# Gray-Scale Structuring Element Decomposition

Octavia I. Camps, Member, IEEE, Tapas Kanungo, Student Member, IEEE, and Robert M. Haralick, Fellow, IEEE

Abstract— Efficient implementation of morphological operations requires the decomposition of structuring elements into the dilation of smaller structuring elements. Zhuang and Haralick presented a search algorithm to find optimal decompositions of structuring elements in binary morphology. In this paper, we use the concepts of Top of a set and Umbra of a surface to extend this algorithm to find an optimal decomposition of any arbitrary gray-scale structuring element.

### I. INTRODUCTION

WHEN the structuring element used in a morphological operation is larger than the largest element the hardware can handle in one stage, the structuring element must be decomposed into smaller structuring elements. Each of these elements has to be structured such that the hardware will be capable of handling it and such that the morphological composition is the given structuring element.

A tree-search algorithm that finds an optimal decomposition for binary structuring elements was proposed in [1]. All binary morphological operations are naturally extended to gray-scale imagery by using the Top and Umbra operations. In this paper, these ideas are used to extend the algorithm proposed in [1] for gray-scale structuring element decomposition.

In the next section, the related literature on morphological structuring element decomposition is discussed. In Section III, the basic definitions and notation used through the paper are given. In addition, many known morphological relations that are used later in proving some propositions are stated. In the following section, the formal statement of the gray-scale structuring element decomposition problem is given. In Section V, the morphological relations given in Section III are used to reduce the decomposition search space. The tree-search algorithm is described in Section VI, and in Section VII, an example to demonstrate the working of the algorithm is presented.

## II. RELATED WORK

There are many decomposition algorithms existing in the literature, e.g., [1]–[8]. All the algorithms impose some restriction on the shape of the structuring element. Zhuang and Haralick [1] presented an algorithm for *n*-point decomposition of binary structuring elements. The decomposition

Manuscript received December 15, 1993; revised March 7, 1995. The associate editor coordinating the review of this paper and approving it for publication was Prof. Rama Chellappa.

O. I. Camps is with the Department of Electrical Engineering and the Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA.

T. Kanungo and R. M. Haralick are with the Department of Electrical Engineering, University of Washington, Seattle, WA 98195 USA.

Publisher Item Identifier S 1057-7149(96)00130-3.

algorithm was a tree-search algorithm. The search space was reduced by using binary morphology constraints. Kanungo and Haralick [2], [3] and Xu [9] gave constant time algorithms for decomposition of convex binary structuring elements that have sides at orientations that are multiples of  $45^{\circ}$ . They expressed the decomposition as n-fold dilations of 13 primitive structuring elements, each of which fit into a  $3 \times 3$ neighborhood. Richardson and Shafer [8] gave some bounds on the structuring element decomposition problems. All the algorithms mentioned above were binary decomposition algorithms and, with the exception of [1], are not generalizable to nontrivial gray-scale structuring elements. Jones and Svalbe [10] presented an algorithm for a basis decomposition of gray-scale morphological operations as opposed to a structural decomposition. In this approach, morphological filters are expressed as the supremum of erosions with the basis elements.

The gray-scale structuring element decomposition problem has been attempted by many researchers by performing a threshold decomposition on the structuring element [5], [6]. Here, the gray-scale image and structuring elements are decomposed into multiple binary images, and each binary image is processed separately in parallel. All the binary results are finally stacked to reconstruct the gray-scale result of the morphological processing. Ritter and Gader [7] proposed image algebra techniques for parallel image processing, and Gader [11] gave algorithms for decomposing gray-scale structuring elements with rectangular support into horizontal and vertical structuring elements. Zhuang [4] gave an algorithm for decomposing a gray-scale structuring element as a threshold decomposition but with the restriction that each binary component of the threshold decomposition is center symmetric, digitally convex, and two-point decomposable.

In this paper, we present a decomposition algorithm for an arbitrary gray-scale structuring element. Furthermore, we do not put any symmetry or convexity restriction on the structuring element as was done in other papers.

#### **III. PRELIMINARIES**

In this section, we provide the basic notation and definitions used in this paper. We also provide some essential morphological relations that are used in propositions in the later sections.

#### A. Gray-Scale Morphology

For completeness, we begin by stating some definitions and propositions. An extended presentation of the definitions and the proof of the propositions in this subsection can be found in Haralick *et al.* [12].

First, we will provide the definitions of binary morphological operations: dilation and erosion. Next, we will then extend these definitions to gray-scale morphology.

Dilation is the morphological transformation that combines two sets using vector addition of set elements. If A and B are sets in  $E^N$ , the dilation of A by B is the set of all possible vector sums of pairs of elements: one coming from A and one coming from B.

Definition 1: The dilation of A by B is denoted by  $A \oplus B$ and is defined by

$$A \oplus B = \{ c \in E^N \mid c = a + b \text{ for some } a \in A \text{ and } b \in B \}.$$

Erosion is the morphological dual of dilation. If A and B are sets in  $E^N$ , then the erosion of A by B is the set of all elements of x for which  $x + b \in A$  for every  $b \in B$ .

Definition 2: The erosion of A by B is denoted by  $A \ominus B$ and is defined as

$$A \ominus B = \{ x \in E^N \mid x + b \in A \text{ for every } b \in B \}.$$

The binary morphological operations of dilation, erosion, and opening will now be extended to gray-scale morphology by introducing the concept of the top surface of a set and the related concept of the umbra of a surface.

Definition 3: Let  $A \subseteq E^N$  and  $F = \{x \in E^N | \text{ for some } y \in E, (x, y) \in A\}$ . The top or top surface of A, which is denoted by  $T[A] : F \to E$ , is defined by

$$T[A](x) = \max\{y | (x, y) \in A\}.$$

Definition 4: A set  $A \subseteq E^N \times E$  is an umbra if and only if  $(x, y) \in A$  implies that  $(x, z) \in A$  for every  $z \leq y$ .

Definition 5: Let  $F \subseteq E^N$  and  $f: F \to E$ . The umbra of f, which is denoted by  $U[f], U[f] \subseteq F \times E$ , is defined by

$$U[f] = \{(x, y) \in F \times E | y \le f(x)\}.$$

The top of the umbra of a function f is the function f itself. *Proposition 1:* Let  $F \subseteq E^N$  and  $f : F \to E$ . Then, T[U[f]] = f.

Having defined the operations of taking the Top of a set and the Umbra of a surface, gray-scale dilation and erosion can be defined:

Definition 6: Let  $F, K \subseteq E^N$  and  $f : F \to E$  and  $k : K \to E$ . The dilation of f by k is denoted by  $f \oplus k$ ,  $f \oplus k : F \oplus K \to E$  and is defined by

$$f \oplus k = T[U[f] \oplus U[k]].$$

Definition 7: Let  $F, K \subseteq E^N$  and  $f : F \to E$  and  $k : K \to E$ . The erosion of f by k is denoted by  $f \ominus k$ ,  $f \ominus k : F \ominus K \to E$  and is defined by

$$f \ominus k = T[U[f] \ominus U[k]].$$

Gray-scale dilation and erosion can be accomplished by using maximum and minimum operations.

*Proposition 2:* Let  $f : F \to E$  and  $k : K \to E$ . Then,  $f \oplus k : F \oplus K \to E$  can be computed by

$$(f \oplus k)(x) = \max_{x - z \in F \atop z \in K} \left\{ f(x - z) + k(z) \right\}$$

Proposition 3: Let  $f : F \to E$  and  $k : K \to E$ . Then,  $f \ominus k : F \ominus K \to E$  can be computed by

$$(f \ominus k)(x) = \min_{z \in K} \{ f(x+z) - k(z) \}.$$

Gray-scale opening is defined in an analogous way to opening in binary morphology.

Definition 8: Let  $f: F \to E$  and  $k: K \to E$ . The opening of f by the structuring element k is denoted by  $f \circ k$  and is defined by

$$f \circ k = (f \ominus k) \oplus k.$$

The following proposition expresses an opening operation in terms of the max and min operations. These relations are computational forms of the opening operation.

