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Gray-Scale Structuring Element Decomposition 
Octavia I. Camps, Member, IEEE, Tapas Kanungo, Student Member, IEEE, and Robert M. Haralick, Fellow, IEEE 

Abstruct- Efficient implementation of morphological opera- 
tions requires the decomposition of structuring elements into the 
dilation of smaller structuring elements. Zhuang and Haralick 
presented a search algorithm to find optimal decompositions of 
structuring elements in binary morphology. In this paper, we use 
the concepts of Top of a set and Umbra of a surface to extend 
this algorithm to find an optimal decomposition of any arbitrary 
gray-scale structuring element. 

I. INTRODUCTION 

HEN the structuring element used in a morphological W operation is larger than the largest element the hard- 
ware can handle in one stage, the structuring element must 
be decomposed into smaller structuring elements. Each of 
these elements has to be structured such that the hardware 
will be capable of handling it and such that the morphological 
composition is the given structuring element. 

A tree-search algorithm that finds an optimal decomposition 
for binary structuring elements was proposed in [ 11. All binary 
morphological operations are naturally extended to gray-scale 
imagery by using the Top and Umbra operations. In this paper, 
these ideas are used to extend the algorithm proposed in [l] 
for gray-scale structuring element decomposition. 

In the next section, the related literature on morphological 
structuring element decomposition is discussed. In Section 
111, the basic definitions and notation used through the paper 
are given. In addition, many known morphological relations 
that are used later in proving some propositions are stated. 
In the following section, the formal statement of the gray- 
scale structuring element decomposition problem is given. In 
Section V, the morphological relations given in Section I11 
are used to reduce the decomposition search space. The tree- 
search algorithm is described in Section VI, and in Section 
VII, an example to demonstrate the working of the algorithm 
is presented. 

11. RELATED WORK 

There are many decomposition algorithms existing in the 
literature, e.g., [1]-[SI. All the algorithms impose some re- 
striction on the shape of the structuring element. Zhuang 
and Haralick [ l ]  presented an algorithm for n-point decom- 
position of binary structuring elements. The decomposition 
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algorithm was a tree-search algorithm. The search space was 
reduced by using binary morphology constraints. Kanungo and 
Haralick [Z], [3 ]  and Xu [9] gave constant time algorithms 
for decomposition of convex binary structuring elements that 
have sides at orientations that are multiples of 45'. They 
expressed the decomposition as n-fold dilations of 13 prim- 
itive structuring elements, each of which fit into a 3 x 3 
neighborhood. Richardson and Shafer [SI gave some bounds 
on the structuring element decomposition problems. All the 
algorithms mentioned above were binary decomposition algo- 
rithms and, with the exception of [l], are not generalizable to 
nontrivial gray-scale structuring elements. Jones and Svalbe 
[lo] presented an algorithm for a basis decomposition of 
gray-scale morphological operations as opposed to a structural 
decomposition. In this approach, morphological filters are 
expressed as the supremum of erosions with the basis elements. 

The gray-scale structuring element decomposition problem 
has been attempted by many researchers by performing a 
threshold decomposition on the structuring element 151, [6]. 
Here, the gray-scale image and structuring elements are de- 
composed into multiple binary images, and each binary image 
is processed separately in parallel. All the binary results 
are finally stacked to reconstruct the gray-scale result of 
the morphological processing. Ritter and Gader [7] proposed 
image algebra techniques for parallel image processing, and 
Gader [ 111 gave algorithms for decomposing gray-scale struc- 
turing elements with rectangular support into horizontal and 
vertical structuring elements. Zhuang [4] gave an algorithm for 
decomposing a gray-scale structuring element as a threshold 
decomposition but with the restriction that each binary com- 
ponent of the threshold decomposition is center symmetric, 
digitally convex, and two-point decomposable. 

In this paper, we present a decomposition algorithm for 
an arbitrary gray-scale structuring element. Furthermore, we 
do not put any symmetry or convexity restriction on the 
structuring element as was done in other papers. 

111. PRELIMINARIES 
In this section, we provide the basic notation and defi- 

nitions used in this paper. We also provide some essential 
morphological relations that are used in propositions in the 
later sections. 

A. Gray-Scale Morphology 
For completeness, we begin by stating some definitions and 

propositions. An extended presentation of the definitions and 
the proof of the propositions in this subsection can be found 
in Haralick et al. [ 121. 
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First, we will provide the definitions of binary morphologi- 
cal operations: dilation and erosion. Next, we will then extend 
these definitions to gray-scale morphology. 

Dilation is the morphological transformation that combines 
two sets using vector addition of set elements. If A and B are 
sets in EN, the dilation of A by B is the set of all possible 
vector sums of pairs of elements: one coming from A and one 
coming from B. 

Definition I :  The dilution of A by B is denoted by A @ B 
and is defined by 

A@B = {c E EN 1 e =  a + b  for some a E A and b E B}. 

Erosion is the morphological dual of dilation. If A and B 
are sets in E N ,  then the erosion of A by B is the set of all 
elements of z for which z + b E A for every b E B. 

Definition 2: The erosion o f  A by B is denoted by A e B 
and is defined as 

4 e B = {z E E N  1 z + b E A for every b E B). 

