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Abstract—Computer vision software is complex, involving many tens of thousands of lines of code. Coding mistakes are not

uncommon. When the vision algorithms are run on controlled data which meet all the algorithm assumptions, the results are often

statistically predictable. This renders it possible to statistically validate the computer vision software and its associated theoretical

derivations. In this paper, we review the general theory for some relevant kinds of statistical testing and then illustrate this experimental

methodology to validate our building parameter estimation software. This software estimates the 3D positions of buildings vertices

based on the input data obtained from multi-image photogrammetric resection calculations and 3D geometric information relating some

of the points, lines and planes of the buildings to each other.

Index Terms—Statistical analysis, multivariate hypothesis testing, 3D parameter estimation, error propagation, software validation,

software engineering.
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1 INTRODUCTION

NUMEROUS computer vision problems can be posed as
either parameter estimation problems (for example,

estimate the pose of the object) or hypothesis testing
problems (for example, which of the N objects in a database
occurs on a given image). Since the input data (such as
images or feature points) to the vision algorithms are noisy,
the estimates produced by the algorithms are noisy. In other
words, there is an inherent uncertainty associated with the
results produced by any computer vision algorithm. These
uncertainties are best expressed in terms of statistical
distributions and the distributions’ means and covariances.

Implementations of computer vision algorithms typically

run into thousands of lines of code. Furthermore, the

algorithms are based on many approximations and numer-

ous mathematical calculations. Software validation in this

context means an objective verification that the output

produced by the software is what was intended by the

algorithm designer. While software validation is an integral

part of software engineering [15], we find (to the best of our

knowledge) that there is almost no attention paid to this

topic in computer vision. The numerical analysis commu-

nity has a much better culture when it comes to scientific

software validation, but numerical software is not statistical

in nature. The validation methodologies dictated by soft-

ware engineering principles (e.g., coverage analysis, test

cases, bounds testing, etc.) do not address the software
validation issues of computer vision software.

One way to verify that the software implementation and
the theoretical calculations are correct is by providing the
algorithm input data with known (controlled) statistical
characteristics, which is possible since the input data can be
artificially generated, and then verifying that the estimated
output is actually distributed as what was predicted by
theoretical calculations.

In practice, since many of the estimation problems are
multidimensional, testing whether the means and covar-
iances of the empirical distribution and predicted distribu-
tion are identical is easier than testing whether or not the
shapes of the two distributions are identical. In this paper,
we summarize various statistical tests regarding the means
and covariances for the case when the random estimates can
be assumed to be multivariate Gaussian.

While error propagation has been used in computer
vision by various authors, the details of covariance
propagation methodology presented in this paper can be
found in [17] and the reconstruction problem has been
described in Liu’s thesis [23]. Faugeras described the use of
error propagation in his book [13] and Kanatani [19] used
error propagation to compute Cramer-Rao bounds for the
variances of the estimated parameters. More recently,
Chowdhury and Chellappa [9] used error propagation for
estimating the effect of feature estimation noise in the
structure-from-motion problem, on the first and second-
order statistics of the structure parameter estimates. In the
literature mentioned above, researchers have used the
notion of error propagation to compute the variances of
certain parameters of interest. However, how the error
propagation methodology can be used as a software
engineering tool to validate the implementation of algo-
rithms is not addressed.

In many cases, it is not possible to use the standard error
propagation paradigm for computing the output parameter
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distribution. In such cases, Cho et al. [8] propose the use of
bootstrap estimate (Efron and Tibshirani [12]) for the
variance. Courtney and Thacker [10] have advocated
software testing in vision systems and have used CAD-
based 3D scene models [11] and bootstrapping for bench-
marking the algorithms. More recently, Bromiley et al. [5]
have used covariance propagation for coregistration in the
medical imaging domain.

The issue of testing software that deals with statistical
issues has been of major concern in the field of statistics
itself for many years (see Wilkinson [30]). McCullogh [27],
[28] proposed various tests for estimation, random number
generation, and statistical distributions and then applied
them on various software packages like SAS, SPSS, and
S-Plus. Altman and McDonald [1] used the methods
proposed by McCullogh to show that the statistical
computations used by political scientists can vary drama-
tically depending on the software package used for the
computations. Chen et al. [7] used similar methods to show
that the statistical packages available on the Web can give
dramatically different results. Underlying statistical com-
putations are numerical computations. For a discussion of
numerical accuracy of computations, see Gill et al. [16].