Proposition 4: Let  $F, K \subseteq E^N$  and  $f : F \to E$  and  $k : K \to E$ . Then,  $f \circ k : F \circ K \to E$  and can be computed by  $(f \circ k)(x) = \max \left\{ \min_{i \in V} \{f(x - u + v) - k(v)\} + k(u) \} \right\}.$ 

$$(f \circ k)(x) = \max_{\substack{u \in K \\ x-u \in F \ominus K}} \left\{ \min_{v \in K} \left\{ f(x-u+v) - k(v) \right\} + k(u) \right\}.$$

*Proof:* The proof follows easily from the definitions of erosion and dilation. Let  $R \subseteq E^N$  and  $r: R \to E$  such that  $r = f \ominus k$ . Thus, from the definition of erosion

$$R = F \ominus K$$
  
$$r(x) = \min_{v \in K} \{f(x+v) - k(v)\}.$$

Since  $f \circ k = (f \ominus k) \oplus k$ , and  $f \ominus k = r$ , we have

$$(f \circ k)(x) = (r \oplus k)(x)$$
$$= \max_{\substack{u \in K \\ x-u \in R}} \{r(x-u) + k(u)\}.$$

Substituting for R and r(x - u) we have,

$$(f \circ k)(x) =$$

$$\max_{\substack{u \in K \\ x-u \in F \ominus K}} \left\{ \min_{v \in K} \left\{ f(x-u+v) - k(v) \right\} + k(u) \right\}.$$

Thus, the proposition is proved.

#### B. Translation in Gray-Scale Morphology

To solve the decomposition problem, we need to define the translation of a gray-scale structuring element. In this section, we define the translation of a structuring element by a 1-point function and derive some useful properties.

Definition 9: Let  $F \subseteq E^N$ ,  $f: F \to E$ ,  $G = \{\alpha\} \subseteq E^N$ , and  $g: G \to E$ . The translation of f by g is denoted by  $f_g: F_\alpha \to E$  and is defined by

$$f_q(x) = f(x - \alpha) + g(\alpha)$$

for every  $x \in F_{\alpha} = \{x \in E^{N} | x = (y + \alpha) \text{ for some } y \in F\}.$ Consider  $F \subseteq E^{N}, f : F \to E, G = \{\alpha\} \subseteq E^{N},$ 

 $g: G \to E$ , and  $(\alpha, g(\alpha)) \in E^{N+1}$ . The gray-scale translation has the following properties:

CAMPS et al.: GRAY-SCALE STRUCTURING ELEMENT DECOMPOSITION

Proposition 5:  $U[f_g] = (U[f])_{(\alpha,g(\alpha))}$ .

**Proof:** Let  $(x,y) \in E^{N+1}$ . The point  $(x,y) \in (U[f])_{(\alpha,g(\alpha))}$  if and only if there exists  $(u,v) \in U[f]$  such that  $(x,y) = (u,v) + (\alpha,g(\alpha))$ . By definition of umbra  $(u,v) \in U[f]$  if and only if  $v \leq f(u)$ . Then

$$y = v + g(\alpha) \le f(u) + g(\alpha) = f(x - \alpha) + g(\alpha) = f_g(x).$$

Hence,  $(x, y) \in U[f_g]$ . *Proposition 6:*  $(T[U[f]])_g = T[(U[f])_{(\alpha,g(\alpha))}]$ . *Proof:* Let  $x \in E^N$ . Then, by Propositions 5 and 1

$$T[(U[f])_{(\alpha,g(\alpha))}](x) = T[U[f_g]](x)$$
  
=  $f_q(x) = (T[U[f]])_q(x).$ 

In the following proposition, we show that the translation of a function is equivalent to a dilation.

Proposition 7:  $f_g = f \oplus g$ .

2

**Proof:** By definition of dilation,  $f \oplus g = T[U[f] \oplus U[g]]$ . A point  $(x, y) \in U[f] \oplus U[g]$  if and only if there exists  $(x_1, y_1) \in U[f]$ , and  $(x_2, y_2) \in U[g]$  such that

$$(x, y) = (x_1, y_1) + (x_2, y_2).$$

However,  $(x_1, y_1) \in U[f]$  implies  $y_1 \leq f(x_1)$ , and  $(x_2, y_2) \in U[g]$  implies  $x_2 = \alpha$  and  $y_2 \leq g(x_2) = g(\alpha)$ . Then

$$y = y_1 + y_2$$
  

$$\leq f(x_1) + g(\alpha)$$
  

$$= f(x - \alpha) + g(\alpha)$$
  

$$= f_q(x).$$

Hence, by definition of Top

$$(f \oplus g)(x) = \max\{z | z \le f(x - \alpha) + g(\alpha)\}\$$
  
=  $f(x - \alpha) + g(\alpha)$   
=  $f_g(x)$ .

A useful relationship is that the dilation operation commutes with translation.

Proposition 8: Let  $f: E^N \to E$ , and  $k: E^N \to E$ . Then,  $f_g \oplus k = (f \oplus k)_g$ .

Proof: By definition of dilation

$$f_g \oplus k = T[U[f_g] \oplus U[k]].$$

By Proposition 6

$$\begin{split} f_g \oplus k &= T[(U[f] \oplus U[k])_{(\alpha,g(\alpha))}] \\ &= (T[U[f] \oplus U[k]])_g \\ &= (f \oplus k)_g. \end{split}$$

As in the case of dilations, the erosion operation also commutes with translation.

Proposition 9: Let  $f: E^N \to E$ , and  $k: E^N \to E$ . Then,  $f_g \ominus k = (f \ominus k)_g$ .

*Proof:* The proof is analogous to the one for Proposition 8.

If a known function f has been translated by an unknown function g, then the function g can be recovered by performing an erosion.

Proposition 10: If F is finite, then  $f_g \ominus f = g$ . Proof: By Proposition 9,

$$f_g \ominus f = (f \ominus f)_g.$$

From Proposition 8 and the definition of erosion,

$$(f \ominus f)_g = (f \ominus f) \oplus g = g.$$

### IV. STATEMENT OF THE PROBLEM

The gray-scale structuring element decomposition problem is formally stated as follows:

Given a space E, a structuring element s with  $s: S \to E$ ,  $S \subseteq E^N$ , and an integer n, find the smallest integer M and the corresponding structuring elements  $h_1, h_2, \ldots, h_M$ , with  $h_i: \Pi_i \to E, H_i \subseteq E^N$ , and  $\#H_i \leq n$  for  $i = 1, \ldots, M$ such that

$$s(x) = (h_1 \oplus h_2 \oplus \cdots \oplus h_M)(x).$$

In this paper, we will consider that the structuring element s is a discrete function defined in a discrete finite domain S.

#### V. CONSTRAINING THE SEARCH SPACE

The problem we solve in this section is to construct a decomposition of  $s : S \to E$  into  $h_1, h_2, \ldots, h_M$  with  $h_i : H_i \to E$  for  $i = 1, \ldots, M$  having the smallest M, if one exists, where each  $H_i$  has no more than n points. We also assume that the domain of s, which is S, is finite.

To determine such a decomposition of s, if one exists, requires a combinatorial search process for the domains  $H_i$  and for the values of the  $h_i$  functions at each point of their domains. Our algorithm limits the possible domains  $H_i$  and the possible values of the functions  $h_i$  and thereby greatly reduces the search space.

## A. Translation Constraints

The gray-scale structuring element decomposition is equivalent to one with fewer degrees of freedom, where all the structuring elements used in the decomposition contain the origin.

**Proposition 11:** Let  $s: S \to E$ ,  $S \subseteq E^N$ ,  $s = h_1 \oplus h_2 \oplus \cdots \oplus h_M$ , with  $h_i: H_i \to E$ ,  $H_i \subseteq E^N$ ,  $\#H_i \leq m$  for  $i = 1, \ldots, M$ . Then, there exist  $g: G \to E$ ,  $G = \{\alpha\} \subseteq E^N$ , and  $j_1, j_2, \ldots, j_M$ ,  $j_i: J_i \to E, J_i \subseteq E^N$ ,  $i = 1, \ldots, M$  such that we have the following:

- 1)  $\#J_i = \#H_i$  for i = 1, ..., M.
- 2)  $j_i(0) = 0$  for i = 1, ..., M.
- 3)  $s = g \oplus j_1 \oplus j_2 \oplus \cdots \oplus j_M$ .
- 4)  $g = s \ominus \{j_1 \oplus j_2 \oplus \cdots \oplus j_M\}.$

**Proof:** Let  $\alpha_i$  be such that  $h_i(\alpha_i) \ge h_i(x)$  for every  $x \in H_i$ . Define  $j_i = (h_i)_{\overline{g_i}}$ , where  $g_i : G_i \to E$ ,  $G_i = \{\alpha_i\}$ ,  $g_i(\alpha_i) = h_i(\alpha_i)$ , and  $\check{g_i}(x) = -g_i(-x)$ . Then,  $j_i(0) = h_i(0 + \alpha_i) - h_i(\alpha_i) = 0$ . Note that with this definition  $h_i$  and  $j_i$  have the same number of points.