The binary morphological operations of dilation, erosion, 
and opening will now be extended to gray-scale morphology 
by introducing the concept of the top surface of a set and the 
related concept of the umbra of a surface. 

Definition 3: Let A C E N  and F = {x E EN[ for some 
y E E, (z, y) E A}. The top or top surjiice of A, which is 
denoted by T[A] : F + E, is defined by 

T[AI(X) = max{yl(z,y) E A}. 

Dejinition 4: A set A EN x E is an umbra if and only 

Dejinition 5: Let F C E N  and f : F ---f E. The umbra of 
if (2, y) E A implies that ( z , z )  E A for every z 5 y. 

f ,  which is denoted by U [ f ] ,  U [ f ]  F x E,  is defined by 

The top of the umbra of a function f is the function f itself. 
Proposition I :  Let F C E N  and f : F 4 E. Then, 

Having defined the operations of taking the Top of a set 
and the Umbra of a surface, gray-scale dilation and erosion 
can be defined: 

De$nition 6: Let F ,  K C EN and f : F t E and 
k : K t E. The dilation of f by k is denoted by f e k ,  
f @ IC : F @ K + E and is defined by 

~ V [ f I l  = f .  

Dejinition 7: Let F ,  K 5 EN and f : F 4 E and 
k : K t E.  The erosion of f by k is denoted by f e k ,  
f 8 k : F e K 4 E and is defined by 

f e k = T [ U [ f ]  8 U [ k ] ] .  

Gray-scale dilation and erosion can be accomplished by 
using maximum and minimum operations. 

Proposition 2: Let f : F t E and k : K 4 E.  Then, 
f @ k : F @ K + E can be computed by 

( f  @ k>(x) = if(. - + k ( z > ) .  
Z E K  

Proposition 3: Let f : F 4 E and k : K t E. Then, 
f 8 k : F e K + E can be computed by 

( f  e k)(x) = min{f(z + z )  - IC(z)}. 
z E K  

Gray-scale opening is defined in an analogous way to 
opening in binary morphology. 

Dejnition 8: Let f : F -+ E and k : K t E. The opening 
of f by the structuring element IC is denoted by f o k and is 
defined by 

s o  k = ( f e  k )  CD k .  

The following proposition expresses an opening operation 
in terms of the max and min operations. These relations are 
computational forms of the opening operation. 

Proposition 4: Let F,  K C E N  and f F 4 E and 
k : K .--) E.  Then, f o k  : F o K  4 E and can be computed by 

Prooj? The proof follows easily from the definitions o€ 
erosion and dilation. Let R C EN and r : R t E such that 
T = f e k .  Thus, from the definition of erosion 

R = F e K  
~ ( 2 )  = min { f ( x  + U) - k(w)}. 

vEK 

Since f o k = ( f  e k )  CB k ,  and f e k = T ,  we have 

( f  O k)(zc) = ( r  @ k)(.) 
= y$, { T ( X  - U )  + k ( U ) } .  

z-t’€R 

Substituting for R and r ( z  - U )  we have, 

( f  O k)(z) = 

Thus, the proposition is proved. 

B. Translation in Gray-Scale Morphology 

To solve the decomposition problem, we need to define the 
translation of a gray-scale structuring element. In this section, 
we define the translation of a structuring element by a 1-point 
function and derive some useful properties. 

Dejinition 9: Let F C EN, f : F + E ,  G = { a }  C E N ,  
and g : G i E.  The translation of f by g is denoted by 
f g  : Fa ---f E and is defined by 

fg(.> = f ( x  - 0 )  + s(a> 
for every x E F, = {z E ENIz = (y + a )  for some y E E}.  

E N ,  
g : G + E ,  and (a ,g (a ) )  E EN+1. The gray-scale translation 
has the following properties: 

Consider F C: EN, f : F t E,  G = { a }  
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Proposition 5: W g l  = ( U [ f I ) ( c Y , g ( c y ) ) .  

Proof Let (z,y) E EN+’. The point (x,y) E 
( U [ f ] ) ( a , g ( m ) )  if and only if there exists ( U , V )  E U [ f ]  such 
that (x ,y)  = ( u , ~ )  + (a ,g(a) ) .  By definition of umbra 
( U ,  U) E U [ f ]  if and only if w 5 f ( u ) .  Then 

Y = + g ( a )  5 f(.) + s(a) = f(. - a )  + g ( a )  = fg(.). 

Hence, ( x , ~ )  E U [ f g ] .  
Proposition 6: ( w J [ f l l ) g  = T~(U[fI)(a,g(cy)) l .  

Proofi Let x E E N .  Then, by Propositions 5 and 1 

~[ (U[ f l ) ( cy ,g (a ) , I (4  = W[f,ll(4 
= f,(.) = (mJ[fll),(.). 

In the following proposition, we show that the translation 

Proposition 7: f g  = f 63 g .  
Proof: By definition of dilation, f @ g  = T [ U [ f ]  @U[g]] .  

A point (x ,y)  E U [ f ]  @ U[g] if and only if there exists 

of a function is equivalent to a dilation. 

(Z1,Yl) E U f ] ,  and ( Z 2 , Y Z )  E U[gl such that 

(Z,Y) = (Z1,Yl) + ( Z 2 , Y Z ) .  