The paper is organized as follows: In Section 2, we
describe our statistical methodology for validating compu-
ter vision software. In Section 3, we provide a background
material on statistical hypothesis testing. In Section 4, we
outline a 3D parameter estimation problem for the RADIUS
computer vision project [26]. Theoretical error propagation
for estimating the distributions of the 3D parameters is
described in Section 5. The experimental details and the test
statistics used for computing the empirical distributions are
described in Section 6. The validation results comparing
theoretical distributions with empirical distributions are
described in Section 7.

2 A STATISTICAL METHODOLOGY FOR VALIDATING

COMPUTER VISION SOFTWARE

To validate computer vision software, two checks have to be
performed. The first check is that the theory is correct: The
theoretically derived null distributions of the test statistics
are actually correct. The second check is that the software is
correct: The implementation is exactly what the theory
dictates. Both the checks can be performed by computing
the empirical distributions of certain observable variables
and comparing them with the corresponding theoretically
derived distributions.

The sequence steps required to perform the software
validation therefore are:

1. Model the specific computer vision problem as a
continuous1 parameter estimation problem.

2. Derive the optimal solution in a closed form.
3. Assume a distribution for the input measurement

noise.
4. Theoretically (using error propagation) derive the

distribution of the parameters to be estimated.

5. Generate a sample of (multivariate) input data
vectors by Monte Carlo simulations using the
distribution parameters used in the theoretical
computations. For each sample of noisy input data,
find the optimal (multidimensional) solution to the
vision problem.

6. Compute the empirical distribution (histogram) of
the computed optimal solutions.

7. Test whether the theoretically derived distribution
and the empirically distributions are the same.

The Kolmogorov-Smirnov test can be used to check if the
empirical distribution and the theoretically derived dis-
tributions are same. In fact, the Kolmogorov-Smirnov (K-S)
test can be used to 1) test whether an empirical distribution
is identical to a theoretical one or 2) test whether two
empirical distributions are identical. The K-S test uses the
fact that the maximum absolute difference between the two
cumulative distributions has a known (null) distribution.
For a more detailed discussion on the K-S test, see [29].

Once the means and the covariance of the output
parameters have been derived, there are five tests that can
be conducted between the empirical and theoretical derived
distributions. In the next section, we describe the five tests.

3 STATISTICAL HYPOTHESIS TESTING
PRELIMINARIES

In this section, we briefly describe the five test statistics that
we use in later sections. We describe the five statistical tests,
the corresponding test statistics, and null distributions. For
a more detailed treatment of the results presented in this
section, see [6], [3], [22], [2].

3.1 The Kinds of Statistical Hypotheses

Let x1; x2; . . . ; xn be a sample from a multivariate Gaussian
distribution with population mean � and population covar-
iance �. That is, xi 2 Rp and xi � Nð�;�Þ, where p is the
dimension of the vectors xi. In this case, we can have five
possible hypotheses. Now, we describe each of the five tests,
the corresponding test statistics, and the null distributions.
For details, see Anderson [2] andKanungo andHaralick [20].
We use the following definitions of �xx and S.

�xx ¼ 1

n

Xn
i¼1

xi

and

S ¼ 1

n� 1

Xn
i¼1

ðxi � �xxÞðxi � �xxÞt;

where we have assumed that the data vectors xi are
p-dimensional and the sample size is n.