Next, we will show that  $s = g \oplus j_1 \oplus j_2 \oplus \cdots \oplus j_M$ . Since  $j_i = (h_i)_{a_i}$ , by the definition of translation, we have that

114

 $h_i = (j_i)_{g_i}$ . Therefore

$$s = h_1 \oplus h_2 \oplus \cdots \oplus h_M = (j_1)_{g_1} \oplus (j_2)_{g_2} \oplus \cdots \oplus (j_M)_{g_M}.$$

By Proposition 7

$$s = g \oplus (j_1 \oplus j_2 \oplus \cdots \oplus j_M)$$

where

$$g = (g_1 \oplus g_2 \oplus \cdots \oplus g_M).$$

Furthermore, by Proposition 10

$$g = s \ominus (j_1 \oplus j_2 \oplus \cdots \oplus j_M).$$

Proposition 11 in effect shows that the original problem can be reduced to one with fewer degrees of freedom. Since  $j_i(0) = 0$ , there is one less unknown point to determine each  $j_i$  compared with the number of unknown points in the corresponding  $h_i$ . Furthermore, the extra unknown gis determined without searching once all the  $j_i$  have been determined.

## B. Domain and Functional Value Constraints

The search for the decomposition elements j can be reduced by establishing constraints on their domains and functional values. These constraints are based on the fact that if j is an element of the decomposition of s, it must be true that s is open under j, i.e.,  $s = s \circ j$ . This property follows directly from the following propositions:

The opening of a set is *antiextensive*, i.e., the opening of a set A by a set B is always a subset of A.

Proposition 12: Let  $A \subseteq E^N$  and  $B \subseteq E^N$ . Then,  $A \circ B \subseteq A$ .

*Proof:* Let  $a \in A \circ B$ . Then, there exists an  $x \in A \ominus B$ and  $b \in B$  such that a = x + b. However,  $x \in A \ominus B$  implies that for every  $y \in B$ ,  $x + y \in A$ . Since  $b \in B$ ,  $x + b \in A$ , but a = x + b so that  $a \in A$ .

If a set is equal to the dilation of two sets, then it is open under either one of these sets.

Proposition 13: Let  $A = B \oplus C$ . Then,  $A \circ C = A$ .

*Proof:* Let  $a \in A$ . Since  $A = B \oplus C$ , there exists a  $b \in B$  and a  $c \in C$  such that a = b + c, but for every  $x \in B$  and  $c \in C$ ,  $x + c \in A$ . Since  $b \in B$ , we must have, for every  $y \in C$ ,  $b + y \in A$ . This implies that  $b \in A \ominus C$  and  $b \in B$  imply  $a \in (A \ominus C) \oplus C$ . Hence,  $A \subseteq (A \circ C)$ . By Proposition 12,  $A \circ C \subseteq A$ . Thus,  $A \circ C = A$ .

Finally, if a gray-scale structuring element is equal to the dilation of two structuring elements, then it is open under either of these structuring elements.

Proposition 14: Let  $s = a \oplus j$ . Then,  $s = s \circ j$ .

*Proof:* By definition of dilation,  $s(x) = T[U[a] \oplus U[j]](x)$ . Taking the umbra at both sides,  $U[s] = U[a] \oplus U[j]$ . By Proposition 13,  $U[s] = U[s] \circ U[j]$ . Then,  $s(x) = T[U[s] \circ U[j]](x) = (s \circ j)(x)$ .

1) Domain Constraints: In this section, it will be shown that the domains of the candidate structuring elements are made of points given by the difference of two points in the domain of the given structuring element s. That is, any point t in the domain of a candidate structuring element J must be equal to the difference of two points  $x_1$  and  $x_2$  in the domain of the structuring element S.

Proposition 15: Let  $S = S \circ J$ ,  $0 \in J$ , and  $t \in J$ . Then, there exists  $x_1$  and  $x_2$  in S such that  $t = x_1 - x_2$ .

*Proof:* Consider  $t \in J$ . Since  $S = (S \ominus J) \oplus J$ , by definition of dilation, there exist  $x_1 \in S$  and  $x_2$  in  $S \ominus J$  such that

$$x_1 = x_2 + t.$$

By definition of erosion,  $x_2+y \in S$  for all  $y \in J$ . In particular,  $0 \in J$ . Thus,  $x_2 \in S$ , and

$$t = x_1 - x_2$$

with  $x_1$  and  $x_2$  belonging to S.

2) Functional Value Constraints: The search for the decomposition elements j can be further reduced by using constraints on their functional values. Let  $J \,\subset E^N$ ,  $0 \in J$ be the *n*-point domain of the decomposition element j. It can be shown that for every t in J, there exists  $x_1$  and  $x_2$  in Ssuch that  $s(x_1 + t) - s(x_1) \ge j_i(t) \ge s(x_2) - s(x_2 - t)$ . This relation can be used to reduce the search space by pruning out the candidates that do not satisfy this constraint. Next, we formally prove this relationship.

**Proposition 16:** Let  $s: S \to E$  be a gray-scale function with domain  $S \subseteq E^N$ , and let  $j: J \to E$  be an *n*-point structuring element such that  $0 \in J \subseteq E^N$ , and j(0) = 0. If s is open under  $j, s = s \circ j$ , then for each  $x \in S$ , at least one of the following is true:

- 1)  $x \in S \ominus J$  and  $j(t) \leq s(x+t) s(x)$  for each  $t \in J$ ; and/or
- 2) there exists  $t \in J$  such that  $x t \in S \ominus J$  and  $j(t) \ge s(x) s(x t)$ .

*Proof:* Consider  $x \in S$ . Since s is open under j, we have  $s(x) = (s \circ j)(x)$ 

and from the definition of opening and Proposition 2, we have

$$s(x) = \max_{\substack{u \in J \\ x - u \in S \ominus J}} \{ (s \ominus j)(x - u) + j(u) \}.$$
 (1)

From Proposition 3

$$(s \ominus j)(x-u) = \min_{v \in I} \left\{ s(x-u+v) - j(v) \right\}$$

and (1) can be rewritten as

$$s(x) = \max_{\substack{u \in J \\ x-u \in S \ominus J}} \left\{ \min_{v \in J} \left\{ s(x-u+v) - j(v) \right\} + j(u) \right\}.$$
(2)

Let  $u_o \in J$  be the point where the maximum in the right-hand side of (1) is achieved. That is, let  $u_o$  be a point in J such that  $x - u_o \in S \ominus J$  and

$$s(x) = (s \ominus j)(x - u_o) + j(u_o) = \max_{\substack{u \in J \\ x - u \in S \ominus J}} \{(s \ominus j)(x - u) + j(u)\}.$$
 (3)

CAMPS et al.: GRAY-SCALE STRUCTURING ELEMENT DECOMPOSITION

Using (2) and (3), we get the following two constraints:

$$s(x) \ge \min_{v \in J} \left\{ s(x - u + v) - j(v) \right\} + j(u)$$
for all  $u \in J$   $x - u \in S \ominus J$ 

$$(4)$$

$$s(x) = \min_{v \in I} \left\{ s(x - u_o + v) - j(v) \right\} + j(u_o).$$
 (5)

It can be seen that (4) does not provide any useful constraint since s(x) - j(u) = s(x - u + v) - j(v) for v = u, and the relation  $a \ge \min\{b_1, b_2, \dots, a, \dots, b_n\}$  is a tautology, that is, it is true for all values of a and  $b_1, \dots, b_n$ . However, on rearranging the terms in (5), we do get a useful constraint:

$$s(x) - j(u_o) \le s(x - u_o + v) - j(v) \text{, for all } v \in J.$$
 (6)

We will consider two cases  $u_o = 0$  and  $u_o \neq 0$ .