However, (XI,YI) E U [ f ]  implies YI L f ( z l ) ,  and ( 2 2 , ~ 2 )  E 
U[g]  implies 2 2  = Q! and yz 5 g ( x 2 )  = g(a) .  Then 

Y = Y1 + Y2 
5 f(lt.1) + g(a)  
= f ( x  - a )  + g ( a )  

= f g ( x ) .  

Hence, by definition of Top 

(f @ gI(5.1 = max{+ 5 f(. - a)  + g ( a > }  
= f(. - a )  + dQI) 

= f g ( x ) .  

A useful relationship is that the dilation operation commutes 

Proposition 8: Let f : E N  + E,  and k : E N  ---f E. Then, 
with translation. 

f g  @ IC = (f  @ k)g. 
Proof: By definition of dilation 

f, @ k = mJ[f,l @ U[kll. 

By Proposition 6 

f g  63 k = T [ ( U [ f l  U[kI)(a&))l 
= (T[U[ f I  U [ W g  
= (f  @ k ) g .  

As in the case of dilations, the erosion operation also 

Proposition 9: Let f : E N  --f E,  and IC : E N  + E.  Then, 

Proo) The proof is analogous to the one for Proposition 
8. 

If a known function f has been translated by an unknown 
function g, then the function g can be recovered by performing 
an erosion. 

commutes with translation. 

fg e IC = (S 8 

Proposition 10: If F is finite, then f, 8 f = g. 
Prooj By Proposition 9, 

f, 8 f = (f 8 f),. 
From Proposition 8 and the definition of erosion, 

(f  0 f ) g  = (f  0 f )  @ 9 = 9. 

Iv. STATEMENT OF THE PROBLEM 

The gray-scale structuring element decomposition problem 
is formally stated as follows: 

Given a space E, a structuring element s with s : S + E ,  
S C E N ,  and an integer n, find the smallest integer M and 
the corresponding structuring elements hl ,  h 2 ,  . . . , h ~ ,  with 
hi ; IIi + E ,  H ,  E E N ,  and #Hi  5 n for a = l , . .  . ,111 
such that 

~ ( z )  = (hl 63 h 2  CE . . . h ~ ) ( x ) .  

In this paper, we will consider that the structuring element 
s is a discrete function defined in a discrete finite domain S .  

v. CONSTRAINING THE SEARCH SPACE 

The problem we solve in this section is to construct a 
decomposition of s : S --f E into hl ,  ha,. . . , h M  with 
hi : Hi ---f E for i = 1, . . . , M having the smallest M ,  if 
one exists, where each Hi has no more than n points. We also 
assume that the domain of s, which is S, is finite. 

To determine such a decomposition of s ,  if one exists, 
requires a combinatorial search process for the domains Hi 
and for the values of the h; functions at each point of their 
domains. Our algorithm limits the possible domains Hi and 
the possible values of the functions h; and thereby greatly 
reduces the search space. 

A. Translation Constraints 

The gray-scale structuring element decomposition is equiv- 
alent to one with fewer degrees of freedom, where all the 
structuring elements used in the decomposition contain the 
origin. 

E N ,  s = hl @ h 2  @ 
. . .  CE h M ,  with hi : Hi i E, Hi C E N ,  #H; 5 m for 
i = 1,. . . , M .  Then, there exist g : G + E ,  G = { a }  C: E N ,  

that we have the following: 

Proposition 11: Let s : S + E ,  S 

and j , ,  j,, . . . , j M ,  j ;  : Ji 7‘ E,Ji C: E N ,  i = 1,. . . , M such 

1) #Ji = #HZ f o r i  = 1, . . . ,  M .  
2) j i ( 0 )  = 0 for i = 1,. . . ,111. 
3) s = g e j 1  @ j Z C E . ’ . 6 3 j M .  
4) g = s e {jl @ j 2  63 ’ . . @ j M } .  

Proofi Let a; be such that h;(a;) 2 h;(x) for every 
z E Hi. Define ji = where gi : G; ---f E ,  G; = {a i } ,  
gi(cri) = h;(a;), and g;(x) = -gi(-x) .  Then, j i ( 0 )  = 
h;(O + ai)  - hi(ai) = 0. Note that with this definition hi 
and j ;  have the same number of points. 

Next, we will show that s = g @ j ,  63.72 @ . . . @ j,. Since 
j i  = (hi)gz.  by the definition of translation, we have that 
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h, = (jz),.. Therefore 

s = hl @ k2 G? . . . @ h M  1 

By Proposition 7 

@ @ 

= g CE (jl @ j 2  @ .  . ' @ j M )  

where 

g = (91 @ g2 €3 . . .  @ S M ) .  

Furthermore, by Proposition 10 

g = s 0 (jl @ j 2  @ . . . CB j M ) .  

. . .  

Proposition 11 in effect shows that the original problem 
can be reduced to one with fewer degrees of freedom. Since 
j i ( 0 )  = 0, there is one less unknown point to determine 
each j i  compared with the number of unknown points in 
the corresponding hi. Furthermore, the extra unknown g 
is determined without searching once all the ji have been 
determined. 