Test 1: � ¼ �0 with known � ¼ �1

Test statistic:

T ¼ nð�xx� �0Þt��1
1 ð�xx� �0Þ: ð1Þ

Distribution under null hypothesis is Chi-squared:

T � �2
p:
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The alternate hypothesis is HA : � 6¼ �0; the distribution

under the alternate hypothesis is noncentral Chi-squared:

T � �2
p;d;

where d ¼ nð�� �0Þt��1
1 ð�� �0Þ is the noncentrality

parameter.
Test 2: � ¼ �0 with unknown �
Hotelling’s Test statistic:

T ¼ nðn� pÞ
pðn� 1Þ ð�xx� �0ÞtS�1ð�xx� �0Þ: ð2Þ

Under the null hypotheisis, the test statistic T is distributed

as an F distribution with p and n� p degrees of freedom:

T � Fp;n�p:

The alternate hypothesis is HA : � 6¼ �0; the distribution of

the test statistic under the alternate hypothesis is noncentral

F with p and n� p degrees of freedom:

T � Fp;n�p;d;

where d ¼ nð�� �0Þt��1ð�� �0Þ is the noncentrality

parameter.
Test 3: � ¼ �0 with known � ¼ �1

Let

C ¼
Xn
i¼1

ðxi � �1Þðxi � �1Þt ¼ ðn� 1ÞS þ ð�xx� �1Þð�xx� �1Þt

and

� ¼ ðe=nÞpn=2jC��1
0 jn=2 expð�trðC��1

0 Þ=2Þ:

Test statistic:

T ¼ �2 log�: ð3Þ

Distribution under null hypothesis is Chi-squared:

T � �2
pðpþ1Þ=2:

The alternate hypothesis is HA : � 6¼ �0; the distribution

under the alternate hypothesis is unknown.
Test 4: � ¼ �0 with unknown �
Let B ¼ ðn� 1ÞS; and

� ¼ ðe=ðn� 1ÞÞpðn�1Þ=2jB��1
0 jðn�1Þ=2 expð�trðB��1

0 Þ=2Þ:

Test statistic:

T ¼ �2 log�: ð4Þ

Distribution under null hypothesis is Chi-squared:

T � �2
pðpþ1Þ=2:

The alternate hypothesis is HA : � 6¼ �0; the distribution

under the alternate hypothesis is unknown.
Test 5: � ¼ �0 and � ¼ �0

Define B ¼ ðn� 1ÞS and

� ¼ ðe=nÞpn=2jB��1
0 jn=2

exp �½trðB��1
0 Þ þ nð�xx� �0Þt��1

0 ð�xx� �0Þ�=2
� �

:

Test statistic:

T ¼ �2 log�: ð5Þ

Distribution under true null hypothesis is Chi-squared:

T � �2
pðpþ1Þ=2þp:

The alternate hypothesis is HA : � 6¼ �0; and � 6¼ �0; the

distribution under the alternate hypothesis is unknown.

4 APPLICATION: 3D PARAMETER ESTIMATION

We applied the hypothesis testing methodology to validate

the 3D parameter estimation software used for constructing

the ground truth model from the RADIUS model board

data set. In this section, we describe the problem and the

optimization approach.

4.1 Site Model Construction

The task is to construct 3D object models from the detected

2D image features and theknowngeometric constraints of the

observed perspective projections of the 3D objects. The data

set consists of the 78 images from the two RADIUS model

boards and the 3D coordinates of some building vertices.

Since the purpose of this site model construction was to

establish ground truth for automatic site model construction

algorithms, the corresponding points of the building vertices

that were observable on the images were identified and

located manually. Also, 3D positions of a few of the building

vertices are known.A simultaneous estimation of the interior

parameters and exterior orientation parameters of the

cameras was done by setting up and solving a very large

photogrammetric resection problem. Then, using these

camera parameters, a multi-image triangulation was per-

formed. This yielded the noisy estimates for the building

vertices that was the input to the site model construction

software whose testing we describe.
The geometric constraint procedure takes the photo-

grammetrically estimated 3D point positions and their

covariance matrices as observations. It uses the partial

models of the buildings to generate constraints on the

building parameters. To estimate the optimal 3D para-

meters that satisfy the relations in the partial models, a

constrained optimization model is solved. By error propa-

gation, we derive the covariance matrix of the estimated

building vertices which are guaranteed to satisfy the given

constraints. This is discussed in our paper [25].

