IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 5, MAY 2003 583

Stochastic Language Models for Style-Directed
Layout Analysis of Document Images

Tapas KanungoSenior Member, IEEEBnd Song MapMember, IEEE

Abstract—mage segmentation is an important component of an algorithm for extracting the physical structure of the docu-
any documentimage analysis system. While many segmentation al-ment from a given image.
gﬁ”thmf etXif’ti””(‘je..')it.erat“re'vteryfew ) a”o.‘;‘.’ u dse[SItO_S?eCifytt_he This paper is organized as follows. In Section II, we provide
sical style, and ii) incorporate user-specified style information : .
i%tg the alg)é)rithm’s objectivpe function thari is to be minimized. We & _survey of re!ated work. In Section Ill, we |.ntroduce a ger_lgr-.
describe a segmentation algorithm that models a document's phys- ative stochastic document model a_nd deS(_:rlbe the probablhstlc
ical structure as a hierarchical structure where each node describes physical layout model component in detail. In Section IV, we
aregion of the document using a stochastic regular grammar. The give the statement of problem and propose a document phys-
exact form of the hierarchy and the stochastic language is specified jca| layout analysis algorithm based on our proposed model.
by the user, while the probabilities associated with the transitions A five-step performance evaluation methodology for training
are estimated from groundtruth data. We demonstrate the segmen- h . . - -
tation algorithm on images of bilingual dictionaries. gnd evaluatmg physpal layout anaIyS|§ algorithms is prgsented
in Section V. In Section VI, an experimental protocol is de-
scribed for conducting training and evaluating experiments. In
' Section VII, we present our experimental results and provide a
detailed discussion.

Index Terms—Bilingual dictionaries, duration hidden Markov
models, physical layout analysis, stochastic regular grammar
style-directed analysis.

I. INTRODUCTION

UR OBJECTIVE is to develop a generic algorithm
for segmenting scanned images of printed bilingual There are many generic segmentation algorithms. Wahl
dictionaries formatted in various styles, and in various lamt al. [29] proposed an algorithm that first smears the black
guage pairs. The need for such an algorithm arose in a projpixels in thexz and y directions and then uses intersection
in which we are developing an end-to-end system that cafithe two smeared images to mark out segments. Fletcher
rapidly create cross-language information retrieval systems #md Kasturi [6] described a system that used rules based
low-density languages (languages for which online text is noh collinearity, proximity, and connected component shape
readily available). Bilingual dictionaries have translation distributions to group text into words and phrases. Bairdl.
words, which is a crucial resource for building cross-languad@] based their algorithm on the observation that segmenting
retrieval systems. Furthermore, bilingual dictionaries are altite foreground is a dual of segmenting the background and thus
very valuable for creating speech recognition systems for adgtected columns of white pixels. O’'Gorman [23] described
new language since dictionaries typically have pronunciatioasbottom-up algorithm that starts with connected components
of words. and progressively groups them into word-level and line-level
While many segmentation algorithms have been proposedakens using proximity and angle information. Kiseal. [16]
the past, very few algorithms either i) allow users to specify thesed a computational geometry approach. They constructed
physical style of the input documents or ii) use the user-spewbronoi regions for the image and associated Voronoi regions
fied style information for segmenting document images to oprth text regions. Small regions, which are typically associated
timize some criterion. A style-directed segmentation algorithmith noise or words, were pruned to have line and zone level
could arguably give a better performance on the class of doe¢egions. None of the above algorithms create hierarchical
ments represented by the style than a generic algorithm thatiéscriptions or allow users to specify document structure
designed for all types of document styles. In this paper we deformation. Furthermore, they do not provide methods for
scribe a probabilistic physical layout model for representing tlestimating threshold parameters from groundtruth data. A
physical style of documents. We then use this model to desiggorous empirical comparison of these algorithms can be
found in Mao and Kanungo [20].
Language models have been successfully used in many
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Fig. 1. Generative stochastic document model. This model simulates the generation process of documentimages. Document images with difibleydayhysi
styles, logical structures, and degradation levels can be obtained by varying the parameters of the model.

recognizing two-dimensional (2-D) mathematics in [4] and [ll. GENERATIVE STOCHASTIC DOCUMENT MODEL
implemented in [9].

The notion of style-directed recognition, to our knowledg
has been addressed by very few researchers. Kopec and
[17] describe an algorithm for segmenting textlines for a colu

Models and quantitative metrics are crucial for designing
o%d algorithms. In particular, generative models allow an algo-

rri1?|m designer to perform scientific experiments that allow us
mn%(r) evaluate and characterize the performance of the algorithm.
However, their algorithm i) assumes that it is given the tenn this section, we describe a generative stochastic document

plates for symbols in the language, which is not the case in Ompdel that is used in Section IV for designing a segmentation

problem since we need not have the character templates if %orrl]thmb. E\éalua:;?n mztr:c_s ;nd .ebx%e.rlrgenttgl ;i;otocol,
bilingual dictionary for a new language pair, ii) assumes th¥fich 1S based on this model, 1S described in section V.