B. Domain and Functional Value Constraints 

The search for the decomposition elements j can be reduced 
by establishing constraints on their domains and functional 
values. These constraints are based on the fact that if j is an 
element of the decomposition of s ,  it must be true that s is 
open under j ,  i.e., s = s o j. This property follows directly 
from the following propositions: 

The opening of a set is antiextensive, i.e., the opening of a 
set A by a set B is always a subset of A. 

Proposition 12: Let A C E N  and B 2 E N .  Then, AoB 2 
A. 

Proof: Let a E A o B. Then, there exists an 2 E A e B 
and b E B such that a = x + b. However, x E A e B implies 
that for every y E B, z + y E A. Since b E B, IC + b E A, 
but a = x + b so that a E A. 

If a set is equal to the dilation of two sets, then it is open 
under either one of these sets. 

Proposition 13: Let A = B @I C. Then, A o C = A. 
Proof: Let a E A. Since A = B @ G, there exists a 

b E B and a c E C such that a = b + c, but for every x E B 
and c E C,  x + c E A. Since b E B, we must have, for every 
y E C, b + y E A. This implies that b E A 8 C and b E B 
imply a E (A 8 C) @ C. Hence, A C ( A  o C). By Proposition 
12, A o C 

Finally, if a gray-scale structuring element is equal to the 
dilation of two structuring elements, then it is open under either 
of these structuring elements. 

A. Thus, A o C = A. 

Proposition 14: Let s = a G? j .  Then, s = s o j .  
Proof: By definition of dilation, s(z) = T [ U [ a ]  @ 

U [ j ] ] ( x ) .  Taking the umbra at both sides, U[s]  = U[a]  @ U [ j ] .  
By Proposition 13, U [ s ]  = U[s]  o U [ j ] .  Then, s (x )  = 

1) Domain Constraints: In this section, it will be shown 
that the domains of the candidate structuring elements are 
made of points given by the difference of two points in the 

T[U[sl O Wll(2) = (3 O j ) ( x ) .  
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domain of the given structuring element s .  That is, any point 
t in the domain of a candidate structuring element J must be 
equal to the difference of two points 2 1  and 2 2  in the domain 
of the structuring element S. 

Proposition 15: Let S = S o J ,  0 E J ,  and t E J .  Then, 
there exists 5 1  and x2 in S such that t = x1 - x2. 

Proof: Consider t E J .  Since S = (S e J )  @ J ,  by 
definition of dilation, there exist 5 1  E S and xz in S 0 J 
such that 

IC1 = IC2 + t. 
By definition of erosion, xz+y E S for all y E J .  In particular, 
0 E J .  Thus, x2 E S, and 

t = 21 - 2 2  

with x1 and x2 belonging to S. 
2 )  Functional Value Constraints: The search for the de- 

composition elements j can be further reduced by using 
constraints on their functional values. Let J c E N ,  0 E J 
be the n-point domain of the decomposition element j. It can 
be shown that for every t in J ,  there exists x1 and x2 in S 
such that s(z1 +t) - s(x1)  2 j z ( t )  2 s(z2) - s(x2 - t) .  This 
relation can be used to reduce the search space by pruning 
out the candidates that do not satisfy this constraint. Next, we 
formally prove this relationship. 

Proposition 16: Let s : S 4 E be a gray-scale function 
with domain S E N ,  and let j : J .--) E be an n-point 
structuring element such that 0 E J C EN, and j(0) = 0. If 
s is open under j ,  s = s o j ,  then for each x E S, at least 
one of the following is true: 

1) 5 E S 8 J and j ( t )  5 s(z + t )  - s i x )  for each t E J ;  

2) there exists t E J such that x - t E S e J and 

Pro03 Consider x E S. Since s is open under j, we have 

and/or 

j ( t )  2 s(z) - s(Ic - t). 

4x1 = (3 O j ) ( Z )  

and from the definition of opening and Proposition 2, we have 

s(z) = max { ( s  0 j)(x - U )  + j(u)>. (1) 
u t J  

=-u€S'dJ 

From Proposition 3 

( s  e j)(x - U )  = min { s ( x  - U + U )  - j(.)} 
v E J  

and (1) can be rewritten as 

min {s(z - U + w) - j(w)} + j ( u )  

Let U ,  E J be the point where the maximum in the right-hand 
side of (1) is achieved. That is, let U, be a point in J such 
that x - U ,  E S e J and 
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Using (2) and (3), we get the following two constraints: 

s(z) 2 min {s(z - U + v) - j ( u ) }  + j ( u )  (4) 

( 5 )  

It can be seen that (4) does not provide any useful constraint 
since s(z) - j(u) = s(z - U + v) - j(w) for TI = U ,  and the 
relation a 2 min{bl,bz,. . . , a , .  . . , b n }  is a tautology, that 
is, it is true for all values of a and bl ,  . . . , b,. However, on 
rearranging the terms in (5) ,  we do get a useful constraint: 

s(x) - j(u,) 5 s(x - U ,  + v) - j ( v )  , for all v E J .  

