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ABSTRACT
Modern day federated search engines aggregate heterogeneous types
of results from multiple vertical search engines and compose a sin-
gle search engine result page (SERP). The search engine aggregates
the results and produces one ranked list, constraining the vertical
results to specific slots on the SERP.

The usual way to compare two ranking algorithms is to first fix
their operating points (internal thresholds), and then run an online
experiment that lasts multiple weeks. Online user engagement met-
rics are then compared to decide which algorithm is better. How-
ever, this method does not characterize and compare the behavior
over the entire span of operating points. Furthermore, this time-
consuming approach is not practical if we have to conduct the ex-
periment over numerous operating points.

In this paper we propose a method of characterizing the perfor-
mance of models that allows us to predict answers to “what if”
questions about online user engagement using click-logs over the
entire span of feasible operating points. We audition verticals at
various slots on the SERP and generate click-logs. This log is then
used to create operating curves between variables of interest (for
example between result quality and click-through). The operating
point for the system then can be chosen to achieve a specific trade-
off between the variables. We apply this methodology to predict
i) the online performance of two different models, ii) the impact of
changing internal quality thresholds on clickthrough, iii) the behav-
ior of introducing a new feature, iv) which machine learning loss
function will give better online engagement, v) the impact of sam-
pling distribution of head and tail queries in the training process.
The results are reported on a well-known federated search engine.
We validate the predictions with online experiments.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
Current federated web search systems, like any other system,

have many internal system parameters that need to be fixed prior
to releasing it to real users. Fixing the operating point — the set
of system parameter values — can be a time consuming process in
the standard approach: i) train an algorithm, ii) fix system param-
eters/thresholds (operating points), iii) conduct multi-week online
experiments, iv) evaluate the results.

A characterization curve of a system, on the other hand, provides
a performance curve of a basic component over the entire span of
possible operating points. For example, a transistor characteristics
curve can be used to find what the the voltage will be if the current
is at a specific level, and how this curve changes with temperature.
This information is then used by engineers to design new circuits
and predict its presentation. In a similarly way, in federated search,
a change in operating point usually results in a change in the ver-
tical rankings and hence a change in average quality metric distri-
butions at specific positions and overall user engagement metrics.
Today estimates for engagement metric impact are measured by do-
ing online experiments over weeks of data. In this paper we present
a methodology that uses randomization of results that enables us to
create operating curves for the expected performance of the algo-
rithm for all possible operating points. Furthermore it enables us to
answer many design related questions such as:

• Can we predict the online behavior of the system if we change
an internal threshold without performing new online experi-
ments?

• Can we understand the online impact of a specific feature in
the model at various operating points?



• Given two different machine learning loss functions that can
be used for estimating models, can we show which one gives
us better online user engagement metrics in an offline way?

• In any machine learning process the engineer has to strug-
gle with issues of query sampling and weighting of training
records. Is there a systematic approach to quantifying which
sampling or weighting scheme leads to better user engage-
ment profile?

In Section 2 we summarize research relevant to our work. We
provide an overview of our federated web search architecture, met-
rics, and experimental setup in Section 3. In Section 4 we de-
scribe our characterization methodology and provide the algorith-
mic details. Next we demonstrate the methodology by applying it
to answer numerous questions about our federated web search al-
gorithm, which is described in Section 6.

2. RELATED LITERATURE
Receiver Operating Characterization (ROC) curves were intro-

duced in early signal detection literature [23] and have since been
used extensively in psychology [17], pattern recognition and ma-
chine learning [11, 12], computer vision [16] and numerous other
fields. Essentially the idea is to characterize the performance of a
system over the entire set of feasible operating points. This charac-
terization curve can then be used later to predict behavior or explain
the behavior if the operating point changes for some reason. The
trade-off curves are typically between probability of mis-detection
and probability of false alarm since, which are then used to com-
pute total probability of error or cost.

In the field of information retrieval, there are numerous papers
that that present plots for trade-offs of various types. For exam-
ple, Collins [3, 4] presents results that show the impact of vary-
ing query expansion parameters. Craswell et. al [9], characterize
the impact of crawl selection methods on retrieval effectiveness.
While these papers discuss trade-off and offline evaluation they are
not about about online performance characterization from offline
experiments. Evaluation literature in information retrieval commu-
nity depends heavily on sample corpus and human judgments [24,
13], which reflect the views of the human judges and not on what
will happen with respect to user engagement. This is crucial since
it is very difficult for a judge to know what the user wanted in the
case of tail or location-specific queries.