4.2 Constrained Optimization

Partial building models are used to constrain the

3D parameters to be estimated. For polyhedron buildings,

partial models represent geometric constraints between

building entities: lines, planes, and points (vertices). Each

entity associates with a set of parameters.

point: A point is specified by its 3D coordinates, denoted by

ðx; y; zÞ or, in vector form, x.

line: A line is defined by a direction cosines e ¼ ðex; ey; ezÞ
and a reference point b ¼ ðbx; by; bzÞ on the line. We

choose the unique b that satisfies e � b ¼ eTb ¼ 0.
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plane: A plane is specified by a normal vector v ¼ ð�; �; �Þ
and a directed distance constant d.

The specific relations we used to constrain these
parameters are: point-on-plane, point-on-line, plane-angle-
plane, line-angle-line, and plane-angle-line.

Each point-on-plane relation associates with a planar
equation:

xTvþ d ¼ x�þ y� þ z� þ d ¼ 0: ð6Þ

Each point-on-line relation associates with a line equation:

x ¼ �eþ b; � 2 R: ð7Þ

Fig. 1 illustrates the point-on-plane and point-on-line

relations.
A plane-angle-plane relation is specified with the inner

product of the normal vectors of two planar surfaces. A zero
inner product means two perpendicular planes, while 1 or
-1 means two parallel planes. Similarly, a line-angle-line

relation is specified with the inner product of the direction
cosines of two lines and a plane-angle-line relation is
specified with the inner product of the normal vector of a
plane and the direction cosine of a line. Fig. 2 illustrates
these angle relations.

For a more detailed description, please see [23].
The observed 3D points and the associated covariance

matrix � are obtained from triangulation. The perturbation
model that we used for the observation was a zero mean
Gaussian noise with unknown covariance. Having the
partial object model and the perturbation model, we can
define the estimation problem. Let � 2 IRm denote the
parameters,X0 2 IRm denote the observations, and pðX0 j �Þ
denote the likelihood function. In the building estimation
problem, the parameters are the coordinates of the points,
the normal vectors and distance constants of the planes, and
the direction cosines and reference points of the lines.

Assuming that the given optimality criterion is the
maximum posterior probability, a Bayesian approach can
be used to transform the problem into a maximum

likelihood problem with constraints. Let the constraints be
denoted by � 2 C� � IRm. The problem can be expressed as
a constrained optimization problem.

min �pðX0 j �Þ j � 2 C�f g:

The problem can be reformulated by taking the logarithm of

the probability function. Under the assumption of Gaussian

noise, we obtain a least squares model. The objective

function is the weighted sum of squared errors between the

estimated point positions and the observed points, which is

also known as the Mahalanobis distance:

min� fð�Þ :¼ ðX0 �XÞT��1ðX0 �XÞ
n o

subject to � 2 C�;
ð8Þ

where X denotes the unknown 3D points and the feasible

set C� is determined by the partial model and the unit

length constraint for the directional vectors.
If the noise effecting different 3D points is independent,

the objective function can be rewritten as

fð�Þ ¼
XK
i¼1

ðx0
i � xiÞT��1

i ðx0
i � xiÞ;

where �i is the covariance matrix of the ith point and K is

the number of observed points.
The constraints can be incorporated into the optimization

problem as follows (see [23]):

min� fð�Þ :¼ ðX0 �XÞT��1ðX0 �XÞ
n o

subject to hið�Þ ¼ 0; i ¼ 1; . . . ; r:
ð9Þ

In the above, the equation hið�Þ ¼ 0 represents all the

constraints derived from partial models. The numerical

solution to this optimization problem can be achieved by

various methods such as: the reduced gradient method [16],

the sequential quadratic programming [14], or the augmen-

ted Lagrangian method [4].

