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ABSTRACT
Readability is a crucial presentation attribute that web sum-
marization algorithms consider while generating a query-
baised web summary. Readability quality also forms an im-
portant component in real-time monitoring of commercial
search-engine results since readability of web summaries im-
pacts clickthrough behavior, as shown in recent studies, and
thus impacts user satisfaction and advertising revenue.

The standard approach to computing the readability is
to first collect a corpus of random queries and their corre-
sponding search result summaries, and then each summary
is then judged by a human for its readabilty quality. An
average readability score is then reported. This process is
time consuming and expensive. Besides, the manual eval-
uation process can not be used in the real-time summary
generation process. In this paper we propose a machine
learning approach to the problem. We use the corpus as de-
scribed above and extract summary features that we think
may characterize readability. We then estimate a model
(gradient boosted decision tree) that predicts human judg-
ments given the features. This model can then be used in
real time to estimate the readability of new (unseen) web
search summaries and also be used in the summary genera-
tion process.

We present results on approximately 5000 editorial judg-
ments collected over the course of a year and show examples
where the model predicts the quality well and where it dis-
agrees with human judgments. We compare the results of
the model to previous models of readability, most notably
Collins-Thompson-Callan, Fog and Flesch-Kincaid, and see
that our model shows substantially better correlation with
editorial judgments as measured by Pearson’s correlation co-
efficient. The learning algorithm also provides us with the
relative importance of the features used.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Web search is now a critical part of our everyday life.

However, with the rapid growth of information on the web,
finding a relevant web page is becoming more challenging.
One of the standard approaches that the commercial search
engines use to reduce a user’s search time is to display a
summary (see Figure 1) of each web page in the result set.
Interestingly, a recent study [6] has shown that the readabil-
ity of a summary has a direct impact on the click behavior
on the search result page. A less readable summary is less
likely to generate a click than a more readable summary.
Thus it is important for search engines to generate nice, hu-
man readable, summaries.

Most search engines monitor various metrics that reflect
some aspect of relevance. In fact, besides monitoring the
relevance of their own engine, they monitor their competi-
tors too. Some of the click-based relevance metrics that are
monitored are click-through rate at various result positions,
rate at which users return back to the result page immedi-
ately, etc. The primary task of a search result summary is
to convey to the user the relevance (or lack thereof) of the
result.

However, there are other dimensions of quality of a sum-
mary. The summary should convey information to the user
in the most easily accessible way possible, and one major
factor in accessibility to a user is readability. It is there-
fore important for search engines to monitor the readability
of summaries on a regular basis. Such readability metrics
would allow us to make sure that the result summary qual-
ity is not degrading, and that the readability is comparable
to competitors. In addition, the readability monitor can
serve as a way to detect sudden system changes that have a
negative impact on the readability.

The current methodology of evaluating summary quality
is, however, a very slow process. Queries are first sampled
randomly from a weekly query log. The queries are then
issued to various search engines and top-k (usually k is 10)
results collected. Human judges rate the readability of the
summaries (along with other quality judgments such as rele-
vance) and various metrics are reported. Since this process is



Figure 1: A search result page summary. The summary is composed of a title, an abstract and a URL. The
abstract itself can be composed of one or more “snippets.” The snippets are either complete sentences or
fragments of sentences. If a snippet is a fragment, ellipses are used to represent the missing chunks.

labor intensive, it is conducted once a quarter at best. (The
process is quite similar to the TREC evaluations.) However,
having an estimate of the human judgment on a daily basis
would be very useful, as discussed earlier.

We propose a machine learning approach to modeling and
monitoring the readability of search result summaries. Our
approach is as follows. We collect a corpus of search re-
sult summaries and corresponding human judgments as de-
scribed above. The judgments are from 1-5 where 1 is poor
and 5 is good. Then we extract various features from the
summaries and model the judgments as function of the fea-
tures. The modeling itself is done using stochastic gradient
boosted decision trees (GBDT) [8, 9]. This model is then
used for rating a collection of new search result summaries.