the columns are segmented by some other procedure, andii)oyerview of the Generative Stochastic Document Model
does not provide any estimation procedure for the model param-

eters. Tokuyasu and Chou [28] recently proposed a communiYVe& model the document image generation process as a five
cation theory approach to 2-D page segmentation. They mo@iP Process: 1) First a logical struct(fieis created according

the ideal input field by vertical and horizontal fields and use tHe & logical structure model’. The logical structure of docu-
Turbo decoding approach to estimate the 2D field from the oftent images specifies semantic relations among logical com-
servations. However, the theory does not allow users to sped§nents. The semantic relations can include the reading order
the width and height of lines and columns. Furthermore, the &2d the hierarchical nesting of logical components. 2) Next,
ticle contains very limited experimental verification of their al€ach logical component is filled with text according to a text
gorithm. Both algorithms mentioned above maximize the prob&nguage model*. 3) Physical style markup is performed ac-
bility of a message given the image. Krishnamooehgl.[18].  cording to a physical layout modél* to specify the physical
described a hierarchical segmentation algorithm that construg@gpearance and spatial relation of the logical components on a
a tree in which each node represents an axis-parallel regiorphysical medium. In other words, physical style markup spec-
the image. Users could specify block grammars for individuiies a physical layout structurg),. 4) A typesetting software
blocks. However, in the presence of noise the parsing algoritt@nverts the symbolic file into a noise-free imageand its

can fail, and no parameter estimation algorithm is providedroundtruth metadat&1. 5) Finally, the noise-free image is de-
Spitz [26] recently reported a system for style-directed recograded using a document border noise ma@eland a local
nition. While the user can specify the style interactively, the aftoise model to generate a noisy image These degradation
gorithm itself is a rule-based system. No objective function &eps model the noise introduced during printing, photocopying,
minimized in either [18] or [26]. faxing, microfilming, etc.
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Fig. 2. (a) Real Chinese—English dictionary page, (b) a synthetically generated noise-free dictionary page, and (c) a synthetically gepeliatethanipage
with associated groundtruth using our model.

Thus our proposed generative stochastic document mobekt parsing result is considered as the parse with the highest
M is a five-tupleM = (G!, Gt, GP, G®, T) and associated probability [10], [27].
model parameter is denoted g = {\!, XY, AP, \°) ©}. An The physical layout of the document image specifies the
overview of the model is illustrated in Fig. 1. In the followingphysical appearance and spatial relation of the document’s
subsections, we describe the physical layout structure mogalsical components. While there are formal languages like
GP? in detail and briefly introduce the degradation moQdel regular language, context-free, and context sensitive languages
A generative stochastic document model based on stochaftic each of which having different levels of descriptive power,
attribute grammars was proposed in [5]. Their model is simve found that for the problem of expressing the varieties of
ilar to ours in that they also use stochastic grammars to moghblysical regions in dictionaries, regular languages are suffi-
the logical structure of documents. However, they did not haeéent. The grammaé6? for representing the 2-D hierarchical
a explicit physical layout model for specifying physical layouarraignment of physical regions are described in detail in [30].
styles of the documents. A simple channel model is used fior this paper, we use flat form of the grammar. For a given
simulating document degradation. Moreover, there is little eregion on a document image and a regular gram@iaand
perimental verification of effectiveness of their model. its parameter), the physical layout structure of the region
can be recognized by parsing an observed sequence of tokens
using the given grammar. We use stochastic regular grammar
G = (N, X, P, S) to model the physical layout structures of
Language models can be used to efficiently model syntactiocument regions, wher® is a set of nonterminal symbols,
or structural information. Language models are typically repré&: is a set of terminal symbold? = {A — zB or A — z|A,
sented by formal grammars [1], which compactly encode strug- € N, z € (X)*} is a set of production rules, anflis a
tural relations in the given data. Language models can be usedpecial start symbol which is a nonterminal symbol. For each
both generators and recognizers of languages. Language mogedgluction rule inG, we assign a probability measure. We use
of different descriptive power can be used to represent syntactiodel parametek to represent probabilities of all production
structures of different complexity. Depending on the languageles where\ = {P[A — zB or A — z|A, B € N,
model used, efficient parsing techniques have been used to rece (X)*]} is a set of production rule probabilities, where
ognize the structure of given data. >ogP[A —-2zBorA — z|A, B € N,z € (£)"] = L
Deterministic language models can result in ambiguoﬂ'erhinal symbols are physical components that can not be fur-
parsing results when the input is probabilistic or when theer divided, and nonterminal symbols are groups of terminal
grammar is ambiguous. In real applications, some grammatisgimbols. For instance, in the application of physical layout
rules are used more often than others. In deterministic languagelysis of a double column journal title padesader block,
models, we can not learn the relative significance of grammédgoter block, column blockre terminal symbols if they are the
ical rules from a given training dataset. Stochastic grammar®st basic physical components that users are interested in,
and the associated parsing and learning techniques canwtereasbodyis nonterminal symbol since it consists of two
used to address the above issues. In stochastic parsing,dblemns.

B. Physical Layout Structure Model
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STOCHASTIC REGULAR GRAMMARS AND THEIR PARAMETERS ;—OAIE;IEPRIESENTING THEPHYSICAL LAYOUT STYLES OF DICTIONARY PAGES
Level | Production Rules | Nonterminal | Terminal Production Rule Parameters
Symbol Symbol

1 S—t h g B u | B: body t: top margin h: header P,(S): grammar probability hp,wpg: body height and width

g: header-body gap u: bottom margin | h,: top margin height hy: header height

hy: header-body gap'height h.,: bottom margin height.

2 B—1 C g C r|C:column | I: left margin g: column gap P,(B): grammar probability we: column width

r: right margin wy, w,: left and right margin widths w, column gap
3 C—i g C C: column | i: textline g: textline gap. P,(C): grammar probability hi, hy: textline and line gap heights

C. Local Noise Model In the following section, we present a recognition algorithm

for deriving the physical layout structure using the stochastic
Local noise is introduced during printing, scanning, photaegular grammar model described in this section.
copying, faxing, microfilming of noise-free document images.
We use the document degradation model proposed and valV. PHYSICAL LAYOUT STRUCTUREANALYSIS ALGORITHM
idated by Kanungeet al. [12] as our local noise mOddT' We pose the physical layout structure analysis problem as an
Kanungo and Zheng [15] prquSEd a method for est|mat|ng tsg imization problem. Our algorithm is based on the generative
parameters of the degradation model. This degradation mo

h . I > 8 k) wh rol del described in Section Ill. We formulate the problem of
as six parameterg: = (1, @0, &, Po, B, k), wheren controis physical layout analysis of document images as follows: For a
the flipping probability of all pixelsqg, a controls the flipping

