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ABSTRACT
Modern web search engines are federated — a user query is sent to
the numerous specialized search engines called verticals like web
(text documents), News, Image, Video, etc. and the results returned
by these engines are then aggregated and composed into a search
result page (SERP) and presented to the user. For a specific query,
multiple verticals could be relevant, which makes the placement of
these vertical results within blocks of textual web results challeng-
ing: how do we represent, assess, and compare the relevance of
these heterogeneous entities?

In this paper we present a machine-learning framework for SERP
composition in the presence of multiple relevant verticals. First,
instead of using the traditional label generation method of human
judgment guidelines and trained judges, we use a randomized on-
line auditioning system that allows us to evaluate triples of the form
<query, web block, vertical>. We use a pairwise click preference
to evaluate whether the web block or the vertical block had a bet-
ter users’ engagement. Next, we use a hinged feature vector that
contains features from the web block to create a common reference
frame and augment it with features representing the specific vertical
judged by the user. A gradient boosted decision tree is then learned
from the training data. For the final composition of the SERP, we
place a vertical result at a slot if the score is higher than a com-
puted threshold. The thresholds are algorithmically determined to
guarantee specific coverage for verticals at each slot.

We use correlation of clicks as our offline metric and show that
click-preference target has a better correlation than human judg-
ments based models. Furthermore, on online tests for News and
Image verticals we show higher user engagement for both head and
tail queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
The core of web search is displaying links to relevant web pages

for a given query. However, modern web search engines, have ac-
cess to several alternative data sources and it is now the expecta-
tion of users to have a blend of multiple types of information in the
search result page (SERP). For example, many users who type the
query “cool cars” are interested in seeing images of cars, whereas
users who type the query “weather” are interested in the weather
forecast at their current location. Therefore, web search engines
are federated search engines (see, e.g., [21]) in the sense that they
have multiple data sources and they need to rank the relevancy of
different types of data items and display them accordingly. In many
cases these different data sources are referred to as verticals [6, 2,
1] and the challenge could be presented as identifying and ranking
the relevancy of different verticals given a query.

The main challenge we address is the problem of page compo-
sition. Given the different types of information, the goal is to lay-
out the SERP with the most relevant information. In a sense, each
vertical provides few data blocks. These blocks compete on their
location on the SERP. Since users are more likely to see and in-
teract with items presented at the top of the page, it is essential to
rank the different information blocks and place them on the page
accordingly.

When viewed as a ranking problem, there is a big difference be-
tween the core ranking problem and the federated search type of
ranking problem. In the core ranking problem one has to compare
object of the same nature, i.e. web pages, and rank them according
to their relevancy. However, in the federated search problem, one
has to compare objects of different nature, e.g. web pages to im-
ages, and value their relevancy. The different object cannot be rep-
resented using similar features to allow them to be ranked using the
same machinery used to rank web documents. For example, web
pages have properties such as number of outgoing links, BM25 [18]
and so on. However, these features do not exist in images. At the
same time, images have properties such as size, color palette and



other features which do not have natural equivalent in the world of
web documents. Therefore, the main challenge we are interested at
is how to merge, or integrate, heterogeneous results.

Another problem in federated search comes from the process of
collecting judgments to be used for choosing, or training, a ranking
model. The common method to collect such labels is to hire human
judges to score each query-result pair. Recently, a lot of attention
was given to obtaining labels by analyzing users click logs (e.g.,
[4]). The problem is that when the objects are of different type, it is
hard to calibrate the scales of the scores to generate a unified scale.
For example, can you compare an excellent picture of dogs to an
excellent web document about dogs?

To overcome these challenges, we propose a new point of view
on the federated search problem in web search. Instead of trying
to associate an absolute score to each vertical, we measure the rel-
evancy in comparison to the core web results. Since the core web
results are the pivot around which the rest of the SERP results are
presented, we use it as an anchor. The question we are trying to
solve now becomes: given a set of links to web pages and a set of
say, images, should the images be presented above the web results,
bellow the web results or not at all. When collecting judgments,
we present the two blocks, web results and vertical results, and
ask judges to quantify the relative quality of the two blocks. In
the same way, when ranking, we always have a web block and an
vertical block coming from an alternative source. We have a uni-
fied representation for all query-web block-vertical triples which
allows us to use machine learning technique to layout the SERP.
Therefore, this novel point of view solves the two main challenges
discussed above.

In this paper we present a detailed explanation of our solution
as well as the results of experimenting with it in one of the lead-
ing web search services. We show that this solution significantly
improves over previous propositions. We also show how explicit
feedback, from human judges, and implicit feedback, from clicks,
can be provided when learning these models to further improve the
results.

2. RELATED WORK
Several research projects addressed related problems to the one

discussed here. In this section we present this prior art and discuss
the commonalities and differences.

2.1 Federated Information Retrieval
Federated information retrieval (FIR) addresses the problem of

searching multiple text collections simultaneously and returning a
set of merged results [19, 20, 21, 16].

In this line of work, it is assumed that the entities in each col-
lection are similar (text documents) and these entities can be de-
scribed using similar features and attributes. The focus areas here
are i) what to do when you do not have access to all the text col-
lection documents but can only query them, ii) how do you select
the right collection, iii) how to integrate results from multiple web
search engines. In these scenarios, it is assumed that information
retrieval features like BM25 can be used to describe entities in each
of collection.

However, in our problem, we would like to combine the best
results from multiple specialized search engines, each of which re-
turns best results from collections containing very different types
of entities such as images, videos, news, local business listings,
etc. Thus we are faced with selecting and merging results that are
heterogeneous and in general cannot be described by the usual text
features.