The remainder of this paper is organized as follows. In
Section 2, we discuss papers that have addressed similar
issues and then identify why they are not appropriate for
evaluating readability on web search summaries. Then, in
Section 3, we describe our gradient boosted decision tree
modeling framework and the readability features that we
use. In Section 4 we describe our experimental approach,
which includes the training and testing corpus, human judg-
ment tools and guidelines, as well as choice of parameter
values used in the GBDT algorithm. Then in Section 5 we
present our results and discuss in what situations the read-
ability predictions produced by our algorithm do not agree
with human judges, and consider possible approaches to im-
proving the model. We also discuss how this work is used
for real time monitoring.

2. RELATED WORK
In a recent paper, Clarke et al. [6] studied the relation-

ship of “click inversions” – rank locations where a lower
ranked page gets more clicks than the previous one – and
various attributes of search result page summaries. One of
the conclusions of their work was that the readability of the
abstract was statistically correlated with the clickthrough
rates. However, the model of readability itself was heuristic
and not tested against human readability judgments.

Numerous researchers have conducted user studies to un-

derstand aspects of readability. Aula [3] conducted user
studies and found that putting each snippet on a separate
line reduces the time humans take to process an abstract.
Radev and Fan [23] found that readability of summaries de-
creased with the amount of compression. In addition they
found that the processing time by humans increased when
the compression ratio increased, most likely due to decrease
in readability. Obendorf and Weinreich [22] found that the
current visualization of hyperlinks can reduce the human
readability of text considerably. Kickmeier and Albert [15]
found that bolding of keywords in the summary is impor-
tant for “scannability;” that is, bolding helps in getting a
particular result noticed. Finally, Rose et al. [27] found that
text choppiness and truncation affected the readability for
human subjects.

All the user studies mentioned above, in general, give
tasks to human subjects and measure some sort of metric
(e.g. time to finish a task) and arrive at conclusions. Their
methodology does not come up with a model of readabil-
ity, and thus can not be used to predict human readability
judgments in realtime.

FOG [10], Flesch, Flesch-Kincaid [16] and SMOG [20]
are computational models for predicting readability of texts.
Automated essay scoring systems use some of these meth-
ods [5]. Most of these methods assume long, well written
text, and extract features like average number of characters
per word and average syllables per word and predict the
score using a linear model.

Similarly, Si and Callan [29] built a classifier using a lin-
ear combination of models based on language models and
surface features. They too assumed complete sentences and
not summaries which can contain fragments of sentences.

Perhaps the closest related work is that of Collins-Thomson
and Callan [7]. They use a unigram language model to pre-
dict the reading difficulty level of a (long) text. Essentially
their algorithm can predict the level (grade 1-12) that the
text readabilty comes close to. However, we find that the
correlation of their algorithm to the human judgments of the
(short) web abstract is very weak.

In the web world, the summaries are very short, incom-



plete sentences that could have numerous non-alphabetic
characters or exhibit strange capitalization. Therefore, the
features that are important for the web summary are not
likely to be included in FOG and other models. More re-
cently a feature-based approach has been used to model an-
swer quality [13, 2, 19]. Our work, however, focuses on the
issue of modeling readability itself and using it for realtime
monitoring of readability of web result summaries.

Researchers in psychophysics [24] have also studied vari-
ous aspects of reading: impact of context on readability; eye
movements during reading; and prediction based on context.
Others [17] have looked at the impact of contrast and size on
reading. These characterizations can help in creating new
features and explaining why a feature is important.

Modeling of response variables (the human judgments) as
a function of explanatory variables (e.g. measured readabil-
ity features) has been studied under the names of statistical
inference [31], pattern recognition [12] and more recently sta-
tistical machine learning [11]. Techniques such as logistic re-
gression, support vector machines (SVMs), neural networks,
and decision trees have been popular in the modeling com-
munity. SVMs in particular have been used recently to learn
ranking functions [21, 14, 4] and have been shown to work
well. Friedman’s stochastic Gradient Boosting Decision Tree
(GBDT) [8, 9] is a promising new approach that computes a
function approximation by performing a numerical optimiza-
tion in the function space instead of the parameter space. In
fact, recent papers [18, 33] have shown that GBDT can out-
perform many competing machine learning techniques. We
use GBDT as our modeling algorithm, which is discussed in
the next section.

3. MODEL
In this section we describe our regression approach to

modeling summary readability. In the next subsection we
describe the readability features (explanatory variables) we
computed for modeling the human responses. In the fol-
lowing subsection we provide an overview of the gradient
boosting algorithm.