- ; N given document imagé, a physical layout model? and its
probability of foreground pixels{,, 4 controls the flipping : he .
probability of background pixels, anfd specifies the size of a estimated model paramets, find a physical layout structure

disk that is used in the morphological operations. By varyinigp such that

these parameters, document images with different degradation T, = argmax P(Tp|I, G?, AP). 1)
levels can be generated. T
Certain types of noise can be structured and concentrated@pec and Chou [17] proposed and investigated a similar opti-
certain locations in a documentimage. Black streaks at the edg@zation framework based on template matching and a simple
of document image are examples of such document noise.clrannel model.
this paper, we integrate the black streaks at the edges of docu- .
ment images into our grammatical description. Numerous dde: 1he Algorithm
ument image deskewing algorithms [19] have been proposed inWe use a weighted finite state automaton to represent the pro-
the past. We assume one of these algorithms has been usetlittdion rule used at each level of document physical layout tree.
deskew the images in our document datasets before their recBopce each symbol in a production rule is mapped to a phys-
nition since our algorithm is sensitive to document skews. ical component of a document image, we assign each state in
the weighted finite state automaton to a symbol in the produc-
tion rule. The observations of each state are made on its cor-
D. Modeling the Physical Layout Style of Dictionary Pages responding physical component and are probabilistic. We com-
pute an observation distribution for each state. We model the
We now use our proposed generative stochastic documgRysical features of document physical components by state du-
model to model a Chinese-English dictionary page. In Fig. 2(ghtion densities. For instance, if a physical component is large
a scanned real dictionary page froABC Chinese—English in size, the duration in the state corresponding to this physical
Dictionary is shown, a synthetically generated clean dictionagomponent will be longer. State transitions signify the bound-
page and a synthetically generated noisy dictionary page wifies of physical components.
associated groundtruth using our model are shown in Fig. 2(b)we now describe a model that represents the language using a
and (c). state transition probability matrix, an initial state distribution
The synthetically generated dictionary pages are typeset intoand an observation model represented by a state observation
a two-column layout and have a header on each page. The gistribution matrixB. The language model is a weighted finite
sible physical entities in a dictionary page include top matginstate automaton that is suitable for representing stochastic reg-
bottom marginu, left margini, right marginr, headeri, body ular grammar. The Viterbi algorithm is used to search for the
B, column(, line i and gapy. We use a grammag? to repre- best state sequence for a given observation sequence and model
sent the physical layout styles of dictionary page. The descriparameters. While this model can be used to segment and label
tion of logical model components can be found in [21]. Tabledne-dimensional (1-D) signal simultaneously, it does not use the
shows the grammar and associated parameters used for repxelicit state duration densities, which in our application rep-
senting physical layout styles of dictionary pages. resent the physical features of document physical components.
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We call this model model-l. We augment the above model bylia order to avoid machine precision underflow, we uselte
set of state duration densities. Duration Hidden Markov Modelgrsion [25] of the recursive relation as follows:
and associated estimation and recognition algorithms have been )
studied in the speech context [25]. We provide a detailed derig8(8:(1)) = d<min(h D) i log(é¢—a(7)) + log(3;;)
tion for finding the best state and state duration for a given - o
observa_tion sequence and duration HMM model parameters in +log(cja) +
Appendix. We call the new model model-Il. We compare the
performance of the two models in Section VII.

We now formally describe the model-Il algorithm. Lgt=

t

> log(bjs)] . (6)

s=t—d+1

We can see that

{¢:;,1 =1, 2, ..., N} be a sequence of states, each of which P* — max [ST(Z‘)] = max P(q, 0|5\p)
corresponds to a terminal or nonterminal symbol on the right- 1<i<N a '
hand-side of the production rule at current level. The terminal = max P(qlo, A?) - P(o]\P),

or nonterminal symbols in the production rule denote a doc- g

ument’s physical components like header, body, column, etc. q* = arg max P(q, 0|5\p)

at current tree level. Leb = {0 € ZT;1 < o < M, a . R

k =1,2,..., T} be a discrete observation symbol sequence = argmax P(qlo, A?) - P(o|AP)

of lengthT'. We model the physical extents of components on

a document image by state duration distributions. Met=

{T, N, M, D, A, B, C, =} be the parameter of the model-II, A

whereT is the length of input)V is the number of stated/ is The last step in the derivation is justified sinf&o|)\?) is a

the maximum value of a state observatidhjs the maximum constant with respect tq. This derivation result is what was

length of a state duratiod = {a;;la;; = 0,1 < i < N, required in (3). Sinceg” determines a unique segmentation

1 < j < N} is the state transition probability matrig = result that corresponds to a unique physical layout struc-

{bim|l < i < N,1 < m < M} is the state observationture 7, for the givgn model\?, we can rewrite S?)TI;“ =

distribution matrix,C' = {ciq|1 < i < N,1 < d < D}is argmaxy, P(1,lo, \P) = argmaxg, P(T,|I, GP, AP).

the state duration distribution matrix, is the initial state dis-

tribution. Note that since state duration is considered explicitf: Application: Physical Layout Analysis of Dictionary Pages

within a state, the state transition probabilities to the same stateThe physical layout structure of the dictionary page can be

aii,t =1,2,..., N are setto 0. represented by a grammar shown in Table 1. We denote tree
The problem of finding the best segmentation is equivalentfgvel 1 as page level, denote tree level 2 as column level, and

finding the best state sequence (and state duration lengths) ugjgfote tree level 3 as textline level. Note that we are optimizing

model-Il. That is 1-D segmentation at each level of our model separately. At each