2.2 Learning to Rank
Using machine learning techniques [10] to learn relevance mod-

els for text documents has been an active area of research. Burges

et al. used machine learning to rank documents [15, 7], Zheng et al
used stochastic gradient boosting [9] for web ranking [23]

In the above approaches the entities that are ranked are of the
same type (text). Since we have heterogeneous types of entities, we
would need guidelines to compare different types of entities, and
some sort of absolute measure of goodness across different entities
with different visual presentation (e.g. text versus images versus
video).

Pairwise preference judgments have been shown to give a better
ranking performance in terms of text retrieval measures [3, 22]. In
these approaches, it is again assumed that the entities are similar
can be represented using similar features.

In the above approaches, the target label that the optimization
algorithm tried to learn was created by trained human judges who
were provided with specific guidelines for grading documents. The
drawback of this framework is that label generation process can be
laborious, time consuming, and expensive. Furthermore, in many
situations (e.g., if query has a local intent and the judge is not fa-
miliar with the user’s city) it is difficult for the judge to know the
intent of the user and hence can be incorrect in creating the label.
This motivated researchers to seek label generation processes that
are based on past users interactions.

Joachims used clicks and skips as preference judgments for learn
ranking models [12]. Chapelle and Zhang [4] showed that adding
pairwise click preference as labels to human judgment data can im-
prove NDCG when comparing results against human judgments. Ji
et al. [11] used click-as-target to learn ranking models for ranking
entities within a specific (Local) vertical search collection. Joachims
and Radlinski [17] showed how one can randomize consecutive
search result pairs and use the engagement difference to create pref-
erence labels. Similar to this line of work, we too use user engage-
ment as a source for labels to train learning to rank models. How-
ever, the problem we face is slightly different. The main difference
is that since we need to compare objects of different types, we use
the historic data to provide pair-wise preferences among heteroge-
neous entities as opposed to previous techniques which compared
similar textual results.

2.3 Web Vertical Selection
In web search, verticals are specialized search engines for: im-

ages, videos, local business listings, news, shopping, etc. Diaz et
al. have published a series of papers on this topic and these papers
are the closest in spirit to the work presented in this paper. How-
ever, these papers are mostly focused on the problem of triggering,
which is how we select the best relevant vertical. In our work,
we address the problem of composition, which is given multiple,
already known to be relevant verticals, how does one place them
relative to web blocks.

Diaz [5] addressed the problem of whether or not to show a spe-
cific item for a given query above the web results. They tried to es-
timate the click-through rate of the news item by learning a model
based on the frequency of the query in the vertical within a spe-
cific time interval, and the frequency in the main web vertical, and
non-document features. One of the issues with this approach is
that estimating click-through is not possible for the tail directly.
Second, the web document specific and vertical specific features,
which have significant information about the specific document and
news items that are being considered is not taken into the picture.
Furthermore the click-through rate is very prone to presentation
bias, which has a major impact on the quality of the results. Finally,
the work presented is for placing news at only one location on the
page, how one will present it at other locations is not addressed.

Agruello et al [1] present an approach where human judges are
used to generate ground truth labels as to which verticals (up to six
of eighteen verticals) are relevant. Then various machine learning
algorithm were trained using query log, query, and corpus features
to score the verticals. In each of these cases, the web result itself



is not factored in and so a vertical’s selection is independent of
the quality of the core web result. In addition, it is assumed that
guidelines can be created to specify which vertical is the intent of
a user for a specific query, which is questionable. In a more recent
work [6] the authors have presented an algorithm that uses clicks
to update the base model by estimating click-through. This work
suffers from the fact that the approach, as presented, can only be
used for updating head query vertical selection.

Finally, Agruello et al [2] argue that we can port models trained
for vertical with training data (human judgments) to other verticals
for which one does not yet have any human judgment data.

In the above algorithms, there is an assumption that judgment
guidelines and human judges can recognize the intent of the user
while issuing a query. This assumption is questionable – what if
the query from a remote city about some local landmark and the
judge has no knowledge of that city? The papers also don’t ex-
plicitly address the issue of comparing a vertical’s relevance in the
context of the web results. The issue of how to place the verticals at
lower ranks on the page is also not addressed. Finally, the adapta-
tion using clicks does not address how to update the model for tail
queries.

3. THE PROBLEM STATEMENT
User

Selection
Web

Pl
ac

em
en

t
an

d

SERP

R
an

ki
ng

Vertical

.

.

.

V1

V2

V3

Vk−1

Vk

q

Figure 1: A high level overview of how the SERP is generated
in response to a user query.

We start with a brief description of how the SERP is generated
concentrating on the steps relevant for vertical ranking. When a
user query q arrives at Bing, it is passed on to various components
that generate parts of the SERP. This is summarized in Figure 1.
One component generates the web (URLs for text documents) re-
sults that are displayed. In parallel, another module does a prelimi-
nary check on what verticals might be relevant and passes the query
to the components corresponding to those verticals. This step is
called triggering or vertical selection. In our example, V2, V3, and
Vk have triggered. Some subset of those verticals might generate
content that are then passed to a central ranking and placement al-
gorithm along with the web results. In the example, vertical V1 did
not have any relevant content and was suppressed.

The ranking and placement component then generates the SERP
and returns it back to the user. The focus of our work is on the
ranking and placement component. Most of the related literature
focuses on the triggering component.

Let us say a user issued a query q to the search engine. Let the
set of web results that are selected for this query be denoted by Wq .
Let the verticals that are triggered for the query be V1, V2, . . . , Vm.
Suppose that the slots that the verticals can be displayed at are S =
(s1, s2, . . . , sk) as shown in Figure 2. The problem we are trying
to solve is to come up with a function fV that given a query q, the
web results Wq and a vertical V with content vq , returns the slot s
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Figure 2: A simplified version of the SERP showing slots where
the verticals can be placed. A fixed number of web results can
be placed between two consecutive slots.
at which the vertical should be displayed, that is,

s = fV (q, Wq, vq).