In machine learning literature, researchers have shown how to
choose optimal operating point for specific metrics. Joachim [15]
shows how to optimize for for various loss functions such as ROC
area, Precision/Recall Break-Even Point (PRBEP). However, while
this is an offline optimization and evaluation method, it is not rep-
resenting or predicting online engagement behavior of users.

Federated web search [21] is an active field of research. Si and
Callan [22] discuss approaches to incorporating vertical search en-
gine effectiveness. Diaz et al [1, 6] present machine learned ap-
proaches to trigger verticals and adapting the triggering based on
click feedback. We [18] introduced the notion of using clicks as la-
bels for machine learning and present online performance results.
In these papers, online results are presented at only one operating
point.

On-line behavior models [5, 2, 14, 7] estimated from click-logs
can be used to predict the user satisfaction in online sessions. These
are helpful to estimate the performance (without collecting human
judgments) of an online experiment after it has been performed on
real online traffic. Finally, the notion of randomization of result
presentation has been used to collect click-preferences for web re-
sults [19]. However, this work does not propose further use for
characterizing performance.

Figure 1: Screenshot of the Bing SERP showing vertical search
results at different slots.

In this paper we propose a method that allows us to predict on-
line metrics over the entire range of feasible of system operating
points. This is in contrast to online experiments that i) usually take
weeks to get statistically significant results, and ii) cannot be run for
numerous operating point due to lack of online traffic. Collecting
click-logs of online experiments where we randomize the presen-
tation of verticals allows us to simulate online traffic for various
different operating points with potentially different search result
pages for the same query.

3. OVERVIEW
We start with a brief overview of how our system places verticals

on the SERP and how we currently perform online experiments.

3.1 SERP Composition
When a user query arrives at the search engine, it is sent to the

web result generator and to a vertical selection component that de-
termines which verticals should be triggered. Some of the verti-
cals that are selected at this step generate content in response to
the query. The content from the verticals that respond are then sent
with the web results to a ranking and placement module. This mod-
ule is responsible for determining where the verticals are placed on
the SERP. The SERP is then rendered and sent to the user.

Figure 1 gives an examples of a SERP rendered by Bing. Verti-
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Figure 2: A high level overview of how the SERP is generated
in response to a user query.

cals are frequently shown at specific slots, in part due to aesthetic
appeal and often due to the way pages are rendered on the user’s
browser. The common slots are at the top of page (TOP), middle
of page (MOP) and bottom of page (BOP). The location for the
MOP slot is picked so that it appears just above the “fold” (the
line on the page below which the user can not view the content
without scrolling) for most users. The set of slots is denoted by
S = {TOP, MOP, BOP}. The approach we describe in this
paper is not constrained to any specific way of picking locations
for the slots and hence we can think of the set of slots as being
S = {s1, s2, . . . , sk} (see Figure 3).
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Figure 3: A simplified version of the SERP showing slots where
the verticals can be placed. A fixed number of web results can
be placed between two consecutive slots.

3.2 Assigning Verticals to Slots
We now mention how the ranking and placement module (Fig-

ure 2) assigns verticals to the slots. Once a subset of the verticals
generate content in response to a query, they are ranked and placed
as described below.

Corresponding to each vertical V there is a model χV that ranks
it. Given the feature vector for the query q, the model outputs a
score χV (q). The idea is that if χV (q) > χV (q′), then the vertical
is more relevant for query q than q′. The vertical is assigned to the

slot µV (q) given by

µV (q) =

8
<
:

TOP if χV (q) ≥ χV,TOP

MOP if χV,TOP > χV (q) ≥ χV,MOP

BOP otherwise.

The constants χV,TOP and χV,MOP are referred to as the TOP and
MOP thresholds for V respectively. In general, if the SERP has k
slots, then there will be k − 1 thresholds χV,1, χV,2, . . . , χV,k−1

that are needed to place the vertical on the SERP.

3.3 Generating Models to Rank Verticals
We used two approaches to build the model χV . The first was

using human judgments and the second was using pairwise click
preference judgments. The modeling technique itself was gradient
boosted decision trees [10]. This work is described in more detail
in our paper [18].

3.4 Flights
Whenever we need to experiment with a new ranking algorithm,

we assign a small set of users to a flight and use this ranking algo-
rithm to generate the SERP for this set of users. For example, if
we want to evaluate a new model to rank a vertical V , we take the
production ranker and replace the model used to rank V with the
new one to obtain the modified ranker for the flight. We call this
the treatment flight. The metrics for this flight are then compared to
a control flight which uses the production ranker. We usually com-
pare the performance of the treatment flight to the control flight
over the same period of time to avoid interference from temporal
changes in user behavior (for example from holidays, weekend ef-
fect, breaking-news events).