= arg max P(qlo, j\p) (7
q

q* = arg max P(q|;\p7 o) ) Ievgl, the segm_entatlon |s.performed on e|th§r XorY black pixel
a projection profile depending on the production rule used at that
whereq* = {q}, ¢3, ..., ¢;»}. Now define the quantity level. When the segmentation is completed on all levels, a hier-
) archical segmentation of the given document image is achieved.
0r(s) = gax P(o1, ..., 01, q1, G2, -, Gt—1, By performing segmentation recursively on X or Y projec-

L 5P (3 tion profile, we reduce a 2-D segmentation problem to a 1-D
g =7, a1 7 3137) - (3) problem. We use our proposed algorithm to segment and label
which is the highest probability of a path producing observatidhD projection profilesimultaneouslyOur approach is similar

sequencey, ..., o;andqi, ..., ¢:—1, ¢ = j,and terminating to the method used in Krishnamoortby al. [18] in that both
in statej at timet. We can rewrites, (;) as methods use grammatical models to analyze X or Y projection
) profiles of document images, and both methods therefore as-
or(j) = T,Sh___’glfbﬁlh_“,dr sume Manhattan layout of documents. In our method, we pose
the analysis procedure as an optimization problem and find the
P (017 sy Oty 1 = = qd, = S1, optimal parsing result using stochastic grammars. In [18], the
Qb1 = = Qdyidy = S2y -+ authors use deterministic grammars in their analysis and hence

. do not produce an optimal result. If a new representation for
q1+ZH 4 =AY g :s,,:j|)\p> (4) documents with non-Manhattan layouts is available, our mod-
m=1 M m=1 . . " .
eling, analysis, and recognition methodology can be applied to
where the maximum is taken subject to the constraingsem.

Yome1dm =t dm € {1,2,3, ..}, s € {1,2,..., N}, Leth = {h;|j =1, 2, ..., J} be the current projection pro-

m=1,...,7, 8, # spy1, b = 1, ..., 7 — 1. We useX” to file where the value of each; is the black pixel count along
denote the model parameters of the model-ll. We can expréiss projection locatiory and.J is the length oth. We partition
6:(4) recursively as follows (see Appendix for proof): h into T strips. We compute the ratio of black pixel count in

615(]) = max fst—d(i) ﬂ” . de .

H observation symbols with/ discrete levels. We then construct
d<min(t,D),i#j

¢ each strip and the area of the strip and quantize the ratio into
s=tdil a weighted finite state automata for each tree level as shown in
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Fig. 3. One-dimensional segmentations on projection profiles using the model-I and model-Il approaches at page level (level 1), main bodsi {iEtedt2ey
column level (level 3) and textline (level 4). At each level, we show the document region from which projection profile is obtained, the projéitaidirgrbon

and histogram, production rule and its model-I and model-Il representations, and segmentation result. Segmentation takes place at stsite tizn §itite
state automata. Note that we incorporate noise streaks at the edges of the image into our grammars.

Fig. 3. Both models, model-I and model-1I, are used to find thais section, we describe a performance evaluation methodology
optimal segmentation. Each distinctive state in either one of tadapted from the method described in [20], for performing con-
two models corresponds to a physical component, state trarigdled experiments.
tions signify the boundaries of physical components. Therefore,
1-D segmentation can be achieved by finding state transitionsin Methodology
the optimal staf[e sequence generated by the Viterbi algoritthe use our generative stochastic document model to au-
In the next section we compute the performance of both model§a atically create large scale synthetic datasets with precise
groundtruth and controlled degradation levels. 2tbe a
V. PERFORMANCEEVALUATION METHODOLOGY synthetically generated dataset using our proposed model

An algorithm is typically designed to perform a particula/M. The dataseD contains document image and groundtruth
task under certain assumptions specific to the application d@irs (i, G;) wherei denotes the image index addienotes
main. The algorithm should have satisfactory performance 8¢ image degradation level. The steps of our experimental
the application domain and may fail on other domains where tAtethodology for characterizing the performance of document
algorithm assumptions are not valid. In this paper, we use diffucture analysis algorithms are as follows.
proposed generative stochastic document model to perform cond) Use the generative modéll with a set of parametets,
trolled experiments that allow us to 1) characterize the behavior  to generate a datasgt
of the algorithms, 2) quantitatively compare the performances of 2) Randomly partition the datasBtinto a mutually exclu-
the algorithms, and 3) and identify their break-down points. In  sive training datasét and test datasé&t. ThusD = TUS
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and7 NS = ¢, whereg is the empty dataset. Each elethresholds a8PIX = 15, VPIX = 9, HTOL = 85, VTOL = 75,
mentin the datasets is animage-groundtruth(@ir G;) and7y = 20. Let {I{ € L} be a set of groundtruth textlines.
wherei denotes the image index adde 0, denotes LetE(Tx, Ty, %) = {e € Z?|-Tx < X(e) < Tx, Ty <
the degradation level of the image. We can control thg(e) < Ty} be a rectangle centered @ 0) with a width of
dataset generation by adjusting the model parameter 8etl’y + 1 pixels, and a height df - Ty + 1 pixels whereX (-)
6 r. Hence, we can perform controlled experiments bgnd Y(-) denote theX andY coordinates of the argument,
generating datasets with different physical layout stylesespectively.
logical structures and degradation levels. We now define two morphological operations: dilation and
3) Define a meaningful and computable performance metecosion [8]. Letd, B C Z2. Morphologicaldilation of A by B
p(If, G;, RY) wherel{ is an documentimage with indexis denoted b)A@B andisdefinedad®B = {c € Z?%|c = a+
7and degradat|0n Ievdl, G, is the groundtruth of !, and b for somea € A, b € B}. Morphologicalerosionof A by B is
R{ is the structure analysis result éf. denoted bydAo B andis definedad © B = {c € Z?|c+b € A
4) For a document structure analysis algoritdmestimate for everyb € B}. Let D(+) define the domain of its argument,
its parameter sep;* using the training dataséf, with let {{¥ € L(R)} be a set of segmented lines, we now define
degradation level whereT; € 7. We estimate the algo- five types of textline errors and a performance metric (textline
rithm parameter vectop on different degradation level detection accuracy):
t. These estimated models are used in step 5 to study th)eGroundtruth textlines that are mis-detected:
robustness of the algorithm to document noise. p p G
5) Evaluate the algorithm A with the estimated S = {l € L|(D(I7) e E(Tx, Ty, I7))
parameters p;' using the test datasetS over C (UrerryD(I1))°} .