We will consider two cases U ,  = 0 and U ,  # 0. 
Case Z (U ,  = 0, 5 E S 0 J ) :  Consider (6) for U ,  = 0. 

v E J  

for all U E J ,  z - U  E S e  J 

s(z) = min {s(z - U ,  + v) - j (v )}  + j(u,). 
v E J  

(6)  

Using the fact that j ( 0 )  = 0, we have 

j(v) 4 s(z + U )  - s(z) , for all 'U E J .  

Thus, we have proved the first condition. Note that if z $Z' 
S e J ,  this condition is automatically not valid since the term 
corresponding to U = 0 is not a term in the maximization 
function in (I). Further, note that since S = S o J and 0 E J ,  
there must exist at least one z E S such that z E S e J .  

Case II (U, # 0, x - U ,  E S 8 J) :  Consider (6) for v = 0. 
Since j ( 0 )  = 0, we have 

.(E) - s(x - U,) L j(u0). 

Thus, we have proved the second condition. Note that if 
z - U ,  $Z' S 8 J ,  this condition is automatically not valid. 

Finally, since S = (S 8 J )  @I J ,  for every t E J ,  there exist 
z E S such that z - t E S 0 J .  Thus, the above constraints 
can be applied for every t E J .  

In the Appendix, we provide an example to illustrate how 
the constraints are used to detect not decomposable structuring 
elements. 

C. A Morphological Opening Constraint 

Assume that we know that s is not open under the struc- 
turing element a. Then, the result in this section shows that 
s will not be open under any structuring element k such that 
k = U@ b, where b is any other structuring element. This result 
is useful in look-ahead pruning of the search space. 

Proposition 17: If S = S o  ( A  @ B) ,  then S = S o  A. 
For a proof, see Haralick et al. [12]. 
Proposition 18: If s = s o (a @ b ) ,  then s = s o a. 

Pro08 By hypothesis, s(z) = T [ U [ s ]  o U [ a  CE b]](z).  
Then, by Proposition 17, U[s]  = U [ s ]  o (U[a]  @ U [ b ] )  = 
U[s]  o U [ a ] .  Therefore, s(z) = T [ U [ s ]  o U [ a ] ( z ) ,  and s(z) = 
(s O a>(.). 

VI. A TREE-SEARCH ALGORITHM 

The algorithm to accomplish the decomposition of a gray- 
scale structuring element s consists of a breadth-first tree 
search with forward checking. This algorithm is a general- 
ization of the algorithm orooosed in Ill.  

j ,  (x) j ,  (x) j ,  (4 j, (x) 

Fig. 1. Decomposition of a gray-scale structuring element. The structuring 
element s is decomposed ab Y = g @ j -  1 @ j , @ j l  @j3, where g( 1)  = 5 is a 
one point structuring element representing a translation, and j, are two-point 
gray-scale structuring elements, each containing the origin (0,O). 

A node i in the tree corresponds to a candidate structuring 
element ji(x). Each node i also has associated with it the 
following entities: 

1) a list of all its possible descendents Li 
2) the partial decomposition so far ki = j l  @ j 2 . 1 .  @ ji 

corresponding to its dilation with all its predecessor 
nodes 

3) the undecomposed part or residue ti = s 0 ki .  
The root of the tree is initialized such that L, = 

j , ,  j , ,  . . . , j, is the set of all possible structuring elements, 
k,  = {0}, and to = s. 

The following considerations are used in reducing the tree 
search: 

Since dilation is commutative, for a node associated 
with j q ,  there is only need to consider the possible 
descendents j,+l, j q + 2 ,  . . . , j J .  

Forward checking can be used to control the growth 
of the tree. We will show that if at some level 1, 
j , , j , ,  . . . , j ,  have been determined, then the only j ' s  
that need to be considered for any node in the subtree 
below are those that satisfy 

(tl e j )  @ j CE kl = s 

where t l  = s 0 kl, and kl = j l  @ j~ @ . . . @ j l .  A proof 
of this is given in Appendix B. 
Proposition 18 shows that if s is not open under kl @ j ,  
then it is not open under k ,  @ j ,  where k ,  is the partial 
decomposition at a node in the subtree below 1. This 
condition can be used as a forward check to prune the 
search tree. 
If the hardware has a constraint on neighborhood size, 
then all the candidate j i ' s  that do not satisfy this 
constraint at a particular node can be eliminated. An 
example of this type of constraint is when the domain J ,  
of the function j ,  has to fit inside a 3 x 3 neighborhood. 

The algorithm proceeds as follows. Before opening a node 
in the tree, a forward check is made through the possible 
descendents of the node. The checking eliminates those struc- 
turing elements in Li that do not satisfv the forward check 
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constraints. Once the forward checking is finished, the nodes 
corresponding to the elements in Li that survived the test are 
opened. Any decomposition found at the lower level of the 
tree is an optimal decomposition. A decomposition is found 
when the number of elements in the domain of the residue t 
is one, and it corresponds to the 1-point function g. 

VII. EXAMPLE 

In the following, we give two examples illustrating the use 
of the algorithm to decompose gray-scale structuring elements 
into sets of two and three points. 