Another kind of flight that we use is an auditioning flight. On
this flight, the users are shown the verticals that trigger for a query
at a random slot on the SERP (instead of using a model score to
place the vertical). This flight is mainly used to gather online user
engagement behavior data for various vertical placement configu-
rations. This allows us to predict user engagement for a specific
configuration in a offline setting.

Finally, each flight is constituted of a set of impressions I =
{I1, I2, . . . , Im}, where each impression I contains the following
pieces of information: i) the query q that generated the impression,
ii) the verticals that were shown on the SERP and the slots where
they were shown, iii) the components on the SERP that got clicked
by the user.

3.5 Metrics
For every flight, we analyze a set of metrics for each vertical

to see how they differ from the control. As mentioned before, a
typical experiment involves changing the model used for ranking
one vertical V . In this case, some of the metrics we can analyze
are:

• Coverage: This is the fraction of SERP impressions for which
the vertical triggered. This is typically the same on the treat-
ment and control flight unless we also perform vertical sup-
pression.

• Coverage at a slot s: This is the fraction of impressions
where the vertical was shown at slot s out of all the impres-
sions where the vertical triggered. Unlike the overall cover-
age of the vertical, this can be directly influenced by chang-
ing the model or thresholds used to place the vertical.

• Clickthrough: This is the fraction of times that the verti-
cal was clicked out of all the impressions (not just those on
which the vertical was shown). This is of particular interest



to our partner vertical teams since this is the amount of traf-
fic they get. Ideally, they would like to see this metric to be
as high as possible. We also frequently look at clickthrough
at slot s which is the fraction of times that the vertical was
clicked when it was shown at s out of all the impressions.

• Vertical Clickthrough Rate (CTR): This is the fraction of times
that the vertical was clicked out of the impressions where the
vertical was shown on the SERP. The vertical CTR at slot
s is defined as the fraction of times the vertical was clicked
out of the impressions where the vertical was shown at s.
Usually if we increase the vertical coverage at TOP, the ver-
tical CTR increases, since components shown higher up on
the page are more likely to be clicked. Also, if the model
score positively correlates to relevance, then as we increase
the coverage at TOP, the vertical CTR at TOP decreases. This
is because we allow the vertical at TOP for more and more
impressions where it scored lower. Thus to make comparing
vertical CTRs meaningful, we must first ensure that there is
a good coverage match at various slots and then compare the
vertical CTRs at the slots. We then expect the flight with the
better model to have higher vertical CTR at TOP and lower
vertical CTR at BOP since it is more likely to assign higher
scores to more relevant queries.

• Normalized Vertical CTR: This is the fraction of times that
the vertical was clicked out of the impressions where ei-
ther the vertical or some other result below it was clicked.
The idea is that if the user clicks on the vertical or on some
other result below it, it means that with high likelihood, the
user noticed the vertical. This is based on the eye tracking
study of Radlinski and Joachims [20]. The normalized ver-
tical CTR at slot s is defined as the fraction of the number
of times the vertical got a click when shown at s out of the
impressions where the vertical was shown at s and either the
vertical or some result below it got a click.

• Sliding Normalized Vertical CTR at Slot s: This is normal-
ized CTR based on the impressions with score between χV,s

and χV,s+δs in the limit δs −→ 0. In other words, this is the
normalized CTR based on the impressions with the lowest
vertical scores that were allowed to be shown at slot s. This
is similar to metrics used by others [25, 2].

We formally define a metric as a function f : I −→ R. For exam-
ple, the vertical clickthrough at TOP is defined as

ClickthroughV,TOP(I) =

|{I ∈ I : IsSlotV,TOP(I) ∧ ClickV (I)}|
|I| ,

where IsSlotV,s(I) is true if V was shown at slot s in I . and
ClickV (I) is true if the V was shown in the impression I and
the user clicked on V . Define ClickBelow(I) to be true if V was
shown in impression I and some result below V got clicked. Then
we can define normalized CTR at slot s as

NormCTRV,s(I) =

|{I ∈ I : IsSlotV,s(I) ∧ ClickV (I)}|
|{I ∈ I : IsSlotV,s(I) ∧ (ClickV (I) ∨ ClickBelowV (I))}| ,

where χV is the model used to rank V and χV,s is the threshold
for slot s (see Section 3.2). The sliding normalized CTR can be

defined as

5NormCTRV,s(I) =

lim
δx−→0

|{I ∈ I : χV,s ≤ χV (I) < χV,s + δx ∧
IsSlotV,s(I) ∧ ClickV (I)}|

|{I ∈ I : χV,s ≤ χV (I) < χV,s + δx ∧
IsSlotV,s(I) ∧ (ClickV (I) ∨ ClickBelowV (I))}|

.