different degradation levelsd. Let ®(d, t) = _ _
d({p(GY, Sega(IL, pA)|(I, G;) € S}) where 2) Groundtruth textlines whose bounding boxes are cut:

®(d, t) is a function of the estimated parame_qéf _ {lG € L|(D(9) & E(Tx, Ty, 1))

and the performance metricon each document image R s p

and groundtruth paifZ¢, G;) in the test datases, ND(™) # ¢, (D7) © E(Tx, Ty, I7))

and Sega(-, -) is the structure analysis function corre- N(D(I%))e # ¢, for somel® € L(R)} .

sponding toA. The function® is defined by the user. In i

our case, 3) Groundtruth textlines that are merged:

G R G G G

B(d, 1) = 1 Z o(Gs, Sega(lt p) My = {1 € L|3" € L(R), r“ € L andr® # 1,

such tha{ D(I%) © E(Tx, Ty, 19)) N D(IT) # ¢,
(D(TG) © E(TX7 Ty, TG)) n D(IR) 7é QS} :

d
HULG) €Y 5 s
which is the average of the performance metric
p(G?, Sega(I?, p2)) on each document image and®) Noise lines that are falsely detected (false alarm):
roundtruth paif7¢, G;) with degradation level in the
'?est dataseﬁ‘p I G ° Fr = {l" € L(R)ID(Y)

6) Perform error analysis in different error categories over C (Ueec(D(I9) © E(Tx, Ty, lG)))c} ‘
different degradation levels on both the training and teg
datasets to identify/hypothesize why the algorithms per. r
form at the respective levels.

S Groundtruth textlines that are segmented with excessive ver-
cal margins (vertical margin):

Vi ={1¢ e L|H(®) — H(I%) > Ty « H(1) /100,

D(I%) € (D(I%) @ E(Tx, Ty, I9))} .

In this section, we provide the definitions of a performance
metric and a set of error measures based on set theory and mk@t-the number of groundtruth error textlines Be{S; U
ematical morphology [8]. Currently, the performance metricarfdz U Mz U Vi } (mis-detected, cut, or merged), and let the
the error measures are based on textlines, i.e., they evaluatet@t@ number of groundtruth textlines B¢L. We define the
document structure analysis result only at the textline level. performance metric (textline detection accuraely), G, R) as

Let Tx, Ty € Z* u {0} be the two horizontal and
vertical length thresholds in number of pixels that deter- p(I, G, R) = #E = #{SLUCLUMLUVL}
mine if the overlap between a groundtruth textline and a #L
segmented line is significant or nof’x and 7y are de- A more general metric definition can be found in [20]. We define
fined asTx = min{HPIX, (100 — HTOL) - h/100} and mis-detection error, cut error, merge error, false-alarm error, and
Ty = min{VPIX, (100 — VTOL) - v/100}, whereHPIX and vertical margin error as follows:
VPIX are two thresholds in pixel${TOL and VTOL are two

B. Performance Metric and Error Measurements

thresholds in percentage, ahdwv are the height and width of Eg = ﬁ7 Ec = #CL ,
the groundtruth textline. LeTy- be a threshold in percentage #L #{L = (Mp, = (Cr.N M)}
that determines if a groundtruth textline is segmented with #My, #Fy, #V,

excessive vertical margin or not. In our experiments, we setthe =M = "/ Ep = 4L Ly = 4L
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TABLE I
STOCHASTIC GENERATIVE DOCUMENT MODEL AND MODEL PARAMETERS VALUES FORREPRESENTING THEPHYSICAL LAYOUT STYLES OF DICTIONARY PAGES IN
THE SYNTHETICALLY GENERATED TRAINING AND TEST DATASETS. THE VALUES OF MODEL PARAMETERS ARE MEASURED FROM REAL DICTIONARY IMAGES.
NOTE THAT THE NUMBER OF LEVELS HERE ISDIFFERENT FROM THAT INFIG. 3 SNCE BORDERNOISE STREAKS ARE INCORPORATED IN THEGRAMMAR IN FIG. 3

Level | Production Rules Nonterminal Symbol | Terminal Symbol Production Rule Parameter Values
1 S—thgBu S: page, B: body t: top margin h: header P.(S) =1, hg = 8.75in, wpg = 6in,
g: header-body gap u: bottom margin | h, = 0.625:n, h), = 0.5n, hg = 0.2in, h, = 0.925n.
2 B—1 C g C r | B:body;C:column | I: left margin g: column gap, P,(B) =1, we = 2.875in, wy = lin, wy, = 0.25in, w, = lin.

r: right margin

3 C—ig C,C—1i|C:column #: textline g: textline gap P(C —1i g C)=10.995, P,(C — i) = 0.005,

h; = 10pt, h, = normal

VI. EXPERIMENTAL PROTOCOL observation valué/ to 100, and the width of observation strip

We use our proposed stochastic generative document mo‘%’elto 6 pixels at 300 dpi for level 1, 2, and 3 in Fig. 3. We set