Case I ( $u_o = 0, x \in S \ominus J$ ): Consider (6) for  $u_o = 0$ . Using the fact that j(0) = 0, we have

$$j(v) \leq s(x+v) - s(x)$$
, for all  $v \in J$ 

Thus, we have proved the first condition. Note that if  $x \notin S \ominus J$ , this condition is automatically not valid since the term corresponding to u = 0 is not a term in the maximization function in (1). Further, note that since  $S = S \circ J$  and  $0 \in J$ , there must exist at least one  $x \in S$  such that  $x \in S \ominus J$ .

Case II  $(u_o \neq 0, x - u_o \in S \ominus J)$ : Consider (6) for v = 0. Since j(0) = 0, we have

$$s(x) - s(x - u_o) \le j(u_o)$$

Thus, we have proved the second condition. Note that if  $x - u_o \notin S \ominus J$ , this condition is automatically not valid.

Finally, since  $S = (S \ominus J) \oplus J$ , for every  $t \in J$ , there exist  $x \in S$  such that  $x - t \in S \ominus J$ . Thus, the above constraints can be applied for every  $t \in J$ .

In the Appendix, we provide an example to illustrate how the constraints are used to detect not decomposable structuring elements.

### C. A Morphological Opening Constraint

Assume that we know that s is not open under the structuring element a. Then, the result in this section shows that s will not be open under any structuring element k such that  $k = a \oplus b$ , where b is any other structuring element. This result is useful in look-ahead pruning of the search space.

Proposition 17: If  $S = S \circ (A \oplus B)$ , then  $S = S \circ A$ . For a proof, see Haralick *et al.* [12].

*Proposition 18:* If  $s = s \circ (a \oplus b)$ , then  $s = s \circ a$ .

*Proof:* By hypothesis,  $s(x) = T[U[s] \circ U[a \oplus b]](x)$ . Then, by Proposition 17,  $U[s] = U[s] \circ (U[a] \oplus U[b]) = U[s] \circ U[a]$ . Therefore,  $s(x) = T[U[s] \circ U[a](x)$ , and  $s(x) = (s \circ a)(x)$ .

## VI. A TREE-SEARCH ALGORITHM

The algorithm to accomplish the decomposition of a grayscale structuring element s consists of a breadth-first tree search with forward checking. This algorithm is a generalization of the algorithm proposed in [1].



Fig. 1. Decomposition of a gray-scale structuring element. The structuring element *s* is decomposed as  $s = g \oplus j_{-1} \oplus j_1 \oplus j_1 \oplus j_3$ , where g(1) = 5 is a one point structuring element representing a translation, and  $j_i$  are two-point gray-scale structuring elements, each containing the origin (0,0).

A node *i* in the tree corresponds to a candidate structuring element  $j_i(x)$ . Each node *i* also has associated with it the following entities:

- 1) a list of all its possible descendents  $L_i$
- 2) the partial decomposition so far  $k_i = j_1 \oplus j_2 \cdots \oplus j_i$ corresponding to its dilation with all its predecessor nodes
- 3) the undecomposed part or residue  $t_i = s \ominus k_i$ .

The root of the tree is initialized such that  $L_o = j_1, j_2, \ldots, j_M$  is the set of all possible structuring elements,  $k_o = \{0\}$ , and  $t_o = s$ .

The following considerations are used in reducing the tree search:

- 1) Since dilation is commutative, for a node associated with  $j_q$ , there is only need to consider the possible descendents  $j_{q+1}, j_{q+2}, \ldots, j_J$ .
- 2) Forward checking can be used to control the growth of the tree. We will show that if at some level l,  $j_1, j_2, \ldots, j_l$  have been determined, then the only j's that need to be considered for any node in the subtree below are those that satisfy

$$(t_l \ominus j) \oplus j \oplus k_l = s$$

where  $t_l = s \ominus k_l$ , and  $k_l = j_1 \oplus j_2 \oplus \cdots \oplus j_l$ . A proof of this is given in Appendix B.

- 3) Proposition 18 shows that if s is not open under k<sub>l</sub> ⊕ j, then it is not open under k<sub>m</sub> ⊕ j, where k<sub>m</sub> is the partial decomposition at a node in the subtree below l. This condition can be used as a forward check to prune the search tree.
- 4) If the hardware has a constraint on neighborhood size, then all the candidate  $j_i$ 's that do not satisfy this constraint at a particular node can be eliminated. An example of this type of constraint is when the domain  $J_i$ of the function  $j_i$  has to fit inside a  $3 \times 3$  neighborhood.

The algorithm proceeds as follows. Before opening a node in the tree, a forward check is made through the possible descendents of the node. The checking eliminates those structuring elements in  $L_i$  that do not satisfy the forward check constraints. Once the forward checking is finished, the nodes corresponding to the elements in  $L_i$  that survived the test are opened. Any decomposition found at the lower level of the tree is an optimal decomposition. A decomposition is found when the number of elements in the domain of the residue t is one, and it corresponds to the 1-point function g.

## VII. EXAMPLE

In the following, we give two examples illustrating the use of the algorithm to decompose gray-scale structuring elements into sets of two and three points.

## A. Two-Point Decomposition

Let  $s: S \to E$  be the gray-scale structuring element to be decomposed, where

$$S = \{0, 1, 2, 3, 4, 5, 6\}$$

and

as shown in Fig. 1.

There are 12 candidate domains for the structuring elements  $j_i$  that satisfy the domain constraint derived in Proposition 15:

$$J_{1} = \{0, 1\} \qquad J_{-1} = \{0, -1\} 
J_{2} = \{0, 2\} \qquad J_{-2} = \{0, -2\} 
J_{3} = \{0, 3\} \qquad J_{-3} = \{0, -3\} 
J_{4} = \{0, 4\} \qquad J_{-4} = \{0, -4\} 
J_{5} = \{0, 5\} \qquad J_{-5} = \{0, -5\} 
J_{6} = \{0, 6\} \qquad J_{-6} = \{0, -6\}$$
(8)

The erosions of S with the domains  $J_i$ ,  $i = -6, \ldots, 6$  are given by

$$\begin{split} S &\ominus J_1 = \{0, 1, 2, 3, 4, 5\} & S \ominus J_{-1} = \{1, 2, 3, 4, 5, 6\} \\ S &\ominus J_2 = \{0, 1, 2, 3, 4\} & S \ominus J_{-2} = \{2, 3, 4, 5, 6\} \\ S &\ominus J_3 = \{0, 1, 2, 3\} & S \ominus J_{-3} = \{3, 4, 5, 6\} \\ S &\ominus J_4 = \{0, 1, 2\} & S \ominus J_{-4} = \{4, 5, 6\} \\ S &\ominus J_5 = \{0, 1\} & S \ominus J_{-5} = \{5, 6\} \\ S &\ominus J_6 = \{0\} & S \ominus J_{-6} = \{6\}. \end{split}$$

The possible functional values of the structuring elements are determined by using the constraints derived in Proposition 16. Each structuring element  $j_i(t)$  has to satisfy either one or both of the following conditions:

1) 
$$x \in S \ominus J_i$$
 and  $j_i(t) \le s(x+t) - s(x)$  or  
2)  $(x-t) \in S \ominus J_i$  and  $j_i(t) \ge s(x) - s(x-t)$ ,

and the additional constraints

- 1)  $j_i(0) = 0$  and
- 2)  $j_i(x) \leq 0$  for all  $x \in J_i$ .

