(s)ds

= Product

(16)  (X*Y)(s)= X(S)Y og*(s)
= Tt is well defined on

(17)  G={Xe £ |X|>0amost everywhere}
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Comparison of the plane curves
Rigorous definition of G

= Proposition 3 G isagroupfor the operation*
= Proof:

(18) jx * Y\st: ﬁx\zdsﬂY\zds

Let the inverse of gX ISh , both of them are strictly
Increasing.

[1X oh(v)| *dv= j:(s’\X(u)\z[\X(u)\z / JjX(v)‘zdv]du
=h(s) / []x (v ds

et Y:=1/(Xoh) then [Ty(v)fdv=nh(s) /[]X (u)du
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Comparison of the plane curves
Rigorous definition of G

thush=g" and X*Y =Y* X =1

For XeG,A* = j:\X(s)\zds,rX = X2 /|IX[

Denote the mapping @ : X—>(1*,9%,r")

DEFINITION 1: Denote by G the set of 3-uples (\,g,r) subject

to the conditions:
1) Xe€]0,+[

2) g is continuous on [0,1] with values in R and such that
* 9(0)=0,9(1) =1
e There exist a function g>0, a.e. on [0,1] such that

g9 =[d(o)do | o
3) ris measurdble, r:[0,1] ->T,, T, is the unit circle in C
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Comparison of the plane curves
Rigorous definition of G

~

= Proposition 4. @ : G—> G isagroup homomorphism.
= Remarks:

- O(X)=D(Y)iff X2=Y?2
Denoting by R the equivalence relation X2=Y?2

then we can identity G with the quotient space G/ R
The consistency of norm on £2 with formula (14).

» Y=14X, a small perturbation of 1 in £2, and assume |X(s)| is small
for all s.

X =1=2[R(X),g¢ ~1=][" /A ~1=29(X) - 2[R(X)
andr' —-1=Y? /[ =1~ 23(X),so that
(-0 [l @y 4 -1 |- af X
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Comparison of the plane curves
Rigorous definition of G

thusd,, (e, ®(Y)) is identified for Y ~1to2]Y -1,
Furthermore, d,. (e,a) for a close to e is the infimum of
2|[Y-1||over all Y s.t ®(Y) = a, which is the quotient distance

onG/R

= If Xe é,letTX :Y—> X *Y betheleft translation on G.
and 7, is linear and can be extended to all Y € £2 and we have

e = ][
this means if a=®(X),b=®(Y)with X =Y, From (13)

y(a) = \/17 and

de(a,b) = y(a)ds (e.ah) = 2/ A [1- X 2+ Y| =2|x -],

Y og*[ ds= [ [V ’ds= 2*|v|f
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Comparison of the plane curves

Admissible paths in G

= Definition 2:
A path (X (t,.),t [0,1]) is said to admissible in (X (t,)e &
for al t) if there exists a path, denoted (X, (t,.),t [0,1]),Sstt.

1 —_
For all ¢ € £ ,thescaar functiont — J'OX(t,s)(p (s)ds
is differentiable in the general sense, and the derivative is

t— jolxt(t,s)a (s)ds

1p01, . 2
The total energy is finite: jojo‘xt(t, S)‘ dsdt < o
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Comparison of the plane curves

Admissible paths in G

= The length of an admissible path is:

[(X)= j:[ E‘Xt(t, Sl ds]llz d

= If a path is admissible in ¢ and (t — X (t,s)) e G for all t
then it is admissible in G

= This definition satisfies the natural properties w.r.t. time
reversal and concatenation.
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Comparison of the plane curves

Admissible paths in G

= Definition 3: A path a(t), t€[0,1] is admissible in G iff there
exists a path X(t,.), te[0,1] which is admissible in G and such

that for all t, ®(X(t,.))=a(t). We now define the length of a path
a in Gacting on C=(/,0)(denoted L[a]) as 2/ [ times the length
of a corresponding path in G .

= Proposition 5: If two admissible paths in £2,X(t,.) and Y(t,.),
satisfy: X(t,.)?2 = Y(t,.)? for all t, then
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Comparison of the plane curves
Invariant distance associated with G

= Compute the distance between two elements in G as the length
of the shortest admissible path in G joining them.

= dJ{a,b)=2 Inf{||X-Y||,, X,YeG,®(X)=a,®(Y)=b }, the Inf is over
all the shortest paths in G joining X and Y.

= Paths of shortest length in £2 are straight lines but if X,Y €G ,
the straight line t—tX+(1-t)Y does not necessarily stay within G,

however, the length of this straight line is ||X-Y[|, . So we
always have d{a,b)>2min{||X-Y||,, X,YeG,d(X)=a,d(Y)=b }.

= Equality is true provided the minimum in the right hand term is
attainted for some X, Y such that t—tX+(1-t)Y stays in G.
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Comparison of the plane curves
Invariant distance associated with G

= Because |X —YHi A+ -2 j:m(X\?), the min is attained for
R(XY) =0

= Theorem 1: One define a distance on G by

~ 1/2
d9 (a,b) = 2[1 + -2y [ CO{A ; = ]ds]

fora=(Lge”), b= (uhe")
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Comparison of the plane curves
Invariant distance associated with G

= One defines a distance between two plane curves by

d&(C,C) =(I +I~—2\/Wsupﬁ\/gi cos(éo g(s;—e(s) ]ds)

forC= (1,67 ),C= (i, ).

the supremum being taken over functions ¢ which are increasing
diffeomorphisms of [0,1].
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Comparison of the plane curves
Invariant distance associated with G

= The following lemma guarantee it is a distance!