M to randomly generate a dataset of 160 noise-free synthé g maximum number 9f ObSGI‘V?.tIOI’] valié to .100’ and th_e
dictionary pages with groundtruth at 300 dpi. The symbolic teV\fIdth of observation strip¥’ to 3 p'XEIS. at 300 dpi for level 4 in .
source of the database is Optilex [22], a large (600K entries)’: 3. The _parameter values of th_e images sampled at _200 dpi
machine-readable version of a Chinese-English dictionary. d 400 dpi are computed proportional to those for the images
randomly select 50 pages from the dataset as the training §@{npled at 300 dpi.
and consider the remaining 110 pages as the test set. We the : .
resample the dataset and its groundtruth at 200 dpi and Lt%orb\lgonthm Performance Evaluat-lon
dpi. Therefore, we create three datasets with same content bi/e evaluate the model-l algorithm and the model-Il al-
different resolutions. The parameters of the physical layo@rithm on three test datasets, each of which is sampled
model are shown in Table II. Kanungoal.[13], [14] have ad- at & different resolution (200 dpi, 300 dpi, or 400 dpi)
vocated model-based performance evaluation and break-dcil €ach of which has 110 document images degraded at
point identification since 1990. We use a modified performand® different levels ¢ = (», 1.0, 2.0, 1.0, 1.0, 3) with
evaluation methodology to identify break-down points of thg = (0-01, 0.02, ..., 0.10)]. In order to compare the effect of
algorithm. training dataset of dlfferent.degradatlon levels an_d of dlf_ferent

The groundtruth of the training and test datasets are at figgolutions on the evaluation result, we use nine estimated
textline level. We modified the DVI2TIF software to generatg10del parameters for each algorithm in the testing procedure.
textline groundtruth. Each page in the training dataset is dgberefore, for each algorithm, we have nine evaluation results
graded into three degradation levels using a document ded?@s€d on nine estimated algorithm model parameters. We
dation model [12]. The pages in the test dataset are partitiorf@! then compare the robustness of the model-I and model-Ii
into 10 groups and pages in each group are degraded using .%I,g@rlthms Wlt.h respect to the image degradation levels and the
of 10 degradation levels. image resolutions.

We implemented our software with the C programming lan-
guage. The compiler used is gcc-2.96. The platform is a 333 VII. EXPERIMENTAL RESULTS AND DISCUSSIONS

MHz PC running Linux 7.0 operating system. The model-l and |n this section we empirically characterize the training

model-Il algorithm implementation is based on [11]. and recognition algorithms using the experimental protocol
. o described in Section VI. We compare the model-l and the
A. Algorithm Training model-Il physical layout analysis algorithms and analyze their

Each algorithm is trained on the training dataset at thr€&rors in controlled experiments.
degradation levels [noise-free images, images with degradation ) .
¢ = (0.05, 1.0, 2.0, 1.0, 1.0, 3), and images with degradation Algorithm Training Results
¢ = (0.09, 1.0, 2.0, 1.0, 1.0, 3)] and at three resolutions In Fig. 4 we show the estimated observation distribution
(200 dpi, 300 dpi, and 400 dpi). Therefore, each algorithm hasatrix B of both algorithms, and the estimated state duration
nine estimated model parameter sets. The algorithm paramelistribution matrixC' of the model-1I algorithm at the textline
estimation uses the groundtruth of the dictionary pages in thgeammar level and at 300 dpi resolution.
training dataset, and the simple event occurrence frequencyVe can see that with the increase of noise level Bhaurve
counting method. For the model-I algorithm, the parametemsoves toward to the right. This is because the observation
to be estimated are state transition probability mattijxstate measurements for noisy images have a larger value than the
observation distribution matri¥ and initial state distribution same observation measurement for clean images. Fo€'the
«. For the model-1l algorithm, in addition to the parametersurve, the state duration distribution corresponding to textline
of the model-1 algorithm, we need to estimate state duratidright originally has three peaks. The three peaks corresponds
length distribution matrixC'. We set the maximum number ofto the “x” textlines without ascenders nor descenders, the “b”
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Estimated B parameter on Noise-tree Images Estimated B parameter on Degraded images (0.05) Estimated B parameter on Degraded images (0.09) Estimated C Parameter

|
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Fig. 4. (a) Estimated observation distribution matBxon noise-free images, (b) on degraded images at degradation level 0.05, and (c) on degraded images at
degradation level 0.09. State duration distribution maftiis shown in (d). Note thé3 matrix is the same for the model-I and model-II algorithms, éhig for
model-ll only and is the same for all degradation levels. The training datasets have a resolution of 300 dpi.

(a) (b) ©) (d)

Fig. 5.(a) Hierarchical segmentation result on page level, (b) main body of text level, (c) column level, and textline level (d) using the modéht.altne
degradation level of the noisy imagesds= (0.05, 1.0, 2.0, 1.0, 1.0, 3). The algorithm parameters are estimated on the training dataset with the same degradation
level.

and “j” textlines with only ascenders or descenders, and tbéthe model-l and model-1l algorithms in terms of performance
“bj” textlines with both ascenders and descenders. metric p (average textline detection accuracy).

