A Multi-Resolution Technique for Comparing Limages Using the Hausdorff Distance

Daniel P. Huttenlocher and William J. Rucklidge Nov 7 2000 Presented by Chang Ha Lee

Introduction

- Registration methods
 - Correlation and sequential methods
 - Fourier methods
 - Point mapping
 - Elastic model-based matching

The Hausdorff Distance

■ Given two finite point sets A = $\{a_1,...,a_p\}$ and B = $\{b_1,...,b_q\}$

$$H(A, B) = max(h(A, B), h(B, A))$$

where

$$h(A,B) = \max_{a \in A} \min_{b \in B} ||a-b||$$

With transformations

- A: a set of image points
- B: a set of model points
- transformations: translations, scales
 - $t = (t_x, t_y, s_x, s_y)$
 - $w = (w_x, w_y) => t(w) = (s_x w_x + t_x, s_y w_y + t_y)$
 - f(t) = H(A, t(B))

With transformations

- Forward distance
 - $f_B(t) = h(t(B), A)$
 - a hypothesize
- reverse distance
 - $f_A(t) = h(A, t(B))$
 - a test method

Computing Hausdorff distance

■ Voronoi surface $d(x) = \{(x, d(x)) | x \in \mathbb{R}^2\}$

$$d(x) = \min_{b \in B} ||x - b||, d'(x) = \min_{a \in A} ||a - x||$$

$$H(A, B) = \max(\max_{a \in A} d(a), \max_{b \in B} d'(b))$$

Computing Hausdorff distance

■ The forward distance for a transformation t = (t_x, t_v, s_x, s_v)

```
f_B(t) = h(t(B), A) = \max_{b \in B} \min_{a \in A} ||a - t(b)||
= \max_{x \in \mathcal{D}} \min_{x \in \mathcal{D}} \left\| a - (s_x b_x + t_x, s_y b_y + t_y) \right\|
= \max_{x \in \mathcal{D}} d'(s_x b_x + t_x, s_y b_y + t_y)
```


Comparing Portion of Shapes

- Partial distance
 - $h_K(t(B), A) = K^{th} \min_{a \in A} ||a b||$
- The partial bidirectional Hausdorff distance
 - $H_{LK}(A,t(B)) = max(h_L(A,t(B)), h_K(t(B),A))$

A Multi-Resolution Approach

 $0 \le b_x \le x_{max}$, $0 \le b_y \le y_{max}$ for all $b = (b_x, b_y) \in B$, $t = (t_x, t_y, s_x, s_y),$ $\rho(t,t') = \left\| (|s_x - s_x| | x_{\text{max}} + |t_x - t_x|, |s_y - s_y| | y_{\text{max}} + |t_y - t_y|) \right\|$

 $\Rightarrow |\delta - \delta'| \le \rho(t, t')$

A Multi-Resolution Approach

- If $H_{LK}(A, t(B)) = v > \tau$, then any transformation t' with $\rho(t,t') < v - \tau$ cannot have $H_{LK}(A, t'(B)) \le \tau$
- A rectilinear region(cell)

 $R = [t_x^{low}, t_x^{high}] \times [t_y^{low}, t_y^{high}] \times [s_x^{low}, s_x^{high}] \times [s_y^{low}, s_y^{high}]$

■ The center of this cell

 $t_c = ((t_x^{low} + t_x^{high})/2, (t_y^{low} + t_y^{high})/2, (s_x^{low} + s_x^{high})/2, (s_y^{low} + s_y^{high})/2)$

 $> \tau + \left\| (x_{\max}(s_x^{high} - s_x^{low})/2 + (t_x^{high} - t_x^{low}), y_{\max}(s_y^{high} - s_y^{low})/2 + (t_y^{high} - t_y^{low})) \right\|$

then no transformation $t' \in R$ have $H_{LK}(A, t'(B)) \le \tau$

A Multi-Resolution Approach

- Start with a rectilinear region(cell) which contains all transformations
- For each cell,

 $> \tau + \left\| (x_{\max}(s_x^{high} - s_x^{low})/2 + (t_x^{high} - t_x^{low}), y_{\max}(s_y^{high} - s_y^{low})/2 + (t_y^{high} - t_y^{low})) \right\|$ Mark this cell as interesting