We require the function fV to satisfy some coverage constraints
for vertical V . Suppose we want to ensure that the vertical V is
required to be shown ci fraction of the time at position si when the
vertical triggers. Then for a randomly sampled set Q of queries for
which V triggers, we require that

|{q ∈ Q : fV (q, Wq, vq) = si}|/|Q| = ci ∀i = 1, 2, . . . k.

In our case, we have k = 3 slots where we can place the verti-
cal. The slots s1, s2 and s3 are commonly referred to as the top
of page (ToP), middle of page (MoP) and bottom of page (BoP).
Instead of the labels si, we will simply refer to these slots by their
abbreviations for clarity. Subject to the coverage constraint, we
would like to find a ranking function fV that places the vertical at
ToP for cToP fraction of the queries for which the vertical is most
relevant, the next cMoP fraction of queries for which the vertical
might be relevant at MoP and finally place the vertical at BoP for
the remaining queries. Note that the coverage requirements are de-
fined per query impression and not just by the number of unique
queries. Therefore, if the same query is issued ten times, and the
model displays the vertical Vi at ToP for this query, we count this
as ten queries when computing the coverage cToP.

To determine the relevance of the vertical for the query, we use
the click-through rate (CTR) as a measure. We want the function
fV to improve the click-through of the vertical at ToP compared to
the existing production function.

4. OUR APPROACH
We solve the SERP composition problem in two stages:i) Rank-

ing and ii) Calibration and Placement.

4.1 Ranking
We first represent the triple (q, Wq, vq) corresponding to every

query q by a feature vector φV (q, Wq, vq) ∈ Rd. This will com-
prise of values that represent the relevance of the web results and
the vertical to the query. Let us say a query q is issued by a user
to the search engine and the vertical V is triggered for q. We can
immediately compute x = φV (q, Wq, vq) from it. Using x, we
would like to compute one value that reflects the relevance of the
of the vertical for the query. That is, we want to find a function
χV such that χV (x1) ≥ χV (x2) implies that the vertical will be
placed at least as high on the page for query q1 as for query q2,



Figure 3: A screenshot of the SERP showing results from ver-
ticals at ToP, MoP and BoP.
where x1 and x2 are the feature vectors for the queries q1 and q2

respectively. To find this function χV , we generate a set of pairs
〈x, l〉 that we call examples. Then we try to find a function χV that
best fits the data. For this, we use a learning algorithm, which is
described in Section 5.

In an example 〈x, l〉, l is referred to as a label. In some sense, the
l is the value we want the function χV to predict for input x. We
can provide contradicting examples too. In this case, the learning
algorithm tries to find χV that best fits these examples under some
metric. We may also associate a weight w with each example 〈x, l〉
that indicates the relative importance of the example. So our input
to the learning algorithm is a list of tuples 〈x, l, w〉 There are two
common methods for generating the examples for training:

• Sample a set of queries for which the vertical triggers. Then
show the contents of the web results and the vertical to judges
and ask them to assign a label, say 0 or 1 for relevant or not
relevant, or a number in some range like 0, 1, 2, 3 indicating
the degree of the relevance of the vertical for the query.

• Sample a set of queries for which the vertical triggers from
the user logs, and based on the user behavior, assign a label,
say 0 or 1 to indicate if the vertical may have satisfied the
user’s information need.

In this paper, we concentrate on the latter approach using the former
only for comparison in our offline analysis. The details of our label
generation process follow in Section 5.3.

4.2 Calibration and Placement
Once we arrive at a ranking function rV , our next task is to match

coverages at ToP, MoP and BoP based on our agreements with ver-
tical owners. This is a straight-forward process. Given a sample
Q of queries for which the vertical triggers, we compute the value
provided by the ranking function χV for these queries, sort them
and pick two thresholds χV,ToP and χV,MoP such that

|{q ∈ Q : χV (φ(q, Wq, vq)) ≥ χV,ToP }|/|Q| = cToP

and

|{q ∈ Q : χV,ToP > χV (φ(q, Wq, vq)) ≥ χV,MoP }|/|Q| = cMoP .

This gives us a function µV : R −→ S where

µV (x) =

(
ToP if x ≥ χV,ToP

MoP if χV,ToP > x ≥ χV,MoP

BoP otherwise.

Finally, the function fV that we wanted to compute can be writ-
ten as

fV (q, Wq, vq) = µV (χV (φV (q, Wq, vq))).

For convenience, with a slight abuse of notation, we will drop the
vertical V from the subscript (since we rank each vertical individ-
ually) and we may use χ(q) to denote χV (φV (q, Wq, vq)).

5. STATISTICAL MODELING
In this section, we first describe Gradient Boosted Decision Trees

(GBDT), which is the machine learning algorithm we used to learn
online user preference and predict human relevance grades. Then
we describe how we represent the data using features such that the
web component of the feature vector becomes a reference frame
or anchor, and finally we describe how we generate training labels
from online user click logs.

5.1 Gradient Boosted Decision Trees
Gradient boosted decision trees (GBDT) are non-parametric re-

gression models [8]. GBDTs and its stochastic variant [9] compute
a function approximation by performing a numerical optimization
in the function space instead of the parameter space. We provide
an overview of the GBDT algorithm.