We can see that the performance of the model-1l algorithm
is significantly better than that of the model-I algorithm in all
cases. This is mainly due to the fact that the state duration dis-

An algorithm’s performance depends on the class of dotibutions are explicitly used in the model-1I algorithm. Since
ument images used for training. If the test images are drawre state duration distributions corresponds to the physical di-
from a set outside of this class, the performance of the algmensions of physical components such as header height, column
rithm typically deteriorates. In order to study this break-dowwidth and height, textline height and gap, etc., the performance
effect, we design our test dataset to contain document imagéshe model-Il algorithm is more robust than that of the model-|
that belong to the training class as well as document images thkorithm in the presence of document noise. We can also see
do not belong to the training class. Furthermore, we train arttat the two algorithms achieves optimal performance at the
evaluate our algorithms on images with different resolutions ioise level used for algorithm training. The performance of the
order to study the sensitivity of our algorithms to image resdwo algorithms deteriorates rapidly beyond the training degra-
lutions. Using nine sets of estimated algorithm parameters, dation level since the algorithms begin to have inaccurate seg-
evaluate the model-1 algorithm and the model-1l algorithm omentation at each of the four segmentation levels.
three test datasets each of which is sampled at a certain resollFor noise-free training images, observations tend to have
tion and each of which has 110 images degraded over 10 degmaaller values and the estimated observation distribution ma-
dation levels. There are 10 images at each degradation level &md B for both models are biased toward smaller observation
at each resolution. We report average textline detection acealues. Hence, when these estimated model parameters are used
racy as the performance metric for each algorithm. We also te-segment dictionary pages with more background noise, the
port average algorithm timing for each algorithm. Fig. 5 showsoth algorithms will consider some observation measurements
a sample of the hierarchical segmentation at four levels (page made from text regions even though they are actually
level, main body of text level, column level, and textline levelinade from gap regions, and tend to merge the text regions.
using the model-Il algorithm. Fig. 6 shows the evaluation resulBnce the model-1l uses explicit state duration densities, it can

B. Algorithm Performance Evaluation Results
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Fig. 6. Performances of the model-I and the model-ll algorithms using the model parameters estimated on noise-free training images at intage resoluti
(a) 200 dpi, (b) 300 dpi, and (c) 400 dpi, respectively; on degraded images with degradation payametér05, 1.0, 2.0, 1.0, 1.0, 3) at image resolution

(d) 200 dpi, (e) 300 dpi, and (f) 400 dpi, respectively; and on degraded images with degradation param¢€ed9, 1.0, 2.0, 1.0, 1.0, 3) atimage resolution

(g) 200 dpi, (h) 300 dpi, and (i) 400 dpi, respectively. Error bars represent 95% confidence intervals.

adjust the segmentation favorably whereas the performammnsitiesin model-1lis overcome by erroneous estimation of ob-

of the model-I algorithm deteriorates quickly due to mergingervation distribution matriX3 and textline detection accuracy

of many textlines. However, when the degradation level is tdeegins to deteriorate.

far beyond the training degradation level, the positive effect of When our algorithm is evaluated on datasets with different

state duration densities in model-1l is overcome by erroneoresolutions, the performances across different resolutions are
estimation of observation distribution matrix and textline relatively stable, which demonstrates that our algorithms are rel-
detection accuracy begins to deteriorate. atively insensitive to image resolutions.

When the two algorithms are trained on the noisy images,In Fig. 7, we provide empirical timing analysis of the two
the reverse effect takes place, i.e., the algorithm parametersagorithms. The timing performance of model-1l is worse than
estimated with a bias toward larger observation values. Hentdgat of model-I. This is because we search for an optimal seg-
when these estimated model parameters are used to segmentdéitation over a 2-D space (state and duration) in model-Il al-
tionary pages with less background noise, both algorithms wgjorithm, whereas we search for an optimal segmentation over a
consider some observation measurements that are made fioB space (state) in model-l algorithm. The algorithm timing in-
gap regions even though they are actually made from text rreases with image resolution level since it takes our algorithms
gions, and tend to split the text regions. Similarly, when the inmore time to read high resolution images than low resolution
ages in the test dataset are too clean, the effect of state duratmages.
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Fig. 7. Algorithm timing of the model-I and the model-1l algorithms using the model parameters estimated on noise-free training images at iotage resol
(a) 200 dpi, (b) 300 dpi, and (c) 400 dpi, respectively; on degraded images with degradation payametér05, 1.0, 2.0, 1.0, 1.0, 3) at image resolution

(d) 200 dpi, (e) 300 dpi, and (f) 400 dpi, respectively; and on degraded images with degradation pasam¢€ed9, 1.0, 2.0, 1.0, 1.0, 3) atimage resolution

(g9) 200 dpi, (h) 300 dpi, and (i) 400 dpi, respectively. Error bars represent 95% confidence intervals.

C. Error Analysis is biased toward noise-free images, some observation mea-
surements made on the noisy images are considered as text
In this section, we analyze the following five textline-basegkgion even though they actually arise from gap regions. As a
error categories: groundtruth textline merge error rAtg, result the algorithm fails at higher level of the hierarchy and
groundtruth textline mis-detection error rakg;, groundtruth many text lines are merged. Moreover, at degradation level
textline cut error raté’c, falsely detected noisy line error ratep.01, since one of document margins is segmented as one of
Er, and excessively vertical margin error rak&-. Due to the columns, many false-alarm textlines are created. The fact
space limitation, we report the error analysis results for imagggat many groundtruth textlines are merged also results in high
at 300 dpi resolution. Fig. 8 shows the error characteristigértical margin error rate. When the degradation level of the test
of the two algorithms evaluated on test datasets at differefiftaset increases, the model-Il algorithm still has much better
degradation levels and sampled at 300 dpi. segmentation at higher levels of the hierarchy than the model-I
In the case that the two algorithms are trained on noise-frelgorithm. However, model-1l starts to have inaccurate textline
training dataset, when the degradation level of the test dataseel segmentation at higher degradation levels, which results
increases, the groundtruth textline merge error rate of thresome textlines being split and parts of some textlines being
model-I algorithm increases drastically. Since the estimationerged with adjacent textlines. Therefore, there is a drastic
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Fig. 8. Five types of the segmentation errors for each algorithm using three estimated model parameters and at image resolution of 300 dpi.eShf five typ
error are: groundtruth textline mis-detection error rate, groundtruth textline merge error rate, groundtruth textline cut error rate, éaisel\ndéete lines error

rate, and excessive vertical margin error rate. The errors in (a), (b), (c), (d), and (e) are the algorithm segmentation errors when algorigms gr@restghated

on noise-free training dataset. The errors in (f), (g), (h), (i), and (j) are the algorithm segmentation errors when algorithm parameterset®pstegeaded
training dataset using degradation parameter (0.05, 1.0, 2.0, 1.0, 1.0, 3). The errors in (k), (I), (m), (n), and (o) are the algorithm segmentation errors when
algorithm parameters are estimated on degraded training dataset using degradation paramgtel9, 1.0, 2.0, 1.0, 1.0, 3).