A. Tnlo-Point Decomposition 

decomposed, where 
Let s : S + E be the gray-scale structuring element to be 

S = {O, 1 ,2 ,3 ,4 ,5 ,6}  

as shown in Fig. 1. 
There are 12 candidate domains for the structuring elements 

j i  that satisfy the domain constraint derived in Proposition 15: 

51 = (0, 1} 
52 = (0,2 j 

J-1 = (0, -1} 
5-2  = (0, -a} 

(8) 53 = {0 ,3}  
54 = {0,4} 5-4  ( 0 ,  -4). 
J ,  = {0,5} 
J6 = (0,6) 

J-3 = (0, - 3 )  

J-5 = (0, -5) 
J-6 = ( 0 ,  -6) 

The erosions of S with the domains Ji, i = -6, .  . . , 6  are 
given by 

S e J 1 = { 0 , 1 , 2 , 3 ; 4 , 5 }  S 8 J - 1 = ( 1 ; 2 , 3 , 4 , 5 , 6 }  
S 8 J 2  = {0,1,2,3,4) 
s 8 J3 = (0,1,2,3} 
S e Jg = {0,1, a} 
5’ 8 J5  = (0, I} 
s 8 J6 = (0) 

S 8 5-2 = { 2 , 3 ;  4,5, S }  
S 0 J - 3  = (3,4,5,6} 
S 0 J-g = {4,5, 6} 
S 0 J - 5  = {5,6} 
S 8 J--6 = (6). 

(9) 

The possible functional values of the structuring elements are 
determined by using the constraints derived in Proposition 16. 
Each structuring element j i ( t )  has to satisfy either one or both 
of the following conditions: 

1) 
2) (x - t )  E S 8 Ji and j i ( t )  L six) - s(z - t ) ,  

1) j i ( 0 )  = 0 and 
2) ji(z) 5 0 for all z E Ji. 
Table I lists the values of s(z + t )  - s(z) for z E S 8 J; 

and s(x) - s(x - t )  for (z - t )  E S 8 Ji for Ji, i = -6,. . . ,6.  
Entries of the form “-” correspond to elements z that do not 
satisfy the necessary condition 2 E S 8 J; or z - t E S e Ji. 

E S 8 Ji and j i ( t )  5 s(z + t )  - s(z) or 

and the additional constraints 

From these values, the following constraints are found: 
1) Since the columns for J ~ , J ~ , J ~ , J - ~ , J - , F , ,  and J-6 

have rows where neither of the differences defined 
above are defined, s is not opened under any structuring 
element having one of these domains. 

2) The functional constmints for the rest of the domains 
are found by applying 
a) z E S 8 Ji and j i ( t )  5 s(z + t )  - s(x) or 
b) (IC - t )  E S 8 Ji and ji(t) 2 s(x) - s(z - t )  
where s(z + t )  - s(z) and s(z) - s(z - t )  are given in 
the respective columns and rejecting all the functional 
values that are not compatible with at least one of the 
two conditions. For example, looking at the column 
corresponding to J1, we have the following constraints: 
a) II: = 0: jl(1) 5 4; thus, reject jl(1) > 4; 
b) IC = 1: j~ (1 )  5 -1 or jl(1) 2 4; thus, reject 

c) z = 2: jl(l) 5 -1 or j l (1)  2 -1; thus, j l (1)  is 

d) z = 3: j l ( l )  5 1 or jl(1) 2 -1; thus, j l (1 )  i s  not 

e) IC = 4: j l ( l )  5 -1 or jl(1) >_ I; thus, reject 

f) LC = 5: jl(1) 5 -1 or j l (1 )  2 -1; thus, jl(1) is not 

g) 3: = 6: jl(l) 2 -1; thus, reject jl(1) < -1. 
The summary of all the constraints for the remain- 
ing structuring elements are illustrated in Fig. 2(a)-(f), 
where shaded regions correspond to the values that 
j i ( t )  cannot take if s(z) is open under each of them. 
From these diagrams, we see that s(x) is not open 
under any structuring element with domain J z ,  5-2 and 
J-3. Furthermore, s(z) is open under the following 
structuring elements: 

-1 < j l (1)  < 4; 

not restricted by this condition; 

restricted from this condition; 

-1 < j l (1)  < 1; 

restricted by this condition; and 

j l (0)  = 0 jl(1) = -1 
&(0) = 0 j 3 ( 3 )  = -1 (10) 
j-l(O) = 0 j-1(-1) = -4. 

Fig. 3 shows the tree created by the algorithm. The optimal 
decomposition of s s = g @jPl @ j 1  @ j 1  @ j 3 ,  g(1) = 5 is 
shown in Fig. 1. 