3.1 Features
Features can be critical in any modeling task. A good

modeling algorithm can not help if the features lack infor-
mation about the concept being modeled. The features that
we used in our experiments are listed below.

1. FOG: This is a readability measure based on features
such as average number of syllables per word. It is a
fixed linear formula that is computed from features.
The weights are fixed and were estimated for long es-
says [10, 20].

2. Flesch: This metric is similar to FOG [16].

3. Flesch-Kincaid: This is another long prose metric sim-
ilar to FOG and Flesch [16].

4. Average Characters Per Word (cpwrd).

5. Average Syllables Per Word (sylpwrd):

6. Percentage of Complex Words (pcmplxwrds): This is
a feature used by Flesh.

7. Number of Snippets (nsnip): If one tries to squeeze in
too many fragments into an abstract, it looks choppy
and unreadable.

8. Does the Abstract Begin with Ellipses (bellip): Do
beginning ellipses impact readability?

9. Does the Abstract End with Ellipses (ellip): Do end-
ing ellipses impact readability?

10. Capital Letters Fraction (capfrac): If there is over-
capitalization, it should hurt readability.

11. Punctuation Character Fraction (puncfrac): If there
are too many punctuation marks, most likely it is spam
or some sort of non-text document.

12. Stop Word Fraction (stopfrac): We notice that spam-
mers typically try to insert multiple occurrences of the
keywords. Fraction of stop words is a surrogate for a
real language model [30, 32].

13. Query Word Hit Fraction (hitfrac): Readers are in-
fluenced by the presence or absence of terms from the
query.

The above features are computed after removing any hy-
pertext markup like bolding and then stripping all ellipses.
The features were computed on the entire abstract and not
on an individual snippet.

An interesting point to note is that it is very difficult to
know which features are the important ones without manu-
ally observing examples. However, using the machine learn-
ing technique described in the next subsection we can com-
pute the relative influence of the individual features. This
will be discussed again in the experiments section.

3.2 Gradient Boosted Decision Trees
A basic regression tree f(x), x ∈ RN , partitions the space

of explanatory variable values into disjoint regions Rj , j =
1, 2, . . . , J associated with the terminal nodes of the tree.
Each region is assigned a value φj such that f(x) = φj if
x ∈ Rj . Thus the complete tree is represented as:

T (x; Θ) =

JX
j=1

φjI(x ∈ Rj), (1)

where Θ = {Rj , φj}J
1 , and I is the indicator function. For

a given loss function ψ(yi, φj) the parameters are estimated
by minimizing the the total loss:

Θ̂ = arg min
Θ

JX
j=1

X
xi∈Rj

ψ(yi, φj). (2)

Numerous heuristics are used to solve the above minimiza-
tion problem.

A boosted tree is an aggregate of such trees, each of which
is computed in a sequence of stages. That is,

fM (x) =

MX
m=1

T (x; Θm), (3)

where at each stage m, Θm is estimated to fit the residuals
from the m− 1th stage:

Θ̂m = arg min
Θm

NX
i=1

ψ(yi, fm−1(xi) + φjm). (4)



In practice, instead of making adding fm(x) at the mth
stage, one adds ρfm(x) where ρ is a the learning rate. This
is similar to a “line search” where one moves in the direc-
tion of the gradient, but the step size need not be equal to
the gradient. In the stochastic version of GBDT, instead
of using the entire dataset to compute to loss function, one
sub-samples the data and then finds the function values φj

such that the loss on the test set is minimized. The stochas-
tic variant minimizes over fitting issues. The depth of the
trees in each stage is another algorithm parameter of im-
portance. Interestingly, making the trees in each stage very
shallow while increasing the number of boosted trees makes
good function approximation. In fact, even with depth 1
trees we get good results. Interaction amongst explanatory
variables is modeled by trees of depth greater than 1.

Finally the GBDT algorithm also provides what is called
relative influence of variables. This is computed by keeping
track of the reduction in the loss function at each feature
variable split and then computing the total reduction of loss
function along each explanatory feature variable. The higher
the relative influence value of a feature, the more important
it is in the prediction process.

Ridgeway’s article [26] provides a nice survey of boosting
algorithms, and we use his GBM package [25] and R [1] for
conducting our modeling experiments.