= Lemma 1: one has
d®¥(C,C)=0=1=1 and6=6
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Distances with invariance restrictions
Definition of invariant

Invariant: A distance don ¢ is said to be invariant by a group of
transformations X acting on ¢, if for all 6 € X, for all C,, C, ,we

have dcC,, oC,)= dAC,,C).

Weakly invariant: if there exists a function 6 — ¢(o) s.t. for all
G, Cll C2 y WE have a(Gcll GCZ)= Q(G)a(cucz)-

Defined module X: If for all 6, C we have dcC, C)= dAC, Q).

In the literature, the term ‘invariant’ is often used for the last
definition.
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Distances with invariance restrictions
Scale invariance

= By using appropriate energy definition and subspace of £2, we
get a scale invariant distant.

= Theorem 2: One defines a distance on G by

d?(a,b) = {|Iog/1 ~logy| + 4(arccos'[:\/ g.h,

fora= (Lge”), b =(uhe)

1/2

COS(A;A]dsJZ]
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Distances with invariance restrictions
Scale invariance

= One defines a scale invariant distance between two plane curves by

Cos(é - ()~ 6(s) ] ds] ]
2
forC= (1,€°),C= (I,€°).

the infimum being taken over functions g which are strictly increasing

d?(c,C) = [Iogl —log I~‘2 + 4[Inf arccosj;/g‘s(s)

diffeomorphisms of [0,1].
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Distances with invariance restrictions
Modulo translations and scales

= Theorem 3: One defines a distance (modulo translations and
scales) between two plane curves with normalized angle

functions by:
cos(‘9 - g(s;— 0(s) ]ds

d&(C,C) = 2Inf arccosjolw/gs(s)

forc= (1,6°),C= (I,€°).
the infimum being taken over functions ¢ which are strictly
increasing diffeomorphisms of [0,1].
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Distances with invariance restrictions
Modulo similarities

= Rotation invariance, the above distance is rotation invariant but
not defined modulo rotation. Since rotations merely translate
the angle functions.

= Theorem 4: one defines a distance by

d(a,b) = 2min [arccosjol\ [g.h, cos( A- g —¢ ] ds]

fora = (g,€),b :(h,e"‘]), theminisc over |-7,x]
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Distances with invariance restrictions
Modulo similarities

= One defines a distance(modulo similarities) between two plane
curves with normalized angle functions by:

PN
Cos(e 9(9) - 6(9) ~¢ | 4
2 )

forC= (1,6° ), C= (i€ ),withinf over g,and min over ¢ e |-7,7].

d(cC,C) = 2Inf min arccosj;/gs(s)
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Case of closed curves

= (Object set consists of all sufficiently smooth plane curves,
including closed curves. So the distance we have used need to
be valid for comparing closed curves, but modification is
required.

= In case of open cures, there are only two choices for the
starting points to parameterize the curves. But in closed curve
case, the starting point maybe anywhere.

= Define 7,.0:[0,1]->C s.t. 1,.{(s)= {(s+u).

for C,=(/, ,¢;) and C,=(1, ,&,), d(C,,C,) =inf Az,.C,,C,)
where inf is over all u.
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Experiments

= Database composed with eight outlines of airplanes for four
types of airplanes.

= The shapes have been extracted from 3- dimentional synthesis
images under two slightly different view angles for each
airplane.

=  Apply some stochastic noise to the outlines in order to obtain
variants of the same shape which look more realistic.

= The lengths of the curves have been computed after
smoothing(using cubic spline representation).
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Experiments

ut
+
&n

COMPUTABLE ELASTIC DISTANCES BETWEEN SHAPES

. aero
sailplan

x29

bomber

by || e

T
T
s
4

Frc. 1. Cutlines of planes from 4 classes. For each type of plane—upper righi: original view
(frome above); lower left: view from above degraded by smooth neise; lower righit: slight variation of
the anale of view and nowse, The compared outlines are lower left and lower right.
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Experiments

TABLE 1
Matriz of distances (in radian) within the plane database.

sailp-1  sailp-2 | aero-1 aero-2 | x29-1 x29-2 | bomb-1  bomb-2

sailp-1 0 0.25 0.43 0.46 0.79 0.73 0.9 0.81
sailp-2 0.25 0 0.47 0.48 0.71 0.69 0.77 0.82
aero-1 0.43 0.47 0 0.28 0.76 0.8 0.77 0.81
aero-2 0.46 0.48 0.28 0 0.79 0.77 0.78 0.76
x29-1 .79 0.71 0.76 0.79 0 .38 (.84 0.81
x29-2 0.73 0.69 0.8 0.77 0.38 0 (.82 0.8
bomb-1 0.9 0.77 0.77 0.78 0.84 0.82 0 0.29
bomb-2 0.81 0.82 0.81 0.76 0.81 0.8 0.29 0

cubic-spline representation). The complete matrix of distances has been computed on
this database and is given in Table 1. We see that the distance between a plane and
the other one from the same class is always smaller than between any plane in another