Table I lists the values of s(x + t) - s(x) for  $x \in S \ominus J_i$ and s(x) - s(x - t) for  $(x - t) \in S \ominus J_i$  for  $J_i$ ,  $i = -6, \ldots, 6$ . Entries of the form "---" correspond to elements x that do not satisfy the necessary condition  $x \in S \ominus J_i$  or  $x - t \in S \ominus J_i$ . From these values, the following constraints are found:

- 1) Since the columns for  $J_4, J_5, J_6, J_{-4}, J_{-5}$ , and  $J_{-6}$  have rows where neither of the differences defined above are defined, s is not opened under any structuring element having one of these domains.
- 2) The functional constraints for the rest of the domains are found by applying
  - a)  $x \in S \ominus J_i$  and  $j_i(t) \leq s(x+t) s(x)$  or

b)  $(x-t) \in S \ominus J_i$  and  $j_i(t) \ge s(x) - s(x-t)$ 

where s(x + t) - s(x) and s(x) - s(x - t) are given in the respective columns and rejecting all the functional values that are not compatible with at least one of the two conditions. For example, looking at the column corresponding to  $J_1$ , we have the following constraints:

- a) x = 0:  $j_1(1) \le 4$ ; thus, reject  $j_1(1) > 4$ ;
- b) x = 1:  $j_1(1) \le -1$  or  $j_1(1) \ge 4$ ; thus, reject  $-1 < j_1(1) < 4$ ;
- c) x = 2:  $j_1(1) \le -1$  or  $j_1(1) \ge -1$ ; thus,  $j_1(1)$  is not restricted by this condition;
- d) x = 3:  $j_1(1) \le 1$  or  $j_1(1) \ge -1$ ; thus,  $j_1(1)$  is not restricted from this condition;
- e) x = 4:  $j_1(1) \le -1$  or  $j_1(1) \ge 1$ ; thus, reject  $-1 < j_1(1) < 1$ ;
- f) x = 5:  $j_1(1) \le -1$  or  $j_1(1) \ge -1$ ; thus,  $j_1(1)$  is not restricted by this condition; and
- g) x = 6:  $j_1(1) \ge -1$ ; thus, reject  $j_1(1) < -1$ .

The summary of all the constraints for the remaining structuring elements are illustrated in Fig. 2(a)–(f), where shaded regions correspond to the values that  $j_i(t)$  cannot take if s(x) is open under each of them. From these diagrams, we see that s(x) is not open under any structuring element with domain  $J_2$ ,  $J_{-2}$  and  $J_{-3}$ . Furthermore, s(x) is open under the following structuring elements:

$$\begin{aligned} j_1(0) &= 0 & j_1(1) = -1 \\ j_3(0) &= 0 & j_3(3) = -1 \\ j_{-1}(0) &= 0 & j_{-1}(-1) = -4. \end{aligned}$$
 (10)

Fig. 3 shows the tree created by the algorithm. The optimal decomposition of  $s \ s = g \oplus j_{-1} \oplus j_1 \oplus j_1 \oplus j_3$ , g(1) = 5 is shown in Fig. 1.

## B. Three-Point Decomposition

Let  $s: S \to E$  be the gray-scale structuring element to be decomposed using three-point gray-scale elements, where

$$S = \{0, 1, 2, 3, 4\}$$

as shown in Fig. 4.

There are 28 possible differences to form the domains of the candidate structuring elements. The possible functional values of the structuring elements are determined by using the constraints derived in Proposition 15, resulting in a total of 378

| TABLE I                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Values of $s(x + t) - s(x)$ for $x \in S \ominus J_i$ and $s(x) - s(x - t)$ for $(x - t) \in S \ominus J_i$ for $J_i$ , $I = -6, \dots, 6$ . Entries of the Form |
| "—" Correspond to Elements $x$ that Do Not Satisfy the Necessary Condition $x \in S \ominus J_i$ or $x - t \in S \ominus J_i$                                    |