4. EXPERIMENTAL PROTOCOL
The training data for the model consisted of 5382 judg-

ments of readability done by seven human editorial judges
over about a year, on abstracts from Yahoo! and Google
search results. Each result was rated on a scale of 1-5, where
1 was the least readable, and 5 was the most like written En-
glish. The editorial judgment tool is shown in Figure 2.

Editors were instructed to consider whether the text was
written intended to be read as English, or whether it was
from text on the page, such as menus, that was not part of
the written content of the page. Elements of readability or
unreadability are shown in Table 1.

This judgment task was part of a larger task in which ed-
itors were asked to also judge perceived relevance and the
quality of certain kinds of semantic content in the abstract.
One concern about judgments of this nature is that it is
possible for different categories to be conflated, and for rele-
vance to impact readability judgments. However, relevance
judgments and readability judgments were only weakly cor-
related, with a correlation coefficient of 0.24. Because it
is difficult to directly measure relevance in many real-world
situations, we decided not to include relevance in our model,
so as to produce a useful model in cases where we may not
have relevance information.

The editors were also given examples of readable and un-
readable abstracts, as shown in Table 2. The judgment
training process included a number of prejudged cases, and
editors were required to judge those correctly, as well as
show good agreement with other editors on overlap judg-
ments, where multiple editors judged the same abstract.
Cases where the judgments disagreed by more than a single
point were discussed and rejudged.

Inter-rater agreement was calculated for overlap judgments.
Editors showed perfect agreement only 46.4% of the time,
but showed near agreement, where near agreement is agree-
ment to within one point on the 1-5 scale, 84.5% of the
time. Editors showed perfect agreement with themselves on

abstracts they rejudged 95.7% of the time, and near agree-
ment 99.7% of the time.

In Table 3 we examples of causes that lead to low read-
ability.

There are numerous parameters values that need to be set
for the gradient boosting algorithm. These parameters were
described in the section describing the model. In particular,
the number of trees we used was set at 3000, the shrinkage
factor was 0.05, the interaction depth was 2, and the bagging
fraction was 0.5. Also, the minimum number of observation
in any node was set at 10.

The training and test set were created by randomly split-
ting the 5382 observations into equal sized training and test
sets. Finally, for model selection, we used 5 fold cross valida-
tion to estimate the model on the training set. The results
reported are on the held-out test set.

The FOG, Kincaid and Flesch-Kincaid features were com-
puted using the Fathom [28] package. We used R [1] and
GBM [25] to do the statistical modeling.

5. RESULTS AND DISCUSSION
The purpose of the experiments was to

1. To see if there is any correlation between the predicted
judgment values and the true human judgment.

2. Understand which features are relatively more impor-
tant for predicting readability values

3. Investigate the nature of issues that lead to disagree-
ments between the predicted and true judgment val-
ues.

The exact protocol used for the experiments are described
in the previous section; here we discuss the results.

In Figure 3 we show a scatter plot of FOG, Kincaid and
Flesch-Kincaid scores and human judgments. Interestingly
there does not seem to be any correlation. This most likely
is due to the fact that web abstracts i) have very little text
(at most two lines); ii) are comprised of small fragments of
sentences instead of complete sentences; and iii) the mod-
els are trained on a completely different corpus. The visual
lack of correlation shown in Figure 3 is validated in Table 4
where we provide the Pearson’s correlation coefficient for
the three readability metrics. The Pearson’s coefficient lies
between 1 and -1 and the values corresponding to Fog, Kin-
caid, and Flesch-Kincaid are around 0, indicating the lack of
correlation. We also computed the Pearson’s correlation co-
efficient for the scores generated by the Collins-Thompson-
Callan model and the value indicates negligible correlation.
In fact, the Collins-Thompson-Callan model score mean was
7.76 with a standard deviation of 2.79, indicating that the on
average the reading difficulty of web abstracts is at the level
of a 8th grader. This in fact emphasizes the need for spe-
cialized models for short abstracts – the Collins-Thompson-
Callan model expects larger texts whereas web abstracts are
very short.

In Figure 4 we plot the predicted judgment score against
the true human judgment score. The true human judgment
scores are integral values from 1 to 5. The estimated score,
however, is a continuous value, since the gradient boosting
was used in the regression mode and not in the classifica-
tion mode. Thus the fitted points are clustered vertically
around the integers 1 through 5. The plot on the left is for



Figure 2: Tool provided to the editors to rate the abstracts.