A basic regression tree f(x), x ∈ RK , partitions the space of ex-
planatory variable values into disjoint regions Rj , j = 1, 2, . . . , J
associated with the terminal nodes of the tree. Each region is as-
signed a value φj such that f(x) = φj if x ∈ Rj . Thus the com-
plete tree is represented as:

T (x; Θ) =

JX
j=1

φjI(x ∈ Rj),

where Θ = {Rj , φj}J
1 , and I is the indicator function. Let the

given training data be denoted by (xi, yi, wi), i = 1, . . . , N . That
is, xi are the observed feature vectors, yi the labels, and wi the
weight associated with the training pair (xi, yi). For a loss function
L(yi, φj), parameters are estimated by minimizing the total loss:

Θ̂ = arg min
Θ

JX
j=1

X
xi∈Rj

wi · L(yi, φj).

In our experiments, we perform regression using the squared error
as loss function.

A boosted tree is an aggregate of such trees, each of which is
computed in a sequence of stages. That is,

fM (x) =

MX
m=1

T (x; Θm),



where at each stage m, Θm is estimated to fit the residuals from
the m− 1th stage:

Θ̂m = arg min
Θm

NX
i=1

wi · L(yi, ηfm−1(xi) + φjm).

In practice, instead of adding fm(x) at the mth stage, one typically
adds ηfm(x) where η is a the learning rate. This is similar to a
“line search” where one moves in the direction of the gradient, but
the step size need not be equal to the gradient.

In the stochastic version of GBDT, instead of using the entire
data set to compute the loss function, one sub-samples the data
and finds the values φj that minimize the loss on the test set. The
stochastic variant minimizes over-fitting. The depth of the trees in
each stage is another algorithm parameter of importance. Interest-
ingly, making the trees in each stage very shallow while increasing
the number of boosted trees tends to yield good function approx-
imations. In fact, even with depth 1 trees, often called stubs, it
possible to achieve good results. Interaction amongst explanatory
variables is modeled by trees of depth greater than 1.

In practice, one has to empirically set (by cross-validation) the
parameters: the number of trees M , the number of nodes per tree
P , (which is related to J), learning rate η, and sampling rate ρ, (in
the stochastic version).

5.2 The Feature Vector
When presenting the implicit user feedback data to the machine

learning package, we need a way to jointly capture the relevance of
the vertical and the web results for each query. To achieve this, we
create a hinged feature vector x = φ(q, Wq, vq) that is composed
of features that correspond to both the vertical and the web results.
Thus for a query q if three verticals V1, V2, and V3 trigger, each of
them is paired with the same web block and so the feature vector
all the three verticals have identical web components, but differ-
ent vertical component. That is, the web part of the feature vector
creates a reference frame or an anchor against which the heteroge-
neous verticals are scored. We briefly describe the features we use
in our modeling process. These can largely be broken down into
the following categories:

1. Query-Web based features: These are features that measure
how well the web results match the query. Some examples
are:

• Click-through rates (CTRs) of the web results for the
query at various locations. These CTRs are available
for head queries. The dwell times of the web results
are also present as features.

• The number of web results that belong to a certain set
of domains. For example, one domain set consists of
http://www.wikipedia.org/ and http://en.
wikipedia.org/. There are four other such sets. In
addition to domain matches, we also have features that
measure matches to some path-lists.

• BM25Fs of the ten web results,

• The maximum BM25F of the ten web results.

2. Query-vertical based features: These are features that mea-
sure how well the vertical matches the query.

• Vertical confidence: This is usually a feature provided
by the vertical partner team based on how relevant they
think the vertical content might be to the query.

• Historic click-through rate of the vertical for the query
at ToP, MoP and BoP gathered over the past six months.
These statistics are available for head queries. For the

position ToP, there is a Boolean variable VerticalToP-
Known that indicates if the historic CTR is available for
that query-vertical pair. VerticalToPCTR has the CTR
if this Boolean variable is true. The analogous variable
for MoP and BoP are also available.

3. Features based on the query only:

• Most features of this type are scores from classifiers
that indicate the likelihood of the query belonging to a
particular domain, like sports, news, commerce, etc.

• IsNavQuery: This is an indicator of whether the query
is considered to be of navigational intent.

• Features that indicate if a query is spiking in the past
few hours. One of them is a Boolean feature and the
other measures the spiking volume.

• Query length.

4. Whole-page features: These are features that measure the
historic CTRs of miscellaneous components on the page (like
ads, query suggestions, pagination, table of contents, etc).

5.3 Label Generation
We now describe how we convert the impressions for an vertical

into training examples. We gather impressions from a randomized
flight. A flight is a small bucket of Bing users who are exposed
to new ranking experiments that we conduct in order to get online
measurements of model performance. On a randomized flight, in
response to a query, we audition the verticals that trigger for that
query at random slots on the SERP. One big advantage of using
impressions where the vertical is placed independent of any fea-
ture is that the model we generate is not influenced by the existing
production ranking system. So although we are able to gather less
data, there is also less noise from other models. Our strategy for
converting the impressions to training examples can be thought of
as mainly competing the vertical against the first web block (the top
three web results for the query) using a pairwise click preference.
For example:

1. If the vertical was shown at ToP, and the vertical got a click
but none of the web results in the first block did, then we label
this impression 1 (a victory for the vertical over the first web
block).

2. If the vertical was shown at ToP, and the vertical did not get
a click but one of the web results in the first block did, then
we label this impression 0 (a defeat for the vertical).

3. If the vertical was shown at MoP, and the vertical got a click
but none of the web results above it did, then we label this
impression 1. But since the user took the extra effort to skip
over the web results to click the vertical, the weight w that
we give this impression is twice the weight as in Case 1. At
this point we did not tune the value of this weight.