A problem with the above definition of sliding normalized CTR is
that we need to have infinite number of impressions, which is not
realistic. In practice, we will have to approximate it by looking at a
small finite window of score around the threshold. The size of this
window would depend on the size of the flight and the confidence
we want to have in the value we estimate.

4. MAIN APPROACH
We now describe how we estimate the various metric values of-

fline using click logs from an auditioning flight. Suppose we have
a ranker χV for a vertical V and we would like to estimate how the
values of the online user engagement metrics change as we adjust
the thresholds χV,1, χV,2, . . . , χV,k−1. Let f i

V : I −→ R (i =
1, 2, . . . , m) be a set of metrics that we are interested in estimat-
ing. Denote by Iaudition the set of impressions from an auditioning
flight, and χV (I) the score produced by the specific ranker χV for
the impression I . For simplicity of notation define χV,0 = ∞ and
χV,k = −∞.

For any new ranker and corresponding thresholds for each slot,
we can always compute the ranker score and use the thresholds to
compose a final SERP for each impression in the auditioning flight,
The question is how do we predict the user engagement metrics for
this specific composition. Now, since the auditioning flight has im-
pressions that are all possible compositions of vertical placements
in slots, and corresponding user engagement data, we can simu-
late a flight engagement data corresponding to a new ranker and
thresholds by selecting only the impressions for each query in the
auditioning flight that are identical to the composition generated
by the new ranker and thresholds. This idea is summarized by the
following proposition.

PROPOSITION 1. Suppose on the auditioning flight, the verti-
cal V was placed uniformly at random at one of the k slots. Also
suppose that users pick queries at random from some fixed distri-
bution and issue them to the search engine and that users inter-
act with the SERP without any context of the previous queries they
issued. Then the set I = {I ∈ Iaudition : χV,i ≤ χV (I) <
χV,i−1 where I places V in slot si} simulates a treatment flight that
ran in parallel the auditioning flight with 1/k fraction of the users
as on the auditioning flight and where χV was the ranker for V
and the thresholds were χV,1, χV,2, . . . , χV,k−1.

PROOF. Suppose a query q was received by the search engine.
Suppose s = µV (χV (q)) is the slot where we would place the ver-
tical if we used ranker χV and the thresholds χV,1, χV,2, . . . , χV,k−1

(the treatment flight). On the auditioning flight, with probability
1/k, it is assigned to the slot s. Therefore, every query q received
on the auditioning flight has a 1/k probability of the vertical end-
ing up in the same slot as on the treatment flight. Assuming then
that each query is picked from the same distribution, this proves the
proposition.

Using the proposition, we can predict the metric fV for the treat-
ment flight to be fV (I), where I is defined in the proposition.

4.1 Predicting Metrics at TOP
Based on Proposition 1 we give the following algorithm that pre-

dicts how adjusting the TOP threshold for vertical V influences the
value of various metrics.
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Figure 4: A plot showing a metric fV,TOP as a function of the
TOP threshold generated using the pseudo-code in Section 4.1.
This is generated by plotting 〈χV (Ii), fV,TOP(Ii)〉.

1. Retain only TOP impressions of vertical V from the audi-
tioning flight.

2. Compute the score χV (I) for each impression where the ver-
tical V triggered.

3. Sort the impressions by the score. Let I1, I2, . . . Im be the
sorted list of impressions.

4. For i = 1, 2, . . . , m:

(a) Let Ii = {I1, I2, . . . , Ii}.
(b) Predict the value of metric fV,TOP to be fV,TOP(Ii) if

the TOP threshold were set to χV (Ii).

This gives us the user engagement metric values at TOP for the
various TOP thresholds. We can now plot each metric as a function
of the TOP threshold as shown in Figure 4. If we are interested in
the trade-offs of two particular metrics, say ClickthroughV,TOP

and NormCTRV,TOP, we can also plot the trade-off curve for
them. First, using the proposition, we predict ClickthroughV,TOP

and NormCTRV,TOP for every possible value x of the score. With
a slight abuse of notation, we represent the respective values by
ClickthroughV,TOP(x) and NormCTRV,TOP(x). We can now
plot the curve of 〈ClickthroughV,TOP(x), NormCTRV,TOP(x)〉
as a function of x as shown in Figure 5. A flight corresponds to
point on this trade-off graph. If we wanted to plot the trade-off
graphs using flights, we would have to flight the model with lots of
different TOP thresholds and then interpolate, something that is not
practical.