5 ERROR PROPAGATION

Once the constrained optimization produces a result, we

use the error propagation approach [18], [24] to transform

the input error covariance matrix to the output covariance

matrix. In the building estimation problem, we have the

optimization model

min� fð�Þ
subject to hð�Þ ¼ 0;

where f is the sum of squared errors between the estimated

3D points and the observed 3D points.
The Lagrangian function is

LðX0;�;�Þ ¼ fðX0;�Þ þ �Thð�Þ
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Suppose that ð ~XX; ~��; ~��Þ is an optimal point. From the
necessary conditions of a local minimum point, the
linearized model at the optimal point can be obtained by
solving [14], [23]

~QQ ~HHT

~HH 0

� �
��
��

� �
¼ � ~BB�X

0

� �
; ð10Þ

where

~QQ ¼ r2
�� Lð ~XX; ~��; ~��Þ ¼ r2

��fð ~XX; ~��Þ þ
Pr

j¼1
~��jr2hjð~��Þ;

~BB ¼ r2
�xLð ~XX; ~��; ~��Þ ¼ r2

�xfðX0; ~��Þ;
~HH ¼ rhð~��Þ:

The Lagrangian matrix at the point of ð ~XX; ~��; ~��Þ can be
approximated by the Lagrangian matrix at the minimum if
the error is small. Hence, the linear model can be
approximated by

Q� ðH�ÞT
H� 0

� �
��
��

� �
¼ �B��X

0

� �
;

where

Q� ¼ r2
�� LðX0; �̂�; �̂�Þ

¼ r2fðX0; �̂�Þ þ
Xr
j¼1

�̂�jr2hjð�̂�Þ;

B� ¼ r2
�xLðX0; �̂�; �̂�Þ ¼ r2

�xfðX0; �̂�Þ;
H� ¼ rhð�̂�Þ:

Assume that the constraints are linearly independent.
Then, the row vectors in matrix H� are linearly indepen-
dent. We can use the null space method to compute the
error propagation matrix J [14], [23].

Once the error propagation matrix is obtained, we can

propagate the covariance matrix of the observations � to the

output. The covariance matrix of the estimated parameters,

��, can be approximated by

�� ¼ J�JT : ð11Þ

6 EMPIRICAL DISTRIBUTION COMPUTATION AND

TEST STATISTICS

To validate the optimization algorithm and the error

propagation model, an experiment is needed. This section

describes the experimental methodology for this validation.

6.1 Ideal Data Generators and Noise Model

Three building types, the cube box, the peak roof house, and

the hip roof house, appear frequently in the given sites. The

cube boxmodel contains six planes, 12 lines, and eight points.

Its point-on-plane relations and the point-on-line relations

are illustrated in Fig. 3. Its plane-angle-plane, line-angle-line,

and plane-angle-line relations are illustrated in Fig. 4. The

peak roof house model assumes a slated roof on a cube. This

model contains seven planes, 15 lines, and 10 points. Its

position relations are illustrated in Fig. 5 and its angle

relations are illustrated in Fig. 6. The hip roof house model

assumes a roof with slated sides and ends. It contains nine

planes, 17 lines, and 10 points. Its point-on-plane and point-

on-line relations are shown in Fig. 7. Its angle relations are

shown in Fig. 8. For amore detailed description of themodels

and corresponding constraints, see [23]. These three models

are chosen as our prototype models with unknown length,

location, and orientation parameters.
In the experiment, ideal data generators randomly

generate the ideal parameters for the prototype models

and produce the ideal 3D points.
Assume that a 3D coordinate system x-y-z is used. To

simulate the site model situation, the ground is assigned as

the plane z ¼ 0. Without losing generality, we assume that

the ideal model parameters determining the 3D positions of

the building vertices have uniform distributions. The center

of the bottom plane of a basic model is in a region defined

by ½�x0; x0Þ; ½�y0; y0Þ; ½�z0; z0Þ. The basic model is rotated

on the ground with a random angle 	 2 ½	0; 	1Þ.
The three length parameters for the cube box model are

denoted by a; b; c, with a0 � a < a1, b0 � b < b1, and

c0 � c < c1.
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In this experiment, the ranges of the parameters for the

cube model are set as follows:

The peak roof model uses four length parameters,

a; b; c; d, where a; b; c are same as those in cube model and

their ranges are the same. The height of the peak roof has

parameter d, with 10 � d � 20. The hip roof model requires

one more parameter e than the peak roof model. The length

of the roof edge is a� 2e, with 5 � e � 10.
For each building type, K ideal buildings are randomly

generated. Each one of these K buildings will be associated

with n experiments, where Gaussian random noise is added

to each of the 3D coordinates of the building and the

constrained optimization is used to estimate the building

vertices that satisfy the various geometric constraints. As a

result of these n experiments, n estimates of the building

parameters are produced. It is these n estimates on which

the hypothesis test statistics will be computed. We call the

procedure to determine these n test statistics a trial. Since

there are K ideal buildings for each ideal building type, we

can compute K test statistics. These K statistics can then be

used to test the hypothesis that their distribution is as the

statistical theory of the test says it should be.
The noise values are independently sampled from a