B. Three-Point Decomposition 

decomposed using three-point gray-scale elements, where 
Let s : S --f E be the gray-scale structuring element to be 

S = (0, 1 ,2 ,3 ,4}  

and 

4 0 )  4 1 )  4 2 )  43)  4 4 )  
(1 1) 

7 9 13 11 10 

as shown in Fig. 4. 
There are 28 possible differences to form the domains of 

the candidate structuring elements. The possible functional 
values of the structuring elements are determined by using the 
constraints derived in Proposition 15, resulting in a total of 378 



CAMPS et al.: GRAY-SCALE STRUCTURING ELEMENT DECOMPOSITION 

z 
Z E S  
0 
1 
2 
3 
4 
5 
6 

2 

Z E S  
0 
1 
2 
3 
4 
5 
6 

z 
1: E s 
0 
1 
2 
3 
4 
5 
6 

x 
G E S 

0 
1 
2 
3 
4 
5 
6 

~ 

117 

Ji = (0,1) J2 = {O, 2) 53  = { 0 , 3 )  
s(z + 1) - s(2) s(z) - s(z - 1) s(z + 2) - s(z) s(z) - s(z - 2) s(z + 3) - s(z) s(z)  - s(z - 3) 

Z E S ~ J ~  ( z - i ) ~ s e J ~  z ~ s e ~ ~  ( z - 2 ) ~ S e . h  z c S e J 3  ( z - 3 ) ~ S e J s  
- 2 3 4 

-1 -1 4 -2 
-1 -1 0 3 -1 
1 -1 0 -2 -1 2 

-1 -1 1 -2 0 
-1 0 -1 -1 
-1 -2 -1 

- - 
- - 
- 

- 
- - 
- - - 

5 4  = {0,4} J5 = {O, 5) J6 = {o, 6) 
4-4-4 

z ~ s e ~ ~  ( z - 4 ) ~ S e J ~  Z E S ~ J ~  ( ~ - 5 ) ~ s e J ~  z € S 8 J 6  ( ~ - 6 ) ~ s e J ~  
- 1 - 2 

-3 
- 3 

-2 
-2 

- - - - 
- - - - - 
- - - - - - 
- - - - 3 

- -2 - 
-2 

- 
- - 2 

-3 1 - - - 
J-1= (0, -1) J-1 = (0, -2) J-3 = (0, - 3 )  

’ s(z - 1) - s(z) s(2) - s(2 + 1) s(2 - 2) - s(z) s(2) - s(2 + 2) s(2 - 3) - s(2) s(2) - s ( 2  + 3) 
Z E s 8 1-1 (Z + 1) E s J-1 2 E s 8 J-2 (3 + 2) E s 8 5-2 (2 + 3) E s 8 5-3 

-2  -3 -4 
1 2 -4 1 
1 1 1 -3  0 

1 -1 2 0 -2 1 
-1 1 0 2 1 

1 1 1 0 
1 2 1 

Z E s 8 J-3 
- - - 
- - 
- 

- 
- - 
- - - 

J-4 = (0, -4) J-5 = (0, -5) J-6 = (0, -6) 
S(Z - 4) - ~ ( 2 )  

z E S e 5 - 4  

~ ( z )  - ~ ( 2  + 4) 
(Z + 4) E S 8 5-4 

-3  
2 
2 

s(2 - 5) - s(z) 
z E S 8 J-5 

s ( ~ )  - S(Z + 5) 
(Z + 5) E S 8 J - 5  

-2  
3 

S(Z - 6) - S(Z) 

2 E S €3 J -6  

~ ( 2 )  - S(Z + 6) 
(2 + 6) E S 8 5-6 

-1 - - - 
- - - - 
- - - - - 
- - - - - - 
- - - - - -3 

-2 2 
2 3 - -1 

- - - - 
- - 

TABLE I 
VALUES OF .s(z + t )  - s(z) FOR z E s 0 J ,  AND S(Z) - s(z - t )  FOR (z - t )  E s 8 J ,  FOR J, ,  I = - 6 , .  . . , 6 .  ENTRIES OF THE FORM 

“-” CORRESPOND TO ELEMENTS IC THAT DO NOT SATISFY THE NECESSARY CONDITION Z E s 8 Jz OR Z - t E s 8 J ,  

possible elements. However, when these candidate elements 
are examined using forward checking, only the two elements 
jl and j~ given in (12) survive the test: 

(12) j1(-2) = -6 jl(-l) = -4 j l (0)  = 0 
j z ( 0 )  = 0 j 2 ( 1 )  = -2 jz(2)  = -3. 

Fig. 5 shows the tree created by the algorithm. The optimal 
decomposition of s, s = g @ jl @ j,, g(2) = 13, is shown 
in Fig. 4. 

VIII. CONCLUSION 
The gray-scale structuring element decomposition problem 

can be solved in a similar way to the binary structuring 
element decomposition problem. In this paper, we showed 
that the decomposition problem can be solved by simply 
searching among a finite set of values. The essence of the 
algorithm is the same as the essence of the binary problem: 

1) The domain of the structuring elements participating in the 
decomposition must have members that are the differences 
between members of the domain of the given structuring 
element and 2) that it is necessary for the undecomposed 
part of the structuring element to be morphologically open 
with respect to any structuring element participating in its 
further decomposition. When the decomposition is constrained 
to two-point decomposition, the search space can be further 
reduced by utilizing the morphological properties of a two- 
point decomposition. 

APPENDIX A 
USING THE CONSTRAINTS: TWO-POINT 

NOT DECOMPOSABLE EXAMPLE 
In this Appendix, we give an example where we use the two- 

point decomposition constraints developed in Section V-B-2. 
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-4 -9 -2 -1 0 1 2 3 4 

-4 -3 -2 -1 0 1 2 3 4 

(f)j-3(-3) constraints. 