For the purpose of characterizing the trade-offs of a model or
for comparing two different models, the metrics at TOP turn out
to be the most valuable since we get a lot more click feedback at
TOP (and hence the confidence in the estimates tends to be much
stronger) and also since the verticals are very likely competing with
the best web results.

4.2 Predicting Thresholds that Target Sliding
Metrics at Various Slots

One common problem we have is controlling the quality of the
verticals shown at various slots. For example, we want to show a
vertical at TOP only when we expect it to be of better or comparable
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Figure 5: A plot showing the trade-off of two metrics as the
TOP threshold is varied. From a flight, we only get to observe
one point on this trade-off curve.

quality than the web results. Otherwise we want to move it down
lower on the page to a slot where the value it provides is higher or
comparable to the web results below it. Suppose we want to show
the vertical V at the slot s for query q only if we expect the normal-
ized CTR (or some other quality metric) at s is at or above some
constant α. The problem is that a model χV need not necessarily
predict the normalized CTR for the query at slot s. For example,
a model trained on human judgments might predict a score on the
same scale that the human judges used. This does not have a natural
mapping to normalized CTR. Although we can train a model that
predicts normalized CTR using user click logs, even in that case,
we would like to see how changing α effects other metrics. An-
other problem of interest even if we target the metric directly might
be studying the impact of changing the modeling process (for ex-
ample, changing the loss function, or changing the weighing of im-
pressions) offline without having to flight each model. We would
also like to compare the trade-offs of models trained using different
labels (like click logs and human judgments) and pick the best one.
In order to do this, we need a function that maps the model score to
the metric we are interested in.

To address these problems, we look at the “sliding” version of
the quality metric we are interested in. One example was given in
Section 3.5, where we defined the sliding version of the normalized
CTR.

The below pseudo-code computes the k−1 thresholds that target
a value of α for a sliding metric f :

1. For each slot s ∈ S except the last slot on the page:

(a) Let Is ⊆ Iaudition be the set of impressions where V
was in slot s from the auditioning flight.

(b) Compute the score χV (I) for each I ∈ Is.

(c) Sort the impressions by the score. Let I1, I2, . . . Im be
the sorted list of impressions.

(d) For i = w, w + 1, . . . , m (w is picked based on the
confidence we need in the estimates):

i. Let Ii = {I1, I2, . . . , Ii}. Let I′i be the last w
impressions from this list.

ii. Predict that the value of f at the model score χV (I)
is equal to f(I′i) at slot s. That is, we estimate the



sliding metric f at score χV (I) using the sliding
window of w impressions with score just greater
than or equal to that score.

iii. If the estimate of f at s dips below α, output χV (I)
as the threshold χV,s for slot s and continue to the
next slot.

5. EXPERIMENTAL PROTOCOL

5.1 Auditioning
For the purposes of conducting experiments with our approach,

we used an auditioning flight where 1% of the traffic was assigned
to it. The impressions we used for estimating online user engage-
ment metrics were obtained from a two week period of this flight.
We present our results for three verticals, Non-Navigational (Non-
Nav) News, Image and Commerce verticals.

5.2 Model Training
The models were trained on either the user click logs (click-

based models) or on human judgment labels collected using our
Human Relevance System (HRS) system. The models we built
were using an implementation of gradient boosted decision trees [10].
We used an L2 regression loss function for the modeling, except in
Section 6.5 where we study the impact of changing the loss func-
tion on online user engagement metrics. The algorithm parameter
values used are described along with each experiment in the results
section.

The impressions used to train our click-based models for these
verticals were obtained from a two week period on the auditioning
flight (this period was different from the two weeks used to gather
impressions for offline user engagement metric estimation). We re-
tained the impressions where the vertical was shown at TOP and
MOP. To assign a label to each impression, the vertical was com-
pared to the first web block (Figure 3). If the vertical was shown at
TOP and got a click, but not the web block below it, the impression
was labeled 1. If the vertical did not get a click when shown at
TOP, but the first web block did, then the impression is labeled 0.
Also, if the vertical was shown at MOP and got clicked, but not the
first web block, then the impression is labeled 1, but with a higher
weight (of 5). This is because the user explicitly skipped over the
first web block to get to the vertical. The impressions are then
log-weighed to ensure that the most frequent head queries do not
completely dominate the training process. Then the impressions
are re-weighed again to ensure that the head and tail both have the
same weight.