Gaussian distribution Nð0; 
2IÞ, where 
 is the standard

deviations of the random variables �x; �y; �z. We repeated

each experiment with 
 being set to 1.0, 2.0, or 3.0. The

validation results for all three different standard deviations

is similar. So, here, we just discuss the validation for the

standard deviation being equal to 3.0.K is set at 100. n is set

at 500 for the cube model and 700 for other models.

6.2 Statistical Test

At each trial, a sample of model parameters and corre-

sponding ideal 3D points is produced by the ideal data

generator. Let the ideal parameters be denoted by ~��. For

each ideal building instance having parameters ~��,

n independent perturbations f�Xi; i ¼ 1; . . . ; ng are gener-

ated from the noise model with distribution Nð0;�Þ. By
adding the perturbations to the ideal points, the perturbed

data set fX0
1; X

0
2; . . . ; X

0
ng is generated. For each of the

perturbed data fX0
1; X

0
2; . . . ; X

0
ng, an optimal solution �̂�i is

computed by solving

min�i
fðX0

i;�iÞ i ¼ 1; . . . ; n
subject to hð�iÞ ¼ 0:

Thus, we have n estimates f�̂�i; i ¼ 1; . . . ; ng.
Using (11), we can transform the input covariance

matrix through the error propagation matrix to the

output. If the linear model is valid, the estimated
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Fig. 7. Position relations in the hip roof model: (a) point-plane relations,

(b) point-line relations.



parameters f�̂�; i ¼ 1; . . . ; ng should be approximately
distributed as Nð~��; J�JT Þ.

Let ��̂�i denote �̂�i � ~��, i ¼ 1; . . . ; n. Let �0 ¼ 0 and

�0 ¼ J�JT . Under the linearized model, f��̂�i; i ¼
1; . . . ; ng have distribution Nð�0;�0Þ. Considering

f��̂�i; i ¼ 1; . . . ; ng as a random sample from a Gaussian

distribution Nð�;�Þ, we can perform any one of the five

hypothesis tests. Here, we just discuss our results on
hypothesis H5: � ¼ �0 and � ¼ �0. Results on the other

hypothesis tests are similar.
The significance level � is selected to be 0.05. Under the

null hypothesis, the computed statistics of the mean and

covariance tests have the null distributions. This can be

verified by using the Kolmogorov-Smirnov test (K-S test) on

the K test statistics generated from the K trials.

6.3 Range Space Analysis

The standard hypothesis test methods require that the

covariance matrix be positive definite. However, the output
covariance of a constrained optimization is generally

semipositive definite, precisely because of the constraints.

Theorem 1. Suppose that not all of the derivatives of the

constraint equations are equal to zero at the local minimum

point, then the propagated error covariance J�JT is singular.

The proof of the above theorem is provided in the

Appendix.
Toutilize the standardhypothesis technology,weproject a

semipositive definite matrix onto its range space. Suppose

that an n� n covariancematrix�0 has k nonzero eigenvalues
w1; . . . ; wk and the associated unit eigenvectors v1; . . . ; vk. A

basis of the range space of �0 can be composed by

B ¼ ðv1; . . . ; vnÞ:

Use B to perform the matrix transform as follows:

BT�0B ¼ �B ¼

w1 0 : : :
0 w2 0 : :
: : :
: : :
0 : : : wk

0
BBBB@

1
CCCCA:

Let B? be a basis matrix of the null space of matrix �0. It

is obvious that ðB;B?Þ is orthonormal. In the experiment,

we check whether ðB?ÞT�� has very small variances

(caused by round off errors and nonlinear items). If it is

true, we conduct the hypothesis test on variables BT��

with covariance matrix �B.
Due to the round-off error and nonlinear items, the zero

eigenvalues of matrix �0 may not be exactly zero. We use a

small threshold to distinguish the zero eigenvalues and the

and nonzero eigenvalues. In all our experiments, the

threshold is set to 10�6 times the maximum eigenvalue.
For the cube model, the range space of the output error

covariance matrix has seven dimensions. This can be

understood as follows: Consider a cube house whose faces

are all at right angles to each other. Count the number of

degrees of freedom. The size of a cube model is defined by

three independent parameters. The location of the model is

specified by three translation parameters in 3D space. In the

experiments, the normal vector of the cube roof is fixed to

the vertical direction. The only possible rotation is around

the vertical axis of the model. Thus, the total number of

independent parameters is seven. For the peak roof model,

the above analysis is similar, except that two more

parameters are needed to determine the roof height and

the ridge position. (In the partial model, we do not fix the

horizontal position of the roof ridge to the center of the

building.) Thus, the range space of the output covariance

matrix for the peak roof model has nine dimensions. The

hip roof model inherits all the parameters of the peak roof

model. It requires two more parameters to determine how

much of the ridge is being cut from each of the two ends

(they are assumed to be independent). These parameters

can be thought of as the relative starting and ending points

for the ridge. Thus, the range space of the output covariance

matrix for the hip roof model has 11 dimensions.

7 VALIDATION: COMPARING THEORY WITH

EXPERIMENTS

In this section, we show the experimental results on the cube

model, the peak roof model, and the hip roof model. An

example of the model estimation result is shown in Fig. 12.

7.1 Test of Cube Model with 
 ¼ 3:0

The theoretical and empirical null distribution of the five

test statistics for the cube model are shown in Fig. 9. The

standard deviation used was 
 ¼ 3:0. The x axis is the

statistic used in the test and the y axis represents 1� �,

where � is the significance level.
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Fig. 8. Angle relations in the hip roof model: (a) plane-angle-plane, (b) line-angle-line, (c) plane-angle-line.



The experimental trials were run multiple times and,

each time, the null hypothesis was either rejected or not

rejected. The results are summarized in Table 1a. The null

hypothesis is not rejected at a 0:05 significance level.

The K-S test was used to test whether the empirical and

theoretical distributions are similar. Results are shown in

Table 1b. In the K-S test, the value of the degrees of

freedom, p, is 7. None of the five test statistics distributions

fail the K-S test at a significance level of 0:05. Thus, the

optimization model and the error propagation model for

the cube model are validated.

7.2 Test of Peak Roof Model with 
 ¼ 3:0

The theoretical and empirical null distribution of the five

test statistics for the peak roof model are shown in Fig. 10.

The standard deviation used was 
 ¼ 3:0. The x axis is the

statistic used in the test and the y axis represents 1� �,

where � is the significance level.
The experimental trials were run multiple times and,

each, time the null hypothesis was either rejected or not

rejected. The results are summarized in Table 2a. The null

hypothesis is not rejected at a 0:05 significance level.
The K-S test was used to test whether the empirical and

theoretical null distributions are similar. Results are shown

in Table 2b. In the K-S test, the value of the degrees of

freedom, p, is 9. None of the five test statistics distributions

fail the K-S test at a significance level of 0:05. Thus, the

optimization model and the error propagation model for

the peak roof model are validated.
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Fig. 9. Null distribution of the five test statistics for the cube model at 
 ¼ 3. (a) Test mean with known variance. (b) Test mean with unknown

covariance. (C) Test covariance with known mean. (d) Test covariance with unknown mean. (e) Test mean and covariance.

TABLE 1
Cube Model: (a) Test Statistic Values for the Five Tests, (b) Kolmogorov-Smirnov Distribution Test



7.3 Test of Hip Roof Model with 
 ¼ 3:0

The theoretical and empirical null distribution of the five
test statistics for the hip roof model are shown in Fig. 11.
The standard deviation used was 
 ¼ 3:0. The x axis is the
statistic used in the test and the y axis represents 1� �,
where � is the significance level.

The experimental trials were run multiple times and,
each time, the null hypothesis was either rejected or not
rejected. The results are summarized in Table 3a. The null
hypothesis is not rejected at a 0:05 significance level.