- 3. Make a new list of cells that cover all interesting
- Repeat 2,3 until the cell size becomes small enough

The Hausdorff distance for grid points

- A = $\{a_1,...,a_p\}$ and B = $\{b_1,...,b_q\}$ where each point $a \in A$, $b \in B$ has integer coordinates
- The set A is represented by a binary array A[k,l] where the k,l-th entry is nonzero when the point $(k,l) \in A$
- The distance transform of the image set A
 - D'[x,y] is zero when A[k,l] is nonzero,
 - Other locations of D'[x,y] specify the distance to the nearest nonzero point

Rasterizing transformation space

- Translations
 - An accuracy of one pixel
- Scales
 - $b=(b_x,b_y) \in B$, $0 \le b_x \le x_{max}$, $0 \le b_y \le y_{max}$
 - x-scale: an accuracy of 1/x_{max}
 - y-scale: an accuracy of 1/y_{max}
 - Lower limits: s_{xmin}, s_{ymin}
 - Ratio limits: $s_x/s_y > a_{max}$ or $s_y/s_x > a_{max}$
- Transformations can be represented by
 - \blacksquare (i_x,i_y,j_x,j_y) represents the transformation $(i_x,i_y,j_x/x_{max},j_y/y_{max})$

Rasterizing transformation space

■ Restrictions where A[k,I], $0 \le k \le m_a$, $0 \le l \le n_a$

$$\begin{split} s_{x}^{\min} x_{\max} &\leq j_{x} \leq x_{\max} \\ s_{y}^{\min} y_{\max} &\leq j_{y} \leq y_{\max} \\ &\frac{y_{\max}}{x_{\max}} \leq \frac{j_{x}}{j_{y}} \leq \frac{y_{\max}a_{\max}}{x_{\max}} \\ 0 &\leq i_{x} \leq m_{a} - j_{x} \\ 0 &\leq i_{y} \leq n_{a} - j_{y} \end{split}$$

Rasterizing transformation space

■ Forward distance h_K(t(B),A)

$$F_B[i_x, i_y, j_x, j_y] = K_{b=B}^{th} D'[\langle j_x b_x / x_{max} + i_x \rangle, \langle j_y b_y / y_{max} + i_y \rangle]$$

Bidirectional distance

$$F[i_x, i_y, j_x, j_y] = \max(F_A[i_x, i_y, j_x, j_y], F_B[i_x, i_y, j_x, j_y])$$

Reverse distances in cluttered images

- When the model is considerably smaller than the image
 - Compute a partial reverse distance only for image points near the current position of the model

$$F_{A}[i_{x},i_{y},j_{x},j_{y}] = \underbrace{L^{th}}_{\substack{(k,l)\\l_{y} \leq k < l_{x} + j_{x}\\l_{y} \leq k < l_{y} + j_{y}}} A[k,l]D'[k,l]$$

Increasing the efficiency of the computation

- Early rejection
 - $K = \lfloor f_1 q \rfloor$ where q = |B|
 - If the number of probe values greater than the threshold exceeds q-K, then stop for the current cell
- Early Acceptance
 - Accept "false positive" and no "false negative"
 - A fraction s, 0<s<1 of the points of B
 - When s=.2
 - 10% of cells labeled as interesting actually are shown to be uninteresting

Increasing the efficiency of the computation

- Skipping forward
 - Relies on the order of cell scanning
 - Assume that cells are scanned in the x-scale order.
 - $D'_{+x}[x,y]$: the distance in the increasing x direction to the nearest location where $D'[x,y] \le \tau'$
 - $\, \bullet \,$ Computing ${D'}_{+x}[x,y] :$ Scan right-to-left along each row of D'[x,y]
 - $\gamma_x = \frac{x_{\text{max}}}{b} \max(0, D'_{+x} [\langle j_x b_x / x_{\text{max}} + i_x \rangle, \langle j_y b_y / y_{\text{max}} + i_y \rangle] 1)$
 - $\bullet \ F_B[i_x i_y, j_x j_y], ..., FB[i_x i_y, j_x + \gamma 1, j_y]$ must be greater than τ'

Conclusion

- A multi-resolution method for searching possible transformations of a model with respect to an image
- Problem domain
 - Two dimensional images which are taken of an object in the 3-dimensional world
 - Engineering drawings