The human judgment labels that we used for the News, Image
and Commerce verticals had around 4,300, 39,000 and 9,000 judg-
ments respectively. The judges were shown just the SERP with web
results and the vertical content and were asked to grade the verti-
cal on a scale of 0 to 3, indicating whether they think the vertical
should not be shown in response to the query or whether the right
slot is BOP, MOP or TOP respectively.

Further details of this approach are described in extensive detail
in [18], but are not that relevant for the purpose of the methodology
described in this paper.

5.3 Bootstrapping
Once we estimate the trade-off curves for a pair of user engage-

ment metrics offline for two different experiments (like one that
uses a click-based model and another that uses a HRS model), we
would also like to know if the differences in the trade-offs are sta-
tistically significant. This is very important since we need to eval-
uate if we need a longer auditioning flight to make our predictions
meaningful. To do so, we use bootstrapping [8]. For this, we gener-
ate n samples of the auditioning flight by sampling the impressions

uniformly at random with replacement. For each sample, we calcu-
late the value of the metrics at various scores. Suppose the offline
bootstrap estimates of some metric f at a slot threshold of x for
slot s are a1, a2, . . . , an. Then we predict the value of the met-
ric f at slot s with threshold x to be the median of the n values.
We compute the 90% confidence interval by first sorting the ai and
then picking lower value of the interval to be at the 5th percentile
of the sorted list and the higher value at the 95th percentile. Note
that since in operating curves both axis are noisy, we produce both
x and y confidence intervals around the estimates. We used an n of
100.

6. RESULTS AND DISCUSSION
We now demonstrate the methodology presented in Section 4 by

applying it to five experiments that we conducted to answer specific
questions about our federated web search algorithm.

First we explore the impact of trading-off the aggregate qual-
ity of the results that are shown to the user versus clickthrough
rate. The second study is looks deeper into the impact of worst
result quality (instead of aggregate) shown to the user for a spe-
cific threshold versus clickthrough rate. We next demonstrate how
to use the characterization curves to study the online user engage-
ment impact of a feature in an offline way. This is followed by
an experiment where we study the impact of various query sam-
pling strategies in the modeling process. And finally we apply the
methodology to study the impact of loss functions on the online
engagement metrics.

6.1 Trade-off of Clickthrough and Quality
Ideally, our vertical partners would like their verticals to be shown

on as high a slot as possible. On the other hand, we want to ensure
that if the web results provide more utility than the vertical, then
the vertical is not shown above them. One metric of prominence
that the vertical teams frequently look at is clickthrough. A met-
ric that measures the quality of the vertical is the normalized CTR,
which measures how the vertical performs compared to the web re-
sults below it. We compare how different models for some major
verticals trade-off these two metrics at TOP. We use the algorithm
in Section 4.1 to estimate the value of these metrics as a function of
the TOP threshold and then plot the trade-off graph for each model.
Using bootstrapping, we can also calculate the error margins for the
estimate of both these metrics. As we decrease the TOP threshold,
we let the vertical appear at TOP for more queries. This will lead
to increased clickthrough to it. At the same time, we expect that
since we are letting the vertical at TOP for less relevant queries
(assuming the model score correlates positively to relevance), the
normalized CTR will drop. This is shown in Figures 6-8 for three
different models. For each curve we also show the error margins
for our estimates on clickthrough and normalized CTRs at TOP us-
ing horizontal and vertical error bars. The X-axis has been scaled
so that the maximum possible clickthrough to 1. The Y-axis has
been linearly transformed to be between 0-1.1

We plot the graphs for three models for each vertical. The curve
labeled "Vertical Confidence" denotes the trade-off of a model that
just outputs the vertical confidence (a feature provided by the an-
swer partner as an indicator of how relevant they think their vertical
is to a query) as the score. Vertical confidence is usually one of the
most important features in our click-based and HRS models, but
is calculated without considering the other web results present on
the SERP. But when the verticals are ranked by the ranking and
placement module of the search engine, this information can be in-
corporated into the ranking process as features. In some sense, the

1This was done due to business constraints.



curves for the click-based and HRS-based models show that im-
proved utility that this component provides. In general, one can see
that for the same amount of clickthrough, the click-based model
achieves a better value of normalized CTR at TOP compared to the
HRS model or just using vertical confidence.

From a flight, in the past, we used to be able to see only one point
〈ClickthroughV,TOP(χV,TOP), NormCTRV,TOP(χV,TOP)〉 on this
curve, where χV,TOP is the TOP threshold picked for the flight.
The operating curve, in contrast, provides us with a more com-
plete picture of the performance of the algorithm by reporting the
engagement metrics for the entire range of operating points (thresh-
olds).
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Figure 6: Normalized CTR for Non-nav News.
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Figure 7: Normalized CTR for Image.