|                                                                                                                                                 | $J_1 = \{0, 1\}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                             | $J_2 = \{0, 2\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $J_3 = \{0, 3\}$                                                                                                                                                                                    |                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x                                                                                                                                               | s(x+1) - s(x)                                                                                                                                                                                                                           | s(x) - s(x - 1)                                                                                                                                                                                                             | s(x+2) - s(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s(x) - s(x - 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s(x+3) - s(x)                                                                                                                                                                                       | s(x) - s(x - 3)                                                                                                                                                           |
| mes                                                                                                                                             | $\pi \in S \cap L$                                                                                                                                                                                                                      | $(n-1) \in S \cap L$                                                                                                                                                                                                        | 2650 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(n-2) \subset S \cap L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     | $(\pi - 3) \in S \cap I_{\alpha}$                                                                                                                                         |
|                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             | 20002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(2-2) \in 0 \cup 02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00003                                                                                                                                                                                               | (2 5) 25 ( 53                                                                                                                                                             |
| U                                                                                                                                               | 4                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                   | _                                                                                                                                                                         |
| 1                                                                                                                                               | -1                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                           | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                  | —                                                                                                                                                                         |
| 2                                                                                                                                               | -1                                                                                                                                                                                                                                      | -1                                                                                                                                                                                                                          | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1                                                                                                                                                                                                  | —                                                                                                                                                                         |
| 3                                                                                                                                               | 1                                                                                                                                                                                                                                       | -1                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                                                                                                                                                                                  | 2                                                                                                                                                                         |
| 4                                                                                                                                               | -1                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                           | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     | -1                                                                                                                                                                        |
| 5                                                                                                                                               | -1                                                                                                                                                                                                                                      | -1                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     | -1                                                                                                                                                                        |
| 6                                                                                                                                               |                                                                                                                                                                                                                                         | _1                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | -1                                                                                                                                                                        |
|                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                           |
| $J_4 = \{0, 4\}$                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             | $J_5 = \{0, 5\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $J_6 = \{0, 6\}$                                                                                                                                                                                    |                                                                                                                                                                           |
| x                                                                                                                                               | s(x+4)-s(x)                                                                                                                                                                                                                             | s(x) - s(x-4)                                                                                                                                                                                                               | s(x+5)-s(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s(x)-s(x-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s(x+6)-s(x)                                                                                                                                                                                         | s(x) - s(x - 6)                                                                                                                                                           |
| $x \in S$                                                                                                                                       | $x \in S \ominus J_4$                                                                                                                                                                                                                   | $(x-4) \in S \ominus J_4$                                                                                                                                                                                                   | $x \in S \ominus J_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(x-5)\in S\ominus J_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $x \in S \ominus J_6$                                                                                                                                                                               | $(x-6)\in S\ominus J_6$                                                                                                                                                   |
| 0                                                                                                                                               | 3                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                   |                                                                                                                                                                           |
| 1                                                                                                                                               | -2                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                           | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                   |                                                                                                                                                                           |
| 2                                                                                                                                               | -2                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     | _                                                                                                                                                                         |
| 3                                                                                                                                               | _                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                   |                                                                                                                                                                           |
| 4                                                                                                                                               |                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                           |
| 5                                                                                                                                               |                                                                                                                                                                                                                                         | -2                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                   |                                                                                                                                                                           |
| 6                                                                                                                                               |                                                                                                                                                                                                                                         | _2                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | 1                                                                                                                                                                         |
|                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                   |                                                                                                                                                                           |
|                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                           |
|                                                                                                                                                 | $J_{-1} =$                                                                                                                                                                                                                              | $\{0, -1\}$                                                                                                                                                                                                                 | J <sub>-2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\{0, -2\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J <sub>-3</sub> =                                                                                                                                                                                   | <pre>{0, −3}</pre>                                                                                                                                                        |
| x                                                                                                                                               | $\frac{J_{-1}}{s(x-1)-s(x)}$                                                                                                                                                                                                            | $= {0, -1} {s(x) - s(x + 1)}$                                                                                                                                                                                               | $\frac{J_{-2}}{s(x-2)-s(x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= \{0, -2\}$<br>s(x) - s(x+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{J_{-3}}{s(x-3)-s(x)}$                                                                                                                                                                        | $= {0, -3}  s(x) - s(x + 3)$                                                                                                                                              |
| $egin{array}{c} x \ x \in S \end{array}$                                                                                                        | $ \begin{array}{c} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \end{array} $                                                                                                                                                    | $  \frac{\{0,-1\}}{s(x) - s(x+1)} \\ (x+1) \in S \ominus J_{-1} $                                                                                                                                                           | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \end{array}$                                                                                                                  | $ \frac{\overline{\{0,-3\}}}{s(x) - s(x+3)} \\ (x+3) \in S \ominus J_{-3} $                                                                                               |
| $\begin{array}{c} x \\ x \in S \\ 0 \end{array}$                                                                                                | $ \begin{vmatrix} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ - \end{vmatrix} $                                                                                                                                              |                                                                                                                                                                                                                             | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \end{array} $                                                                                                      | $ \frac{s \{0, -3\}}{s(x) - s(x+3)} \\ (x+3) \in S \ominus J_{-3} \\ -2 $                                                                                                 |
| $\begin{array}{c} x \\ x \in S \\ 0 \\ 1 \end{array}$                                                                                           | $ \begin{vmatrix} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline \\ -4 \end{vmatrix} $                                                                                                                                   | $ \begin{array}{c} = \{0, -1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \end{array} $                                                                                                        | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ - \\ - \\ - \\ - \\ \end{array} $                                                                                         | $ \frac{s \{0, -3\}}{s(x) - s(x+3)} \\ \frac{(x+3) \in S \ominus J_{-3}}{-2} \\ 1 $                                                                                       |
| $ \begin{array}{c} x\\x\in S\\0\\1\\2\end{array} $                                                                                              | $ \begin{array}{c} J_{-1} = \\ \hline s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline - \\ -4 \\ 1 \end{array} $                                                                                                                      | $ \begin{array}{c} \{0,-1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \end{array} $                                                                                                      | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ - \\ -3 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} \{0,-2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                                 | $ \frac{\{0, -3\}}{s(x) - s(x+3)} \\ \frac{(x+3) \in S \ominus J_{-3}}{-2} \\ 1 \\ 1 $                                                                                    |
| $ \begin{array}{c} x\\x\in S\\0\\1\\2\\3\end{array} $                                                                                           | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     -4 \\     1 \\     1 \end{array} $                                                                                      | $ \begin{array}{c} \{0,-1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \end{array} $                                                                                                | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ -3 \\ 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} \{0,-2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline - \\ - \\ -2 \end{array} $                                                                                         | $ \frac{\{0, -3\}}{s(x) - s(x+3)} \\ \frac{(x+3) \in S \ominus J_{-3}}{-2} \\ 1 \\ 1 \\ 1 $                                                                               |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $                                                                          | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     -4 \\     1 \\     1 \\     -1 \end{array} $                                                                            | $   \begin{array}{r} \{0, -1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \end{array} $                                                                                | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline - \\ - \\ - \\ 3 \\ 2 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} \{0,-2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline - \\ - \\ - \\ - \\ 1 \end{array} $                                                                                | $ \frac{\{0, -3\}}{s(x) - s(x + 3)} \\ \frac{(x + 3) \in S \ominus J_{-3}}{-2} \\ 1 \\ 1 \\ 1 $                                                                           |
| $ \begin{array}{c} x\\x\in S\\0\\1\\2\\3\\4\\5\end{array} $                                                                                     | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     -4 \\     1 \\     -1 \\     1 \\     1 \end{array} $                                                                   | $   \begin{array}{r} \{0, -1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                        | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} \{0, -2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ - \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline - \\ - \\ - \\ - \\ 1 \\ 1 \end{array} $                                                                           | $ \frac{\{0, -3\}}{s(x) - s(x + 3)} \\ (x + 3) \in S \ominus J_{-3} \\ -2 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                    |
| $ \begin{array}{c} x\\x\in S\\0\\1\\2\\3\\4\\5\\6\end{array} $                                                                                  | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     -4 \\     1 \\     -1 \\     1 \\     1 \\     1 \end{array} $                                                          | $   \begin{array}{r} \{0, -1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $                                                                 | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} \{0, -2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline - \\ - \\ - \\ - \\ 1 \\ 1 \end{array} $                                                                           |                                                                                                                                                                           |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $                                                                | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     -4 \\     1 \\     -1 \\     1 \\     1 \\     1 \end{array} $                                                          | $   \begin{array}{r} \{0, -1\} \\ \hline s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $                                                                 | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} \{0, -2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ - \\ - \\ - \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \end{array} $                                                                                 |                                                                                                                                                                           |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $                                                                | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline                               $                                                                                             |                                                                                                                                                                                                                             | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ J_{-5} = \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} \{0, -2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ - \\ - \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline$                                                                                                                   | $ \frac{\{0, -3\}}{s(x) - s(x + 3)} \\ (x + 3) \in S \ominus J_{-3} \\ -2 \\ 1 \\ 1 \\ -2 \\ -3 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$                    |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $                                                                | $ \begin{array}{c}     J_{-1} = \\     \overline{s(x-1) - s(x)} \\     x \in S \ominus J_{-1} \\     \hline     \hline                         $                                                                                        |                                                                                                                                                                                                                             | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ J_{-5} = \\ s(x-5) - s(x) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \{0, -2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ - \\ - \\ \hline \end{array} $ $ \begin{array}{c} \{0, -5\} \\ \hline s(x) - s(x+5) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} J_{-3} = \\ \hline s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ 1 \\ 1 \\ 1 \\ \hline \\ 1 \\ \hline \\ s(x-6) - s(x) \\ \end{array}$          | $ \frac{\{0, -3\}}{s(x) - s(x + 3)} \\ (x + 3) \in S \ominus J_{-3} \\ -2 \\ 1 \\ 1 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$                                |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $ $ \begin{array}{c} x \\ x \in S \\ x \in S \\ \end{array} $ | $ \begin{array}{c} J_{-1} = \\ \overline{s(x-1) - s(x)} \\ x \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \overline{s(x-4) - s(x)} \\ x \in S \ominus J_{-4} \end{array} $                                             | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ -1 \\ 1 \\ \\ s(x) - s(x+4) \\ (x+4) \in S \ominus J_{-4} \end{array} $                          | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ s(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} \{0,-2\} \\ \hline s(x) - s(x+2) \\ (x+2) \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ - \\ \hline \end{array} $ $ \begin{array}{c} \{0,-5\} \\ \hline s(x) - s(x+5) \\ (x+5) \in S \ominus J_{-5} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline$                                                                                                                   | $ \begin{array}{c} \{0, -3\} \\ \hline s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                     |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $ $ \begin{array}{c} x \\ x \in S \\ 0 \end{array} $             | $\begin{array}{c c} J_{-1} = \\ \hline s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ \hline \\ s(x-4) - s(x) \\ x \in S \ominus J_{-4} \\ \hline \end{array}$                               | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ -1 \\ 1 \\ \\ s(x) - s(x+4) \\ (x+4) \in S \ominus J_{-4} \\ \hline \\ -3 \end{array} $          | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ s(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \{0, -2\} \\ s(x) - s(x + 2) \\ (x + 2) \in S \ominus J_{-2} \\ \hline & -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline & -2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ 1 \\ 1 \\ 1 \\ 1$                                                                | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $ $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \end{array} $        | $ \begin{array}{c c} J_{-1} = \\ \hline s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                       | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                           | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ s(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline \\ \\$ | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ 1 \\ 1 \\ 1 \\ 1$                                                                | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $ $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \end{array} $   | $ \begin{array}{c} J_{-1} = \\ \hline s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                         | $ \begin{array}{c} = \{0, -1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ & -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ -1 \\ 1 \\ \\ s(x) - s(x+4) \\ (x+4) \in S \ominus J_{-4} \\ \hline & -3 \\ 2 \\ 2 \end{array} $      | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ s(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ 1 \\ 1 \\ 1 \\ 1$                                                                | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $\begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ \end{array}$                      | $ \begin{array}{c} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ \vdots \\ s(x-4) - s(x) \\ x \in S \ominus J_{-4} \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$    | $ \begin{array}{c} = \{0, -1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ & -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ -1 \\ 1 \\ \\ s(x) - s(x+4) \\ (x+4) \in S \ominus J_{-4} \\ \hline & -3 \\ 2 \\ 2 \\ - \end{array} $ | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline J_{-5} = \\ s(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \{0, -2\} \\ s(x) - s(x + 2) \\ (x + 2) \in S \ominus J_{-2} \\ \hline & -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline & -2 \\ \hline & -2 \\ \hline & -2 \\ 3 \\ \hline & -2 \\ \hline & -$ | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 1 \\ 1 \\ 1$                                                                | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $ \begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array} $             | $ \begin{array}{c} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ \hline -1 \\ s(x-4) - s(x) \\ x \in S \ominus J_{-4} \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$ | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ \\ 1 \\ \\ \\ \\ \\ \\ \\ \\ $                                                                           | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ \hline -3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \{0, -2\} \\ s(x) - s(x + 2) \\ (x + 2) \in S \ominus J_{-2} \\ \hline & & 3 \\ 0 \\ 0 \\ 2 \\ \hline & & - \\ \end{array} $ $ \begin{array}{c} -3 \\ 0 \\ 0 \\ 2 \\ \hline & & - \\ \hline & & - \\ \end{array} $ $ \begin{array}{c} -3 \\ 0 \\ 0 \\ 2 \\ \hline & & -2 \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & -2 \\ 3 \\ \hline & & -2 $                                                                                                                                                                | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                     | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $\begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$                                                                  | $ \begin{array}{c} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \hline s(x-4) - s(x) \\ x \in S \ominus J_{-4} \\ \hline -2 \\ \hline -3 \\ 2 \\ \end{array} $                         | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                           | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ 5(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} \{0, -2\} \\ s(x) - s(x + 2) \\ (x + 2) \in S \ominus J_{-2} \\ \hline & & 3 \\ 0 \\ 0 \\ 2 \\ \hline & & - \\ \end{array} $ $ \begin{array}{c} = \{0, -5\} \\ s(x) - s(x + 5) \\ (x + 5) \in S \ominus J_{-5} \\ \hline & & -2 \\ 3 \\ \hline & & - \\ \hline & & $                                                                           | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                       | $ \begin{array}{c} \{0, -3\} \\ s(x) - s(x+3) \\ (x+3) \in S \ominus J_{-3} \\ \hline \\ -2 \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                            |
| $\begin{array}{c} x \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline \\ x \in S \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array}$       | $ \begin{array}{c} J_{-1} = \\ s(x-1) - s(x) \\ x \in S \ominus J_{-1} \\ \hline -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ \hline s(x-4) - s(x) \\ x \in S \ominus J_{-4} \\ \hline -3 \\ 2 \\ 2 \end{array} $                               | $ \begin{array}{c} \{0,-1\} \\ s(x) - s(x+1) \\ (x+1) \in S \ominus J_{-1} \\ \hline \\ -4 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                           | $ \begin{array}{c} J_{-2} = \\ s(x-2) - s(x) \\ x \in S \ominus J_{-2} \\ \hline \\ -3 \\ 2 \\ 0 \\ 0 \\ 2 \\ \hline \\ 5(x-5) - s(x) \\ x \in S \ominus J_{-5} \\ \hline \\ -2 \\ 3 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} J_{-3} = \\ s(x-3) - s(x) \\ x \in S \ominus J_{-3} \\ \hline \\ \\ -2 \\ 1 \\ 1 \\ 1 \\ 1 \\ \hline \\ s(x-6) - s(x) \\ x \in S \ominus J_{-6} \\ \hline \\ \\ \\ \\ \\ \\ \\$ | $ \begin{array}{c}         \{0, -3\} \\         s(x) - s(x + 3) \\         (x + 3) \in S \ominus J_{-3} \\         -2 \\         1 \\         1 \\         1 \\         $ |