4. All other impressions are ignored. This includes cases where
both the vertical and the top web block were clicked. In fu-
ture, if the vertical was shown at ToP or MoP, and both the
vertical and web we might consider the order of the clicks to
decide who won. Currently we also drop impressions where
neither the vertical nor the first web block got a click. In
future, when we are working with verticals where the user
need not explicitly click on the vertical satisfy their informa-
tion need (like the weather or calculator verticals), we may
treat abandoned page impressions (that is, impressions where
nothing on the SERP got clicked) as a victory for the vertical.



The above label generation process is motivated by the eye-tracking
study reported by Joachims et al. [13]. They report that usually
users look at at least the first and second result on the page. Also,
when users clicked on a result, they usually looked at all the results
above it. We ignored impressions where the vertical was shown
at MoP and did not get a click because the there is a pretty good
chance the user did not look at it (This is especially true of verticals
like News, which are hard to distinguish from the web results in
a quick glance). We ignore impressions where the vertical is at
BoP because there is a good chance that the user noticed neither
the vertical or the web results around it. Another reason we do
so is because the click-through rate of the content around BoP is
very low. Hence the signal obtained from these impressions is very
small.

In the end, after the training examples are generated, we split the
data into train, validate and test sets by hashing the queries so that
the number of queries in these buckets is roughly in the ratio 6:1:1
and then we rescale the weights of the examples as follows:

• We log-weigh the impressions of the same query. That is,
if we had n impressions of a query, then the examples cor-
responding to the query are multiplied by log n/n. This
is done because we don’t want some of the most frequent
queries to dominate the learning process, but at the same
time, we want the algorithm to pay a bit more attention to
getting frequent queries right.

• The weights are again readjusted so that the head and tail
queries both have same weight. This is necessary since even
after the initial adjustments, the weight of the head dominates
the tail. At the same time, we ensure that within each bucket,
the total weight of the 0 and 1 examples are the same. This
was done because most of the weight is on impressions la-
beled 0 and we suspected the learning algorithm might label
all points 0 too. But when we performed classification with
and with out this adjustment, we didn’t notice any difference
in the quality of the models.

6. EXPERIMENTAL PROTOCOL
In this section, we describe our experimental setup in more de-

tail. We concentrate on two verticals, Image and News.

6.1 Data Size
Data was gathered from a randomized flight over a week. A flight

is basically an assignment of a small set of users to a modified rank-
ing and placement algorithm (refer to Figure 1). On a randomized
flight, the verticals were shown at random slots on the page in re-
sponse to user queries. The click behavior of these users was used
for training our models. we had about 524,000 impressions for the
News vertical at ToP or MoP and 240,000 for the Image vertical.

One of the goals while re-ranking News was that we wanted to
maintain the coverage at various slots the same for navigational and
non-navigational queries. If we train one machine-learned model
for News, it may have changed the coverage at slots for these two
categories although it maintained the coverage for News. For ex-
ample, it is plausible that News does better for non-navigational
queries and a combined model would on an average give higher
scores for non-navigational queries compared to navigational queries,
effectively increasing the ToP coverage of the former at the expense
of the latter. To overcome this problem, we trained the models for
the two scenarios separately. The number of impressions at ToP or
MoP for the two scenarios were about 405,000 and 119,000.

6.2 Parameter Sweep
When using GBDTs, there are a few parameters we can tune

to get close to the best possible model. For generating the model
for Image vertical, we set the number of nodes permitted in the

tree P to 10, 20 and 30. The maximum number of trees was set
to M = 200. The training rate η was set to either 0.03, 0.09 or
0.15. For each possible setting of these three parameters, we built a
model and picked the best model obtained using these settings. For
the navigational and non-navigational News verticals, we set P to
15, 20 or 30, M = 200, and η to 0.03, 0.09, 0.12, 0.16 or 0.3 for
the parameter sweep.

6.3 Human Judgments
For some of our offline analysis to compare the labels gener-

ated from click-based approach to the labels generated from human
judges, we used a human judgment set that had already been gen-
erated for other purposes. The first step in this process is sampling
queries in a way that ensures a good representation of head and tail
queries. The judges are then shown the SERP with just the web re-
sults and the vertical separately. The judges are then asked to rank
the vertical’s relevance on a scale of 0 to 3, indicating whether the
vertical should not be shown for the query, or whether it should be
shown at BoP, MoP or ToP. The process is usually referred to as the
human relevancy system (HRS) at Bing. For Image, navigational
News and non-navigational News, we had 37258, 857 and 3406
judgments collected this way respectively.

6.4 Metrics
We report our results for a combination of some offline and on-

line metrics that we used to evaluate the performance of our new
ranking approach.

6.4.1 Offline Metrics
Even before we build a model from user impressions, we wanted

to investigate how various features correlate to the labels we gener-
ate from the user click behavior. We used the Pearson’s correlation
coefficient because of the simplicity in computing it. The Pear-
son’s coefficient of two variable X and Y is defined as ρX,Y =
Cov(X, Y )/(σXσY ) where σX denotes the standard deviation X
and Cov(X, Y ) is the covariance of X and Y .

For a binary variable l with Pr[l = 1] = p, we have σl =p
p(1− p) and

Cov(X, l) = E[X · l]− E[X]E[Y ] = E[Il=1X]− pE[X]

= pE[X|l = 1]− pE[X]

= pE[X|l = 1]

− p(pE[X|l = 1] + (1− p)E[X|l = 0])

= p(1− p)E[X|l = 1]− p(1− p)E[X|l = 0]

= σ2
l (E[X|l = 1]− E[X|l = 0])

which gives ρX,l = σl(E[X|l = 1] − E[X|l = 0])/σX . That is,
the Pearson’s correlation coefficient in this case measures how well
are the average values of X for the cases when l = 0 and l = 1
compared to the standard deviation of l. We would like this value
to be as large as possible so that thresholding on a value of X can
be used to predict l. We report values on how the features correlate
to the click labels and compare these to correlation of our ranking
function χ(·) obtained using click labels.