The K-S test was used to test whether the empirical and
theoretical null distributions are similar. Results are shown
in Table 3b. In the K-S test, the value of the degrees of
freedom, p, is 11. None of the five test statistics distributions
fail the K-S test at a significance level of 0:05. Thus, the

optimization model and the error propagation model for

the hip roof model are validated.

8 DISCUSSION

We have described a methodology for testing software

systems that compute results that are statistical in nature.

The approach proposed is to theoretically derive the

statistical properties of the result and then compare it with

empirical distributions. There are several issues that need to

be addressed.
Since the error propagation methodology depends on

linearization of functions, if the input noise perturbations are

“large” with respect to the function behavior at the point

where the function is being evaluated, the output distribution
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Fig. 10. Null distributions of the five test statistics for the peak roof model at 
 ¼ 3. (a) Test mean with known variance. (b) Test mean with unknown

covariance. (c) Test covariance with known mean. (d) Test covariance with unknown mean. (e) Test mean and covariance.

TABLE 2
Peak Roof Model Results: (a) Test Statistic Values for the Five Tests, (b) Kolmogorov-Smirnov Distribution Test



will not be as predicted. This implies that statistical tests
of the output distribution will fail. Thus, if the software
fails the statistical test, the designer needs to check
whether the input noise variances are within reasonable
limits.

Another interesting issue in statistical hypothesis testing
is that if a test does not fail, one can only say that “we do not
have enough statistical evidence to reject the null hypoth-
esis.” That is, even if a test is not rejected, the software
implementation could be still faulty—our test just did not
detect it. However, if we have two different implementa-
tions and if the first test has a higher p-value than the
second test, one can say that the first test is a better
implementation than the second.

In some cases, there might be a submodule for which we
do not have a continuous mathematical characterization.

Thus, the standard error propagation is not possible.
However, one can empirically characterize the behavior of
such systems and still be able to compute the output
distributions of the entire system. In [21], a methodology
from the phychophysics literature was adopted to empiri-
cally characterize two computer vision algorithms.

9 SUMMARY

We described a statistical methodology to validate the
theoretical derivations and software that make up a large
system for estimating 3D positions of buildings vertices
based on the input data obtained from multi-image
photogrammetric resection calculations. Error propagation
allowed us to derive the null-distributions of various test
statistics of measurable quantities. These theoretically
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Fig. 11. Null distributions of the five test statistics for the hip roof model at 
 ¼ 3. (a) Test mean with known covariance. (b) Test mean with unknown

covariance. (c) Test covariance with known mean. (d) Test covariance with unknown mean. (e) Test mean and covariance.

TABLE 3
Hip Roof Model: (a) Test Statistic Values for the Five Tests, (b) Kolmorgorov-Smirnov Distribution Test



derived null-distributions allowed us to validate whether
the measurements in the implemented system followed the
theoretically derived distributions. The Kolmogorov-Smir-
nov test was performed to check if the empirical distribu-
tions and the theoretical distributions were close enough.
None of the empirically computed null distributions failed
the K-S test. Thus, we have confirmed that the theoretical
derivations of the null distributions are correct and the
software implementing the theory is also correct. The
software to perform the statistical tests has been made
publicly available.

APPENDIX

PROOF OF THEOREM 1

Proof. From the given condition, we know that the
derivative matrix H is not a zero matrix, i.e.,

H ¼

@h1

@�
�
�

@hr

@�

0
BB@

1
CCA 6¼ 0:

Left multiplying equation �� ¼ J�X with H, we get
H�� ¼ HJ�X. Because both ðX;��;��Þ and ðX þ
�X;�� þ�;�� þ��Þ are local minimum points of the
optimization, H�� ¼ 0. Hence, 0 ¼ HJ�X. Since the
formula holds for any �X, it implies that

0 ¼ HJ: ð12Þ

Now, we use this result to prove that J�JT is singular.
Left multiply J�JT with H and right multiply it with
HT . From (12), we have

HJ�JTHT ¼ 0�0:

Since H is not a zero matrix, J�JT must be singular. tu
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