possible elements. However, when these candidate elements are examined using forward checking, only the two elements  $j_1$  and  $j_2$  given in (12) survive the test:

$$j_1(-2) = -6 \quad j_1(-1) = -4 \quad j_1(0) = 0$$
  

$$j_2(0) = 0 \qquad j_2(1) = -2 \qquad j_2(2) = -3.$$
(12)

Fig. 5 shows the tree created by the algorithm. The optimal decomposition of s,  $s = g \oplus j_1 \oplus j_2$ , g(2) = 13, is shown in Fig. 4.

#### VIII. CONCLUSION

The gray-scale structuring element decomposition problem can be solved in a similar way to the binary structuring element decomposition problem. In this paper, we showed that the decomposition problem can be solved by simply searching among a finite set of values. The essence of the algorithm is the same as the essence of the binary problem: 1) The domain of the structuring elements participating in the decomposition must have members that are the differences between members of the domain of the given structuring element and 2) that it is necessary for the undecomposed part of the structuring element to be morphologically open with respect to any structuring element participating in its further decomposition. When the decomposition is constrained to two-point decomposition, the search space can be further reduced by utilizing the morphological properties of a two-point decomposition.

## APPENDIX A USING THE CONSTRAINTS: TWO-POINT NOT DECOMPOSABLE EXAMPLE

In this Appendix, we give an example where we use the twopoint decomposition constraints developed in Section V-B-2.



Fig. 2. Functional values constraints. The shaded areas correspond to values that grayscale structuring elements  $j_i$  in the decomposition can **not** take. In each table, along the rows we choose a point x in the domain, S, of the original structuring, s, and along the columns we give the values  $j_i$ , the structuring element in the decomposition can **not** take up. For example, in (a) we see that if we choose,  $1 = x \in S$ ,  $j_1(1) \notin \{-1, 0, 1, 2, 3, 4\}$ .

In the example problem, the gray-scale structuring element s is not open under the structuring element j for any gray-value assignment for elements in the domain of j. Thus, j cannot be a structuring element in the decomposition of s. We then modify

s so that it is open under j for a set of gray-value assignments for the elements in the domain of j and then show that the modified j can be the element in the decomposition of s. In Section V-B-2, we proved that if  $s = s \circ j$ , then for all  $x \in S$ ,



Solution Found

Fig. 3. Tree search for a two-point decomposition of the gray-scale structuring element s(x) shown in Fig. 1. At the root of the tree, there are only three candidate structuring elements:  $j_{-1}$ ,  $j_1$ , and  $j_3$ . The optimal solution  $g \oplus j_{-1} \oplus j_1 \oplus j_1 \oplus j_3$  is found when a breath-first search produces a residue with a single point (g).



Fig. 4. Three-point decomposition of a gray-scale structuring element. The structuring element s is decomposed as  $s = g \oplus j_1 \oplus j_2$ , where g(2) = 13 is a one-point structuring element representing a translation, and  $j_i$  are three-point gray-scale structuring elements each containing the origin (0,0).

at least one of the following is true:

1) 
$$x \in S \ominus J$$
 and  $j(t) \le s(x+t) - s(x)$ ; or  
2)  $x - t \in S \ominus J$  and  $j(t) \ge s(x) - s(x-t)$ .

Note: If  $x \notin S \ominus J$  for a particular x, condition 1 is automatically not true, and similarly, if  $x-t \notin S \ominus J$ , condition 2 is not true. Furthermore, if for a particular  $x \in S$  we find that both the conditions are not met, it must be the case that  $s \neq s \circ j$ . Let us now consider an example. Let  $S = \{-t, 0, t\}$ and s(-t) = 5, s(0) = 3, and s(t) = 2. Let the domain structuring element j be  $J = \{0, t\}$  and j(0) = 0,  $j(t) \leq 0$ . We want to find out the range of possible values that j(t)can have when s is open under j, i.e.,  $s = s \circ j$ . Next, we will construct the constraints for j(t). Since  $S \ominus J = \{-t, 0\}$ and  $x \in S$  can take up three possible values, we have the following three sets of constraints.

Case x = -t: Since  $x - t \notin S \ominus J = \{-t, 0\}$  for x = -t, the second condition is not met. The first condition gives us



Fig. 5. Tree search for a three-point decomposition of the gray-scale structuring element s(x) shown in Fig. 4. At the root of the tree out of 378 candidate structuring elements, only two  $j_1$  and  $j_2$  survive the forward checking test. The optimal solution  $g \oplus j_1 \oplus j_2$  is found when a breath-first search produces a residue with a single point (g).

the constraint 
$$j(t) \le s(0) - s(-t) = 3 - 5 = -2$$
. Thus  
 $j(t) \le -2$ . (13)

Case x = 0: Since  $x, x - t \in S \ominus J = \{-t, 0\}$  for x = 0, both the conditions are met. The first condition gives us the constraint  $j(t) \leq s(t) - s(0) = 2 - 3 = -1$ . The second condition gives us the constraint  $j(t) \geq s(0) - s(-t) = 3 - 5 =$ -2. Thus, we have

$$j(t) \leq -1$$
 or  $j(t) \geq -2$ .

Case x = t: Since  $x \notin S \ominus J = \{-t, 0\}$  for x = t, the first condition is not met. The second condition gives us the constraint  $j(t) \ge s(t) - s(0) = 2 - 3 = -1$ . Thus

$$j(t) \ge -1. \tag{14}$$

We see that constraint (13) contradicts constraint (14). Thus, we conclude that there is no j with domain  $J = \{0, t\}$  such that  $s = s \circ j$ . Now, in the previous example, if we make s(t) = 1 and let all other values remain the same, we will get the following constraints:

$$j(t) \le -2 \tag{15}$$

$$j(t) \le -2 \text{ or } j(t) \le -2$$
 (16)

$$i(t) \ge -2. \tag{17}$$

The only solution to the constraints is j(t) = -2. Thus,  $s = s \circ j$  if j(t) = -2.