Fig. 2. Functional values constraints. The shaded areas correspond to values that grayscale structuring elements ji in the decomposition can not take. In 
each table, along the rows we choose a point z in the domain, S,  of the original structuring, s, and along the columns we give the values j, , the structuring 
element in the decomposition can not take up. For example, in (a) we see that if we choose, 1 = 2 E S, jl(1) $Z {-1, 0,1,2,3,4}.  

In the example problem, the gray-scale structuring element s 
is not open under the structuring element j for any gray-value 
assignment for elements in the domain of j .  Thus, j cannot be a 
structuring element in the decomposition of s. We then modify 

s so that it is open under j for a set of gray-value assignments 
for the elements in the domain of j and then show that the 
modified j can be the element in the decomposition of s. In 
Section V-B-2, we proved that if s = s o j ,  then for all IC E S, 
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L1 = jlJ2 

L1* = j2 

L2 = j2 

L2* = (} 
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I I LO = jlJ3,j-I 

L1 I jl,j3,j-I L2 = jl,j3 

L2' = jlJ3 

L7' E (1 

LlO I j3 

L11' = {] i--' 
Solution Found 

Fig. 3. Tree search for a two-point decomposition of the gray-scale struc- 
turing element s(z) shown in Fig. 1. At the root of the tree, there are only 
three candidate structuring elements: j-l,j~, and 33 .  The optimal solution 
g ej-1 @jl $j3 is found when a breath-first search produces a residue 
with a single point (9). 

fB 

s(x) 

Fig. 4. Three-point decomposition of a gray-scale structuring element. The 
structuring element s is decomposed as s = g @ j l  fB j z ,  where g(2) = 13 is a 
one-point structuring element representing a translation, and j i  are three-point 
gray-scale structuring elements each containing the origin (0,O). 

at least one of the following is true: 
1) x E S 8 J and j ( t )  5 s(z + t )  - s(z); or 
2) z - t E S 8 J and j ( t )  2 s(x) - s(z - t ) .  
Note: If x S €3 J for a particular 5 ,  condition 1 is 

automatically not true, and similarly, if x-t $ S e J ,  condition 
2 is not true. Furthermore, if for a particular x E S we find 
that both the conditions are not met, it must be the case that 
s # s o j .  Let us now consider an example. Let S = { 4, 0, t }  
and s(-t)  = 5 ,  s(0) = 3, and s ( t )  = 2. Let the domain 
structuring element j be J = { O , t }  and j (0 )  = 0, j ( t )  5 0. 
We want to find out the range of possible values that j ( t )  
can have when s is open under j ,  i.e., s = s o j .  Next, we 
will construct the constraints for j ( t ) .  Since S 8 J = {-t, O} 
and x E S can take up three possible values, we have the 
following three sets of constraints. 

Case z = -t: Since x - t $ S 8 J = {-t, O} for x = -t, 
the second condition is not met. The first condition gives US 

the constraint j ( t )  5 s(0) - s ( - t )  = 3 - 5 = -2. Thus 

j ( t )  5 -2. 

Casex  = 0: Since x,x - t E S e  J = { - t , O )  for x = 0, 
both the conditions are met. The first condition gives us the 
constraint j ( t )  5 s ( t )  - s(0) = 2 - 3 = -1. The second 
condition gives us the constraintj(t) _> s(O)-s(- t )  = 3-5  = 
-2. Thus, we have 

j ( t )  5 -1 or j ( t )  2 -2. 

Case x = t: Since z 6 S 8 J = {-t, 0} for II: = t ,  the 
first condition is not met. The second condition gives us the 
constraint j ( t )  2 s ( t )  - s(0) = 2 - 3 = -1. Thus 

j ( t )  2 -1. (14) 

We see that constraint (13) contradicts constraint (14). Thus, 
we conclude that there is no j with domain J = ( 0 , t )  such 
that s = s o j .  Now, in the previous example, if we make 
s ( t )  = 1 and let all other values remain the same, we will get 
the following constraints: 

j ( t )  5 -2 (15) 
(16) 

j ( t )  2 -2. (17) 
j ( t )  5 -2 or j ( t )  5 -2 

The only solution to the constraints is j ( t )  = -2. Thus, 
s = s o j if j ( t )  = -2. 

APPENDIX B 
PROOF FOR THE LOOK-AHEAD STEP 

Proposition 19: If at some level I of the decomposition tree 
j,, j,, . . . , j l  have been determined, then the only j E Ll that 
need to be considered for any node in the subtree below are 
those that satisfy 

( t l  ej) @.j e kl = s 

where t l  = s e kl, and kl = jl @ j 2  @ . . .  G3jz 
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Proof Assume that s = g @ j l  @ . . . @ j ,  with M > I 
and that we need to find $+I. The structuring element s can 
be rewritten as 

Then, by Proposition 14, s must be open under IC1 dilated by 
the function j ,  which is the candidate to be selected as j l + ~ :  

It is also true that this condition holds for the level 1 considered 
and for any node in the subtree below: Let m > 1. Then, for 
j to be considered as a child of a node at level m, it must 
satisfy s = s o ( I C ,  @ j ) ,  but I C ,  @ j = (ICl @ j )  @ (j l+l @ 
j l + Z  6? . . ’  @ j M j .  
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