increase in both merge and cut error rate. Since model-ll usesn the case that the two algorithms are trained on training

explicit state duration densities, the merge error rates at smatletaset with the degradation level 0.09, the error rate results on
degradation levels are lower than those of model-I algorithrand beyond degradation level 0.09 are similar to the results in
Since many groundtruth textlines are vertically split, verticdhe first case for the same reason that is mentioned in the first

margin error rate is very low. There is no mis-detection erré@se paragraph. When degradation level is in the range of no
for both model-I and model-Il algorithms. degradation to the degradation level of 0.08, the error rate results

In the case that the two algorithms are trained on trami,{gsemble those from no degradation to the degradation level of

dataset with the degradation level 0.05, the error rate results®R4 in the second case for the similar reasons mentioned in the
and beyond degradation level 0.05 resemble those in the [&&gond case paragraph.

case. This is again because algorithm parameters are trained

with a bias toward the cleaner images, which, in this case, are VIIl. SUMMARY

the i”_‘a_ges with degradation level .Of 0.05. When deg_radationwe have presented an end-to-end framework for analyzing
level is in the range of no degradatlo_n to the degradation le\fﬁh physical layout structure of document images. In this frame-
of 0.04, cut error rate for both algorithms are much larger gl we first proposed a generative document model using sto-
lower degradation levels than at higher degradation level§,astic language models to represent document physical layout
This is because the model estimation is biased toward noisigfies and document logical structures. We represented docu-
images, which results in some observation measurement m t's physical layout structure by stochastic regular gram-
on clean images being considered as gap regions even thopgits, and presented a new segmentation algorithm based on
they actually come from text regions. Therefore, the textprobabilistic finite state automaton. In the proposed physical
regions with relatively small observation measurement valugggmentation algorithm (called model-Il algorithm), we incor-
tend to be split. The model- algorithm also has relatively largsorated information about the physical style layout parameters
merge errors since inaccurate page level segmentation whighestimating a set of state duration distributions. We found the

splits parts of the two columns and also merges parts of the tiyest physical segmentation result by finding the best state se-
columns. guence and state duration length sequence in the probabilistic
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finite state automaton. We compared our algorithm with a badgy the “Markovity” assumption, we get

line physical segmentation algorithm (called model-I algorithm)_ max P01, ..., Otds S1y -+, Sr_2,
and found that the model Il algorithm performs significantly — dr.i#j.s1,.,80—2,d1,...dr—s T ry Ol /
be_tl:[ﬁr than the rgodel I alg_orithdm. el i dy, ooy dp_q|sp—1 =i, f\P)
e proposed generative document model was used in . S
prop 9 ’ P(Ot—dr+1> s Oty S =17, dr|5r—1 =1, )\p)

designing controlled experiments in which a training dataset R
and a test dataset with groundtruth and of different degradation - P(s,—1 =1i[AP).

levels were synthetically created. The proposed model-Il and§ combining the first and last terms, and using Bayes’ rule on
baseline model-I algorithm were trained on the training datagke second term, we get

and then evaluated and compared on the test dataset. We found

the model-1l algorithm is more robust to document noise then = max <81

Jnax max P(o1, ..., Ot—d,, S1y « -+,
ru/L
the model-I algorithm due to its consideration of state duration !

yeesSp—2,d1 .. droy

densities. Sp—2, 8p—1 =1, d1, ..., dr—1|5\p)

In future we plan to i) use better feature models for modeling - P(ot—d, 41, -+, Oty dp|Sp = J, Sp—1 =4, AP)
state observation distributions, ii) extend the model to non-Man- ) 5
hattan layouts, and iii) incorporate model-based logical struc- Py = jlsr—1 =1, A") | .

ture analysis of document page images. Assume that the duration distribution of a state is independent

from observations of the state. Since the observations are inde-

APPENDIX pendent from each other given their states, we get
VITERBI PROCEDURE OFMODEL-Il ALGORITHM . . .
= max 6;_q, (1) - P(sp = j|8p—1 =i, AP)
Let 6:(j) = maxg..q , P01, vy 06 Q1 -y G1, dr 7] .
a = j, @41 # J|AP), be the highest probability of a path L 3p 3
producing observation sequengg . .., o, and state sequence - P(dr]sr = j, A7) - H P(os|sr = 5, A")
@1, -+ qi—1, @ = j, and terminating in statg at time¢. We S:t*drtl
can show that ) -
= max b;-q, (i) - Bij - ¢ja, - [ IT bjs] -
6:(4) = max drsi#i s=t—d,+1
oSGt For simplicity we denotd,. by d and get the following recursive
P (017 ceey Of, Q1 = *+* = (4, = S1, I’elationship:
t
Qdy 41 = " = Qdy+dy = 525 -+ 6:(j) = Inax 6t—a(i) - Bij - ¢ja - [ H bjs] 9)
r—1 = ... = r = S, = ] j\p 8 7 s=t—d+1
q1+2m:1 dm qzm:l 2% -]| ) ( ) whereﬂij = Qjj if d < t, ,BLJ = T ifd =tort =1, and
where the maximum is taken subject to the constraints bo(j) = 1 for all j.
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We use\? to denote the model parameters of the model-II. V\;
now provide a detailed derivation of a recursive relation of t
guantity defined in (8). From now on, we omjs in the fol-
lowing derivation for simplicity. We can rewrite (8) as
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