6.2 Sliding Normalized CTR Ratio as a means
of Quality Control

We can use the approach presented in Section 4.2 to calculate
the thresholds that target a certain value of a sliding quality met-
ric. For example, we can use this to target a value α of the sliding
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Figure 8: Normalized CTR for Commerce.

normalized CTR. Using the approach of Section 4.1, we can an-
alyze how adjusting α changes the clickthrough to the vertical at
TOP. We can in fact calculate the overall clickthrough from all slots
too. But we restrict ourselves to TOP for simplicity. The trade-off
curves for Image are shown in Figure 9 based on a sliding window
of w = 1000 impressions.

In general, we expect that a better model will assign a higher
score to impressions where the vertical gets a click but not the web
results below it and assign a lower score to queries whose impres-
sions have a click on the web result below the vertical, but not
on the vertical itself. Thus we expect a better model to achieve
a higher value of sliding normalized CTR at the highest ranges
of it scores while at the same time achieve a lower value of nor-
malized CTR at the lowest ranges of the score. In particular, if
χRandom is a model that assigns a random number as the score
for a query, its sliding normalized CTR will be a constant (equal
to NormCTRV,TOP(Iaudition), since it will place the vertical at
TOP for random queries irrespective of the TOP threshold). Thus
its clickthrough vs. sliding normalized CTR curve will be a flat
horizontal line. The better a model is, the more the curve will be
rotated clockwise.

Also of particular interest is the graph with clickthrough at TOP
on the X-axis and the normalized CTR and sliding normalized CTR
at TOP on the Y-axis. For a given value α of for the sliding nor-
malized CTR threshold, this graph allows us to read out the click-
through that we will obtain and also the normalized CTR, the col-
lective quality of the impressions for which we let the vertical at
TOP. This graph is presented for the click-based model for Image
in Figure 10.

6.3 Impact of Features
A common problem that we face is quantifying the impact of

adding new features to the modeling process. For example, before
we spend the resources to implement and deploy a new feature, we
would like to quantify how much will it help improve our predic-
tions. We can look at the difference in regression errors reported
during the modeling process when we train models with and with-
out the new features. But there is no natural way to map this to
changes in flight metrics. In this case, we can use our approach to
predict the impact on the metrics offline.

In our feature vector, we have as features the scores of various
vertical classifiers. For example, when a query is received, the the
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Figure 9: Sliding normalized CTR for Image.
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Figure 10: Normalized CTR and sliding normalized CTR for
Image as a function of clickthrough.

Image classifier returns the probability that the query has image
intent. We also have classifiers for some of the most important
verticals. In Figure 11 we report the impact of dropping all the
vertical classifier scores from the training process on the Image
vertical when the model was trained on click data. In the case of
Image, the vertical confidence happens to be the same as the Image
classifier (and hence we dropped the vertical confidence too when
we dropped the classifier scores) and is the most important feature
when used. The plot shows that dropping these features results in a
statistically significant drop in the performance of the model.

6.4 Impact of Head versus Tail Weights
When training rankers for vertical search results using clicks as

labels, one needs to make sure that there is a fair representation
of head, body and tail queries in the training data. The frequency
distribution of queries that trigger results from each vertical varies
considerably across verticals and hence it is important to character-
ize this distribution of queries in the training data for each vertical
individually. Furthermore, it is important to find the relative repre-
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Figure 11: Dropping vertical classifier features degrades the
clickthrough vs. normalized CTR trade-off.

sentativeness (or weighting) of head and tail queries in the training
data that would optimize some user engagement metric such as the
normalized CTR at TOP across specific query segments as well
as across all queries. The model operating curves described ear-
lier gives us a straight forward methodology to choose an optimal
weighting combination for head and tail queries.

We typically collect query impressions from over a two week
time-frame on the auditioning flight (referred to in Section 5.2) to
be able to train a ranker for a vertical. We assign each impression in
this training data the normalized logarithmic query frequency over
the 2 weeks as the base weight. In order to perform a sweep of
possible weighting combinations across head and tail queries, we
assign the head queries (with greater than 10 query impressions in 2
weeks) a weight of α and the tail queries (the remaining queries) a
weight of (1−α). For each α value, we pick an optimal model after
comprehensive parameter sweeps during the training process. We
then plot the model operating curves for the models corresponding
to each α value between 0 and 1. These curves use query impres-
sions from an evaluation set collected from a two week time-frame
in the future on the same flight from which the training impressions
were obtained. Furthermore, we could also filter these impressions
into head and tail and plot separate model operating curves for the
two segments of the evaluation set to see how the weighting im-
pacts performance in each segment.