Table 1: Elements of readability. Instructions provided to editors defining the notion of readability
Attributes of a readable abstract Attributes of an unreadable abstract
it allows us to quickly scan and understand its gist choppiness from keyword loading or content taken from naviga-

tional or menu lists.
snippets are portions of text clearly intended to be read by a
human

snippets with poor truncation, e.g., broken at a prepositional
phrase, conjunction, adjective/noun, etc.

snippets are generally complete sentences, coherent excerpts of
sentences, or understandable titles

snippets that provide little information or query term context,
because they are too short, the truncation is bad, etc.

it looks nice, without garbage characters, wingdings, all caps, etc. snippets that contain many misspellings or are poorly written,
perhaps written by a non-native English speaker

Table 4: Pearson correlation. We see that Web ab-
stracts, which are comprised of short phrases, are
not well correlated with the human readability judg-
ment scores. In addition, the linear model can not
predict the readability well. The scores predicted
using gradient boosted decision trees, however, have
a much better correlation with human readability
judgments

Score Type Pearson’s coefficient
Fog 0.01572242
Kincaid -0.02689905
Flesch-Kincaid 0.02323278
Linear -0.001198311
Collins-Thompson-Callan 0.0597
Gradient Boosted Trees 0.6321157

predictions using a linear model, and the plot on the right
is for predictions using the gradient boosted decision trees.
We see that GBDT has a much better correlation than the
linear model. In Table 4 we give the Pearson’s correlation
coefficient for both the linear and GBDT models and it is
clear that the GBDT model performs the best.

The next obvious question to ask is, where do the pre-
dictions and true values disagree the most. We will address
this point shortly.

The second issue is that of relative influence (see modeling
section for definition) of features in readability modeling. In
Figure 5 we see that the top three most influential feature
are capfrac (fraction of capital letter), puncfrac (fraction
of punctuation characters), and stopwrd (fraction of stop
words). Notice that these features are not considered in

Figure 5: Relative influence of the features. It can
be seen that capfrac, the fraction of capital letters,
is an important feature for predicting readability.

the standard FOG and Flesch-Kincaid algorithms. capfrac
is important because when the abstract is made up of all
capital letters, it makes the presentation very ugly. Too
much punctuation behaves similarly. This can also be an
indication of spam or junk text. Lack of stop words is a
clear sign of spam, since spammers tend to insert multiple
occurrences of key words in the text, often in a list.

Notice that charpwrd (average characters per word),
which is a component of the standard FOG-type metric,
is actually fourth in importance, higher than any of the
FOG-type metrics. Finally, while the number of snippets



Table 2: Examples of readable and unreadable abstracts that were provided to the editors. We also specified
the grades associated with the examples

Grade Explanation Example

1 “unreadable” ... the pulldown: Choose Video Here: Disclaimer Tread-Mill Got a Light? Quick-
time Required. ...MMV New Line Productions, Inc. The Twilight Zone ...

3 “somewhat readable” ...Courtesy of Geffen Records. Favorites. Alerts. The new-school punk trio blink-
182 was formed near San Diego, California around guitarist/vocalist Tom...

5 “easy to read” ... a better way to buy diamonds and engagement rings at the best prices on the
web ... Email us the carat weight, clarity, color, shape and price range of what
diamonds you want, and we will search the main wholesale market for you

Table 3: Common readability errors
Lack of context for bolded query term Query term occurs without sufficient context, for example, as the last word of a

snippet.
Broken prepositional phrase Snippet starts/ends in the middle of a prepositional phrase, e.g. “do not use this

product with...”
Broken at conjunction Snippets starts/ends with a conjunction, e.g. “Tonight I’m going to the store

and...”
Broken adjective/noun Snippet starts/ends between adjective and noun or noun and determiner, e.g.

“make sure to use new...”
Choppy or unreadable snippet Snippet does not form a connected, readable block of text, e.g. “.. the pulldown:

Choose Video Here: Disclaimer Tread-Mill Got a Light? Quicktime Required. &
MMV New Line Productions, Inc. The Twilight Zone ...”

Split married word Snippet starts/ends between parts of a phrase that has a coherent meaning together
(“ice cream,”“minimum wage,”“New York,” etc.) e.g. “My favorite dessert is ice...”
or (on a page about the band Cheap Trick) “One of the most popular bands of the
late 1970s was Cheap...”