6.4.2 Online Evaluation
To test the performance of the new ranking function fV , we as-

signed a small subset of users to flights that used these ranking
functions. The click-through rates for the verticals and the click-
through rate of the SERP of these flights were compared to the
control flight. The control flight which comprises of about 2% of
Bing’s traffic acts as the baseline with which every other experi-
mental flight is compared. Every other flight comprises of about
1% of traffic and can be used to evaluate various vertical rankers
and other experimental features.



7. RESULTS
In this section, we present a drill-down of how our new rank-

ing for the Image, navigational News and non-navigational News
verticals performed under some offline and online metrics.

7.1 Correlation of Features to the Click Label
Table 1: The features with highest absolute correlation on head
queries to the click labels for Image vertical.

Feature name Correlation
IsNavQuery -0.187
SnippetConfidenceImage 0.181
WebDwell100Pos1 -0.176
VertClassifierConfidenceVideo -0.174
WebDwell30Pos1 -0.155
VerticalToPCTR 0.147
VerticalToPLastClick 0.147
VertClassifierConfidenceImage 0.145
SnippetConfidenceVideo -0.137
AvgNumResultsPerImpression -0.131

Table 2: The features with highest absolute correlation on tail
queries to the click labels for Image vertical.

Feature name Correlation
VertClassifierConfidenceVideo -0.250
VertClassifierConfidenceImage 0.224
VerticalConfidence 0.218
SnippetConfidenceImage 0.215
VerticalToPLastClick 0.180
VerticalToPCTR 0.180
WebDwell100Pos1 -0.174
WebDwell30Pos1 -0.166
PathList2Matches 0.147
SnippetConfidenceVideo -0.134

Table 3: The features with highest absolute correlation on head
queries to the click labels for non-navigational News vertical.

Feature name Correlation
AvgNumResultsPerImpression -0.325
WebCTR -0.322
VerticalConfidence 0.320
WholePageCTR -0.312
AvgWebClicksPerImpression -0.288
SnippetConfidenceImage 0.280
VerticalMoPKnown -0.280
WebDwell100Pos2 -0.274
WebDwell100Pos1 -0.271
WebCTRPos3 -0.267

We report the features that are most correlated to the label l for
the Image and non-navigational News verticals for head and tail
queries in Tables 1-4. Note that the weakest correlations are for the
Image vertical on head queries while the strongest correlations are
for non-navigational News on head queries.

We briefly describe some of the features in these tables. Vert-
ClassifierConfidenceX and SnippetConfidenceX are scores from
classifiers that use the query text and web snippets respectively
to classify the query as having intent of vertical X. The prefixes
Vertical and Web describe statistics gathered for the vertical and
web results for the query q (available for head queries). Suffixes
like Dwell30, LastClick, CTR describe statistics gathered for the
〈query, vertical〉 pair. Dwell30 is the fraction of times the user
clicked on the vertical and spent at least 30 seconds on the result-
ing page. LastClick is when the vertical was the last component
clicked on the SERP. The features with ToP/MoP/BoP in them de-
scribe that the feature contains statistic of the vertical gathered at
that slot for the query. For example, VerticalToPCTR means the
CTR for the 〈query, vertical〉 pair when the vertical was shown at
ToP. Similarly, for web results, the suffix PosX describes statistics
for the web result at position X for the query.

We would like to point out that the vertical CTRs are not identi-

Table 4: The features with highest absolute correlation on tail
queries to the click labels for non-navigational News vertical.

Feature name Correlation
AvgNumResultsPerImpression -0.213
VerticalMoPKnown -0.201
WebCTR -0.199
WebDwell100Pos2 -0.194
WebDwell30Pos2 -0.194
WebLastClickPos2 -0.192
WebDwell100Pos1 -0.190
WebLastClickPos1 -0.188
WholePageCTR -0.187
WebDwell30Pos1 -0.181
WebCTRPos1 -0.175

cal to the labels we use in the training process. The label depends
on whether or not the vertical and the web block got a click. Also,
the vertical CTRs are available only for queries that have been seen
frequently over the past six months. These are mostly head queries.
For example, for Image, these statistics are available for 12.1% (and
27.6%, respectively) of the queries we saw exactly once (and more
than once, respectively) during the two week period from which we
gathered impressions. As we will see later (Table 5), our improve-
ments on tail queries are comparable to those on head, showing that
our models generalize on tail queries too.

7.2 Correlation of HRS Judgments and Click-
Based Labels

We wanted to check how our click-based labels have the same
general trend as HRS labels. For this purpose, we used the HRS
sets described in Section 6.3. Since we used judgment sets we al-
ready had, the intersection of the query sets for which we had hu-
man judgments and click-based labels would have consisted only
of head queries. Instead, we took the model trained using the click
data, generated the scores χClick on the queries for which we had
human judgments (we had the values of Wq and vq for each of these
queries exactly as they were shown to judges). We then looked at
the score distribution for each HRS label. We noticed that differ-
ent judges tend to give scores on a different scale and this tends
to spread the click-based scores. So we restricted the HRS data to
just judge who evaluated the most number of queries for each verti-
cal. At this point, we had 2629, 592 and 150 HRS labels for Image,
navigational News and non-navigational News queries respectively.
The score distribution is shown for each HRS label in Figures 4-6.
One can see a clear pattern that in general the higher HRS labels
have higher average χClick for each of the verticals. Notice that for
Image, the distribution of χClick is pretty much the same for the
HRS labels 0 and 1. But the means for χClick for each HRS label
are ordered the way expect them for most judges.