We performed the head versus tail weighting experiments for
three verticals — News, Commerce and Image. Figure 12 shows
the model operating curves of a Non-Navigational News ranker for
head weights of α = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) on all query im-
pressions in the evaluation set. Figures 13 and 14 show the oper-
ating curves on the head and tail evaluation segments respectively.
As can be seen, the value of α for which we get the optimal model
operating curve over most of the clickthrough ranges is 0.2 overall.
At α = 0.2, the base weights (logarithmic query frequency) for
head queries are assigned a weight of 0.2 and the tail queries are
assigned a weight of 0.8, which happens to make the tail impres-
sions 4X as representative as it was originally relative to the head
impressions. Interestingly, this is optimal even on the head segment
beating a model trained only on head queries (which is represented
by the operative curve for the head weight of α = 1.0) indicating
the incremental value of having tail impressions to train a model
for ranking head queries. As for the tail segment, the operating
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Figure 12: Normalized CTR for Non-nav News for head
weights between 0 and 1.

curve for α = 0.2 runs neck and neck with the curve for α = 0.0
(training only on tail impressions) and does better at certain oper-
ating points on the curve, indicating the incremental value of using
head query impressions when training a ranker for tail queries if
one wishes to operate at these points on the curve. The operating
curves for the other two answers, Commerce and Image (not shown
in the paper), also showed "sweet-spots" over distinct α values giv-
ing the modeler a choice of head and tail weights he or she could
use depending on what segment of queries he or she wants to cater
to or what user engagement metric he or she is shooting for.

6.5 Impact of Modeling Loss Function
Candidate models (or the predictions they make) can only be

compared once a loss function is decided upon. But what evidence
is used to select the best loss function for the problem domain?
One can conduct time consuming online experiments, but here we
show a characterization curve can be used to compare the different
options offline without experimenting on real users.

To demonstrate this, we trained two models models using dif-
ferent loss functions and used a characterization curve to compare
them. One model used the L2 loss function and the other used a
logistic loss function. The training process used was described in
Section 5.2 including a parameter sweep. The click labels were
generated from the process described in Section 5.2.

Operating curves were generated for both models using impres-
sions from a different 2 week time-frame of the auditioning flight.
These curves are shown in Figure 15 and we can see that although
the model trained with L2 appears to be marginally better than that
trained with logistic loss, the difference is not statistically signifi-
cant. Thus, the methodology allows us to weed out such hypotheses
without conducting an online experiment.

6.6 Offline Predictions Vs. True Metrics for
Flights

To validate that the assumptions we made in Proposition 1 can
be used to make meaningful predictions, we compared some of the
predictions to true flight metrics. We used the click-based model for
Commerce, and set up two flights with two different TOP thresh-
olds. We used Proposition 1 to predict the clickthrough and normal-
ized CTR for Commerce at TOP. The relative differences between
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Figure 13: Normalized CTR for Non-nav News on head queries
for head weights between 0 and 1.

the predicted and observed values of clickthrough on the two flights
were −8.6% and −3.6%. The negative values indicate that the ob-
served values were lower than the predicted values. The relative
differences between the predicted and observed values of normal-
ized CTR on the two flights were −3.2% and −6.8%.

7. CONCLUSIONS
We showed how we can use impressions from an auditioning

flight to perform many offline experiments to study the impact of
system operating point changes on click metrics. The characteri-
zation curves give an comprehensive picture of the federated web
search system over the entire range of operating points and on at
one specific operating point like online experiments typically do.
In addition the characterization curves can be generated offline and
so are not time-consuming like the online experiments. The results
in Section 6.6 show that the offline predictions we make are rea-
sonably accurate.

We demonstrated the methodology by applying it to answer vari-
ous questions about our federated web search system. We used it to
understand the trade-off of clickthrough and quality, impact of spe-
cific features on clickthrough, impact of various query sampling
strategies on user engagement metrics, and, finally, the impact of
modeling loss functions on engagement metrics.

One improvement we can do to our auditioning flight is that we
can reduce the amount of auditioning needed for head queries. For
some of the most common queries, we can stop auditioning verti-
cals once we hit a certain number of impressions.

Although our approach works for a large number of natural met-
rics that we look at, it can not be used to predict session based met-
rics. It works well only for any SERP level vertical metrics. Also
we won’t be able to accurately predict metrics for low-coverage
verticals since they have very few impressions.
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