Broken subject/verb or verb/object Snippet starts/ends between subject and verb or between verb and object, e.g.
“...broke the record for 100 meters.”

Broken adverb/verb Snippet starts/ends between adverb and verb, e.g. “After careful planning, the
thieves brazenly...”

Broken address Snippet starts/ends in the middle of an address, e.g. “701 First Avenue...” (no
city)

Broken phone number Snippet starts/ends in the middle of a phone number, e.g. “408 349...”
Broken date/time Snippet starts/ends in the middle of a date and/or time, e.g. “August 29,...” (no

year)
Garbage characters, dingbats, etc.
Navigational, menu, lists in snippets e.g. ”My eBay. My eBay Views. My Summary. All Buying. Bidding. Won. Didn’t

Win. My Messages. All Favorites. My Account. Related Links.”
JavaScript code in snippets This category applies to any text intended to be read by the computer, not

by a human – CSS, raw HTML, etc. e.g. “var PUpage=“76001078”; var
PUprop=“geocities”;yfiEA(0);geovisit();

(nsnip) is not the lowest in the list, it is less important than
capfrac.

The machine learning methodology thus provides an easy
way to not only predict the judgments but also provide an
explanation of which features are important in decision mak-
ing.

In Figure 6 we provide a number of cases where the model
agreed with human judges that the readability of the ab-
stracts is of low quality. In Figure 7 we provide a number of
cases where the model disagreed with the human judges –
the judges rated the abstract as of low quality whereas the
algorithm rated them as of high quality. In some cases we
see that, although the abstract is quite readable, the judge
gave it a low score, perhaps due to objectionable content.

In Figure 8 we provide a number of cases where the model
agreed with human judges that the readability of the ab-
stracts is of high quality. In Figure 9 we provide a number
of cases where the model disagreed with the human judges
– the judges rated the abstract as of high quality whereas
the algorithm rated them as of low quality. There are cases
where we see that that while one of the snippets was very
unreadable, the human judge still gave the abstract a high
score, focusing on the readable snippet only.

This analysis leads us to believe that one can improve the
guidelines to make the features and models better reflect
how human judges score abstracts. It also suggests that

instead of making features aggregate values over the entire
abstract, perhaps the features should be on a per snippet
basis.

Once a readability model is estimated as described in this
article, it can be used for monitoring the readability of ab-
stracts viewed by users on a daily basis instead of the usual
quarterly or yearly evaluation using human judgments. At
the same time it is important to emphasize that the pre-
dictions are only surrogates for the real human judgements.
Finally, while the proposal is for computing readability of
abstracts in real time and at a very large scale, one can use
the same features to design summarizers that produce more
readable abstracts.

6. CONCLUSIONS
While TREC-style evaluations are very valuable for the

research community, the process itself does not lend itself
for conducting real time quality evaluation of search en-
gine summary results. In this paper we present a machine-
learning methodology that first models the readability of
abstracts using training data with human judgments, and
then predicts the readability scores for previously unseen
documents using gradient boosted decision trees.

The performance of our model exceeds that of other kinds
of readability metrics such as Collins-Thompson-Callan, Fog
or Flesch-Kincaid. This is not surprising since these models
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Figure 3: Correlation between FOG, Kincaid and Flesch-Kincaid readability metrics. On the x-axis we have
human readability judgments from 1-5 and on the y-axis we have the estimated readability metric scores.
We can see that there is hardly any correlation, which is quantified using the Pearson correlation coefficient
in Table 4.

were trained on clean text samples, with complete sentences,
and larger text sizes. In contrast, web abstracts can contain
many non-standard characters and they typically have frag-
ments of sentences.

Our methodology can be used to estimate human quality
judgments in real time and at a large scale, and is being used
for that purpose now. Furthermore, the model can also be
used in the automatic summarization algorithm to generate
more readable summaries.
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Figure 6: Examples of summaries that were assigned low readability scores by human judges, and low
readability scores by the algorithm.

Figure 7: Examples of summaries that were assigned low readability scores by human judges, and high
readability scores by the algorithm.



Figure 8: Examples of summaries that were assigned high readability scores by human judges, but low
readability scores by the algorithm.

Figure 9: Examples of summaries that were assigned high readability scores by human judges, and high
readability scores by the algorithm.