7.3 Correlation of Click-based Model Scores
to the Click Label

The correlation of the click-based model scores the click-based
labels are shown in Table 5 for the three verticals by head and tail
queries. It can be seen that for all six combinations, we obtain im-
provements over the correlation of the feature that has the highest
value.

Table 5: The Pearson’s correlation of the scores from click-
based models for each vertical to the click based label by head
and tail queries.

Head Tail
Image 0.334 0.404
Navigational News 0.432 0.346
Non-navigational News 0.533 0.384
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Figure 4: Distribution of scores from a click-based model for
various HRS label categories for the Image vertical.
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Figure 5: Distribution of scores from a click-based model for
various HRS label categories for the navigational News vertical.
7.4 Correlation of HRS-based Model Scores

to the Click Label
We had generated models using the HRS data set for the Image

and News vertical. Due to the small size of the training set for
News, we did not train separate models for the navigational and
non-navigational scenarios. Let χHRS denote the ranking function
obtained by modeling using HRS-based labels. The correlation of
the ranking functions for the three verticals are reported by head
and tail in Table 6. It is not very surprising that χHRS to l is less
than that of χClick, since the click-based model was trained using
click data. But it is interesting to note that the correlation lower
than even the feature with even the strongest correlation to click
labels in five out of the six cases.

Table 6: The Pearson’s correlation of the scores from HRS-
based models for each vertical to the click based label by head
and tail queries. Note that a joint model was built for the two
News scenarios using the data set described in 6.3.

Head Tail
Image 0.154 0.230
Navigational News 0.177 0.135
Non-navigational News 0.376 0.188

7.5 Feature Importance
The most important features for the Image vertical are reported

in Table 7. There are significant differences in the ordering from the
list of most correlated features because some of the features provide
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Figure 6: Distribution of scores from a click-based model for
various HRS label categories for the non-navigational News
vertical.
similar signals, in which case, the learning algorithm might use
only one of them or use different features in different trees. For ex-
ample VerticalConfidence does not appear in the Table 7 although
it is has strong Pearson’s correlation for both head and tail queries
(0.110 and 0.218 respectively). VerticalConfidence feature turns
out to be the most important feature for Image (VerticalConfidence
for Image is based off VertClassifierConfidenceImage). It is the
most important feature for the navigational and non-navigational
News verticals too. As we see from both the feature correlations
and feature importance, web and whole page features turn out to be
very important at predicting clicks.

Table 7: The first 10 features in order of their feature impor-
tance in the click-based model for Image.

Feature name Importance
VertClassifierConfidenceVideo 1
SnippetConfidenceImage 0.877
VerticalToPCTR 0.555
VertClassifierConfidenceImage 0.492
WebDwell100Pos1 0.419
IsNavQuery 0.400
SnippetConfidenceVideo 0.338
SnippetConfidenceCommerce 0.323
VerticalBoPCTR 0.322
WholePageCTR 0.297

7.6 Flight Performance
Table 8: Statistics from the Image click model flight.

Position ∆Coverage ∆Clickthrough ∆VerticalCTR
(relative) (relative) (relative)

ToP -10.73% +10.6% +23.89%
MoP -20.40% +5.85% +32.98%
BoP +17.12% -19.89% -31.60%

In this section, we describe the results of our online flighting
experiments. All metrics reported here are relative differences be-
tween the treatment flight and the control flight that uses a hand-
tuned models for ranking the three verticals. We flighted the Image
model on one flight and the two News models on another flight.
This was done to minimize interference between the rankers, be-
cause for a query q we can have both the Image and one of the two
News verticals trigger.

We begin with a drill down for the Image flight (Table 8). While
the calibration process gets us close to matching coverages at each
of the ToP, MoP and BoP positions, the control flight coverages
themselves have been shown to vary considerably over different
days of the week and across different weeks because of user query
patterns. This explains the deviation in coverages of Image ver-



Table 9: Statistics from the non-navigational News click model
flight.

Position ∆Coverage ∆Clickthrough ∆VerticalCTR
(relative) (relative) (relative)

ToP 2.35% +3.25% +0.88%
MoP 0.01% -8.39% -8.38%
BoP -27.00% -75.28% -66.13%

tical in the treatment relative to the control. The third column in
the table shows the relative difference in clickthrough, the absolute
number of clicks to the Image vertical from the SERP. The fourth
column shows the relative difference in the vertical clickthrough
rate (CTR), which is the ratio of the vertical clickthrough to the
total number of impressions when results from the Image vertical
were shown on the SERP. Assuming we do not change the ranking
function, we expect that an increase in ToP coverage would result
in a increase in clickthrough but a decrease in CTR since we are
showing the vertical at ToP for more, but less relevant queries. We
expect the opposite trend if we decrease the ToP coverage.

As can be seen, despite the lower coverage of the Image model
at ToP and MoP, the Image model gets significantly more click-
through than control in each of these slots. In addition, we also see
a significant increase in CTR at ToP (and MoP). This clearly shows
the improvement of the Image model over the hand-tuned model in
the control flight. It would also be worthwhile to mention here that
we managed to achieve these improvements impacting the Whole
Page CTR only slightly; it reduced relatively by 0.34%. The Whole
Page CTR is a ratio of the number of times a click was made any-
where on the page when an Image vertical was shown to the total
number of impressions when an Image vertical was shown on the
SERP. It can be thought of as rate of not abandoning the page after
issuing a query. With a better Image model, we expect page aban-
donment to increase as the thumbnails in the Image results them-
selves convey information not necessarily requiring a user click.

For the non-navigational News vertical too we get higher CTR
at ToP (Table 9), although the improvement is less than that for
Image. The CTR at both MoP at BoP decreases because ToP has
higher coverage than MoP and BoP together for this vertical. So if
we move better quality navigational News results to ToP, then we
expect a decrease in CTR for the other two slots.