## APPENDIX B PROOF FOR THE LOOK-AHEAD STEP

**Proposition 19:** If at some level l of the decomposition tree  $j_1, j_2, \ldots, j_l$  have been determined, then the only  $j \in L_l$  that need to be considered for any node in the subtree below are those that satisfy

$$(t_l \oplus j) \oplus j \oplus k_l = s$$

where  $t_l = s \ominus k_l$ , and  $k_l = j_1 \oplus j_2 \oplus \cdots \oplus j_l$ .

*Proof:* Assume that  $s = g \oplus j_1 \oplus \cdots \oplus j_M$  with M > l and that we need to find  $j_{l+1}$ . The structuring element s can be rewritten as

$$s = (g \oplus j_{l+2} \oplus \cdots \oplus j_M) \oplus k_l \oplus j_{l+1}.$$

Then, by Proposition 14, s must be open under  $k_l$  dilated by the function j, which is the candidate to be selected as  $j_{l+1}$ :

$$s = (s \ominus (k_l \oplus j)) \oplus (k_l \oplus j) = (t_l \ominus j) \oplus j \oplus k_l.$$

It is also true that this condition holds for the level 1 considered and for any node in the subtree below: Let m > l. Then, for j to be considered as a child of a node at level m, it must satisfy  $s = s \circ (k_m \oplus j)$ , but  $k_m \oplus j = (k_l \oplus j) \oplus (j_{l+1} \oplus j_{l+2} \oplus \cdots \oplus j_M)$ .

#### ACKNOWLEDGMENT

The authors would like to thank Dr. D. C. Benson for his many helpful comments on the implementation of the decomposition algorithm.

#### REFERENCES

- X. Zhuang and R. M. Haralick, "Morphological structuring element decomposition," *Comput. Vision, Graphics, Image Processing*, vol. 35, pp. 370–382, 1986.
- [2] T. Kanungo and R. M. Haralick, "Morphological decomposition of restricted domains: A vector space solution," in *Proc. IEEE Conf. Comput. Vision Patt. Recogn.*, Champaign, IL, June 15-18, 1992, pp. 627-629.
- [3] \_\_\_\_\_, "Vector space interpretation for a morphological shape decomposition problem," J. Math. Imaging Vision, vol. 2, no. 1, pp. 51-82, Oct. 1992.
- [4] X. Zhuang, "Grayscale structuring function decomposition," in Proc. IEEE Conf. Comput. Vision Patt. Recogn, Champaign, IL, June 15-18, 1992.
- [5] F. Y. Shih and O. R. Mitchell, "Threshold decomposition of gray-scale morphology into binary morphology," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 11, pp. 31–42, 1989.
  [6] J. P. Fitch, E. J. Coyle, and N. C. Gallager, "Threshold decomposition
- [6] J. P. Fitch, E. J. Coyle, and N. C. Gallager, "Threshold decomposition of multidimensional ranked order operations," *IEEE Trans. Circuits Systems*, vol. 32, pp. 445–450, 1985.
  [7] G. X. Ritter and P. D. Gader, "Image algebra techniques for parallel
- [7] G. X. Ritter and P. D. Gader, "Image algebra techniques for parallel image processing," J. Parallel Distributed Comput., vol. 4, no. 5, pp. 7-44, 1987.
- [8] C. H. Richardson and R. W. Schafer, "Lower bound for structuring element decomposition," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 13, no. 4, pp. 365–369, 1991.
  [9] J. Xu, "The decomposition of convex polygonal morphological structure-
- [9] J. Xu, "The decomposition of convex polygonal morphological structuring elements into neighborhood subsets," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 13, no. 2, pp. 153–162, 1991.
  [10] R. Jones and I. Svalbe, "Algorithms for the decomposition of gray-scale
- [10] R. Jones and I. Svalbe, "Algorithms for the decomposition of gray-scale morphological operations," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 16, no. 6, pp. 581–588, June 1994.
- 16, no. 6, pp. 581-588, June 1994.
  [11] P. D. Gader, "Separable decompositions and approximations of grayscale morphological templates," *CVGIP: Image Understanding*, vol. 53, no. 3, pp. 288-296, 1991.
  [12] R. M. Haralick, S. R. Sternberg, and X. Zhuang, "Image analysis using
- [12] R. M. Haralick, S. R. Sternberg, and X. Zhuang, "Image analysis using mathematical morphology," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. PAMI-9, no. 4, pp. 532–550, July 1987.



Octavia I. Camps (S'89–M'91) received the B.S. degree in computer science and the B.S. degree in electrical engineering from the Universidad de la Republica, Uruguay, in 1981 and 1984, respectively, and the M.S. and Ph.D. degrees in electrical engineering from the University of Washington, Seatle, USA, in 1987 and 1992, respectively.

From 1986 to 1991, she was a Research Assistant in the Intelligent Systems Laboratory at the University of Washington. In 1992, she joined the faculty at The Pennsylvania State University, University

Park, USA, where she is currently an Assistant Professor in the Department of Electrical Engineering and the Department of Computer Science and Engineering and a co-director of the Center for Intelligent Information Processing (CIIP). Her current research interests include object recognition, reverse engineering systems, image processing, and pattern recognition.

Dr. Camps was awarded the SWE Outstanding Female Engineering Student Award in 1988, a GTE Fellowship Award in 1990, and an NSF Research Initiation Award in 1993 for her work on robust 3-D object recognition. She is a member of the IEEE Computer, Robotics and Automation, and Signal Processing Societies, the ASEE, and Tau Beta Pi.



**Tapas Kanungo** (S'94) was born on May 5, 1964 in Varanasi, India. He received the Bachelors degree in electronics and communication engineering from Regional Engineering College, Tiruchirapalli, India, in 1986. He is currently working toward the Ph.D. degree in electrical engineering at the University of Washington, Seattle, USA, where he received the M.S. degree in electrical engineering in 1990.

He worked at the AT&T Bell Laboratories, Murray Hill, NJ, USA, during the summer of 1994 and at the IBM Almaden Research Center, San

Jose, CA, USA, during the summer of 1993. From 1988 onwards, he has been a Research Assistant at the Intelligent Systems Laboratory at the University of Washington. From 1986 to 1988, he was with the Computer Science Group at the Tata Institute of Fundamental Research, Bombay, India. His research interests include reconstruction, document understanding, performance evaluation, image databases, morphology, shape decomposition, and human vision.

In 1992, Mr. Kanungo received the second prize at the Annual Industrial Affiliate's Poster Competition, and in 1990, he was a recipient of the Watamull Scholarship.



**Robert M. Haralick** (S'62–S'67–M'69–SM'76– F'84) received the B.A. degree in mathematics in 1964, the B.S. degree in electrical engineering in 1966, and the M.S. degree in electrical engineering in 1967, and the Ph.D. degree in 1969, all from the University of Kansas, Lawrence, USA.

He is the Boeing Clairmont Egtvedt Professor in Electrical Engineering at the University of Washington, Seattle, USA. His recent work is in shape analysis and extraction using the techniques of mathematical morphology, robust pose estimation,

techniques for making geometric inferences from perspective projection information, propagation of random perturbations through image analysis algorithms, and document analysis. He joined the faculty of the Electrical Engineering Department at the University of Kansas, where he last served as Professor from 1975 to 1978. In 1979, he joined the Electrical Engineering Department at Virginia Polytechnic Institute and State University, Blacksburg, USA, where he was a Professor and Director of the Spatial Data Analysis Laboratory. From 1984 to 1986, he served as Vice President of Research at Machine Vision International, Ann Arbor, MI, USA.

Prof. Haralick is a Fellow of IEEE for his contributions in computer vision and image processing. He is a Fellow of the IAPR for his contributions in image processing, computer vision, and mathematical morphology. He serves on the Editorial Boards of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE and *Real Time Imaging*. He is an associate editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING and an associate editor for Journal of Electronic Imaging.