For navigational queries, we could not use the CTR as a met-
ric because they have a strong interaction with DCards. DCards
or definitive cards are results that are shown in response to some
queries for which are very definitive on what web result most users
are looking for. The DCard, if it triggers, is always the first result
shown and any verticals, even if they are to be placed at ToP, are
below it on the SERP. Since the DCard has a very high CTR, the
other components on pages with DCard get very low CTR. Most
DCards trigger in response to navigational queries and hence navi-
gational News tends to have a high interaction with DCards. Even
though we tried to match coverage at ToP to the control flight, the
coverages at ToP on pages with and without DCards might have
changed significantly. So for navigational news, we looked at an
alternate metric. We computed the ratio of the number of times
the users clicked on the vertical to the number of times the user
clicked on either the vertical or the web result immediately below
it. We noticed that this metric improved by 6.3% and 7.6% at ToP
and MoP for both these verticals (For navigational News, MoP is
the slot with highest coverage and ToP has the least. So any im-
provement in ranking should result in improvement of this metric
for both ToP and MoP).

7.7 Training Data Size Analysis
We performed experiments to see if we collected enough user

impressions to obtain the lowest possible error rate with our exper-
imental setup. To do so, we generated samples of various sizes from
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Figure 7: Training size analysis. Square root of mean-squared
error as a function of the a percentage of the available data
used.
the impressions we had gathered, generated a new train and validate
set using these samples and measured the error rate on our original
test set. The data is summarized in 7. For Image, the improvement
from using 10% of the available data to 100% of the available data
seems to be minimal, although there is a trend showing the error
rate to be decreasing with increasing training data size for the most
part. From the above analysis, it was not clear how much more im-
provement we could have obtained if we had gathered more data.
So we gathered impressions randomized flight for navigational and
non-navigational News over another week and combined it with
the data we previously had. When we used 50% more data to build
the models, the error rates were 0.463 and 0.443 respectively for
navigational and non-navigational News. When we used twice the
amount of data, the error rates were 0.461 and 0.442 respectively.
The error rates were 0.462 and 0.443 respectively for the original
training sets we used, showing that we were already close to the
optimum error rate we could have achieved.

8. DISCUSSION
Head and Tail: Our randomized auditioning approach allows us to
naturally train our models for head and tail queries. Methods that
use estimates for click through rate immediately limit the scope of
the modeling to head queries. Perhaps some of the query classifier
features also help in smoothing the models by aggregating over tail
queries in specific categories.
Clicks versus Human Judgment: In our offline experiments we
systematically noticed that human judgment based models always
have lower correlation with click logs. This is to be expected since
the click log based models directly optimize towards clicks. How-
ever, our experiments also show that in general, verticals with higher
human grade have higher model scores even in click-based models.
This shows very clearly that i) training against human judgments
will provide scores correlated with online user engagement, and ii)
training against human judgments still leaves us a bit short. Us-
ing click logs to generate labels also helps us avoid the problem of
formulating the judgment guidelines for the HRS process.
Model comparison: In our online experimental setup we found
it more practical to compare the user engagement characteristics
with an existing algorithm by first pegging the coverages to the
engagement relative to existing composition since absolute metrics
are difficult.
Image Vertical: When comparing online engagement behavior of
human judgment based models and click-based models, we found
that while we got much higher user engagement with Image ver-
tical with click-based models, the overall page engagement for the



human judgment-based model was higher. Our suspicion is that the
cause potentially due to the fact that many times an image might be
relevant but users do not click on it, as in the case of the query
{woody allen}, whereas, for the query {lady gaga } we see a lot
of clicks. In the first example, the value of the vertical result is in
building trust or immediate communication that the search engine
“gets it.”
Non-Clicky Verticals: Many verticals that do not require a click,
such as Weather, can potentially introduce difficulties since there is
no need for the user to click on the result. For such verticals one
can either deliberately turn the vertical result clicky by forcing the
users to click on a link to get the final result for a small fraction
of the traffic, or creating a model based on engagement (or lack
thereof) on the rest of the page [14].
Click-labels: Notice that while we consider the click as a good
thing, a “satisfied” click can have different properties for differ-
ent verticals. For example, the dwell-time for a satisfied click on
the Image vertical can be very different from the dwell-time of the
News vertical. Thus some further refinements can be done by fac-
toring in satisfied clicks instead of just clicks.
Training Size: In our experiments we find that each vertical takes
different amount of training data to “saturate” in performance. In
fact, it is advisable to study the training size behavior for sub-
categories of queries such as head and tail. While overall the train-
ing size might saturate, important sub-categories might still be lack-
ing enough training data.

9. CONCLUSIONS AND FUTURE WORK
We proposed a machine learning framework for aggregating and

composing results from multiple verticals with heterogeneous types
of entities. The problem of creating a common relevance scale
across verticals was addressed using pairwise click judgments where
one of the entities in the pair is always a web result block. In fea-
ture space this was addressed by creating a hinged feature vector
that consisted of two parts: a web part, and the vertical part. We
showed that we can get very high correlation with user engagement
clicks by building models that uses user click preference as judg-
ments. Our models and experiments were performed using over
100k <query, vertical> pairs. Our belief is that by training mod-
els using online data we can get very high quality models, which
generalize even to tail queries.

The approach presented in this paper can be adapted to address
many practical problems in federated web search. Ranking and
placing a new vertical result is common problem since there hu-
man training data would have to be collected to train a model. Our
randomized auditioning approach easily allows us to collect train-
ing data from online users. A very similar issue appears when we
try to adapt the search engine to a new international market and can
be addressed using randomized auditioning.
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