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Abstract—Computing discrete two-dimensional (2-D) convolu-
tions is an important problem in image processing. In mathemat-
ical morphology, an important variant is that of computing binary
convolutions, where the kernel of the convolution is a 0–1 valued
function. This operation can be quite costly, especially when large
kernels are involved. In this paper, we present an algorithm for
computing convolutions of this form, where the kernel of the bi-
nary convolution is derived from a convex polygon. Because the
kernel is a geometric object, we allow the algorithm some flexibility
in how it elects to digitize the convex kernel at each placement, as
long as the digitization satisfies certain reasonable requirements.
We say that such a convolution isvalid. Given this flexibility we
show that it is possible to compute binary convolutions more ef-
ficiently than would normally be possible for large kernels. Our
main result is an algorithm which, given an image and a

-sided convex polygonal kernel , computes a valid convolution
in ( ) time. Unlike standard algorithms for computing cor-
relations and convolutions, the running time is independent of the
area or perimeter of , and our techniques do not rely on com-
puting fast Fourier transforms. Our algorithm is based on a novel
use of Bresenham’s line-drawing algorithm and prefix-sums to up-
date the convolution incrementally as the kernel is moved from one
position to another across the image.

Index Terms—Approximation algorithms, correlations, digital
convolutions, digital geometry, mathematical morphology.

I. INTRODUCTION

A FUNDAMENTAL problem in image processing is that of
computingdiscrete convolutions[5], [9], [12]. Consider

an image, which is given as a two-dimensional (2-D)
array of real numeric values, and a image array ,
called thekernel (sometimes called atemplateor structuring
elementin the literature). Thediscrete convolution[9] of with

, denoted by , is defined to be
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It is common to embed and within larger images to avoid
wraparound effects. We will assume that any such transforma-
tions have already been applied and ignore wraparound.

A binary convolutionis a special case of a discrete convolu-
tion where is a 0–1 valued function. Binary convolutions are
of particular interest in computational morphology and digital
geometry [21], [22]. For example, thedilationof a digital shape,
described by a 0–1 image, by a digital kernel described by
another such image can be expressed by computing the convolu-
tion , and then thresholding this image so that all strictly
positive values are mapped to 1. Here, de-
notes the reflection of with respect to the origin. See also
[1] for an asymptotically efficient algorithm for computing di-
lations of digital sets. Binary convolutions are also useful in
template matching [9] in binary images, through the use of the
related correlation operation. Our results apply to computing
binary correlations as well. Binary convolutions have the fol-
lowing geometrical interpretation. We can interpret as
placing a copy of at location of the image, and then com-
puting the number of pixels of that are overlapped by .

One problem with computing discrete convolutions is that the
operation can be quite expensive when the kernel of the convo-
lution is large. A naive algorithm for computing the convolu-
tion considers each placement of the kernel, and computes
the weighted sum in time. Since there are possible
placements, this results in an algorithm whose running time is

. Here we assume that and , but these
quantities may still be large. The question is whether we can im-
prove on the factor, especially when is large.

A number of approaches for improving the efficiency of con-
volution computation have been proposed. Kim and Kim pro-
posed a simple method based on the observation that in many
commonly used kernels the number of distinct nonzero elements
is small [15]. Perhaps the most common approach for improving
the efficiency of convolution computation is based on decom-
posing a convolution involving a large kernel into a sequence of
convolutions involving small kernels [18]. In the case of binary
morphology, search algorithms have been proposed to decom-
pose the kernels as dilations of two-point structuring elements
[26]. When the kernel shape is restricted to shapes formed by in-
tersections of half-planes at multiples of 45, it has been shown
that the kernel can be decomposed as dilations of kernels from
a basis set [13]. This sort of decomposition been extended to
3 3 structuring elements for both digitally convex [19] and
nonconvex cases [20]. The basic two-point search algorithm was
also extended to grayscale operations [4]. In all cases, it is as-
sumed that the kernel is described by an eight-way directional
chain code. Hence, many natural shapes such as triangles with
arbitrarily sloped sides are not decomposable in this manner.
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There has also been extensive work on related decomposition
methods for grayscale kernels [8], [24].

The concepts of singular value decomposition (SVD) and
small generating kernel (SGK) have been used to speed up
the grayscale convolution processing time by decomposing
the kernel into separable filters and then decomposing each
separable filter as a sequence of SGK filters [16]. The speedup
is obtained by using the kernels corresponding to the larger
eigenvalues. The SVD/SGK methods, however, are useful only
in the case of grayscale convolutions.

Other methods involve using table lookup to avoid the cost
of multiplication [6], [25]. Burt proposed a technique based on
the use of quadtrees [3]. However, these methods improve run-
ning times only by a constant factor. A common approach to
computing convolutions for large kernels is first to compute
the Fourier transforms of the image and kernel, denoted by
and . Then the convolution can be approximated in

time by computing the elementwise product , and
then inverting the transform [9]. This approach requires only

time, which is a significant savings. However,
for morphological and other discrete applications, it has the in-
elegant property of converting an exact discrete problem into a
continuous problem.

In this paper we consider a significantly different approach.
We consider the problem of computing binary convolutions
where the kernel of the convolution is derived from a convex
polygon. We introduce the notion of avalid digitization of
a geometric shape. We present formal definitions later, but
intuitively, a digitization isvalid if pixels lying entirely inside
the shape are in the digitization and pixels lying entirely
outside the shape are not in the digitization. We then define the
notion of avalid convolution, which is based on using valid
digitizations of the kernel to perform the convolution. Different
placements of the kernel are allowed to use different digitiza-
tions. We show that with this added flexibility it is possible
to compute digitizations for convex polygonal kernels in time
that is independent of the area or perimeter of the kernel. In
particular, we show that a valid convolution of an image
with a -sided convex polygonal kernel can be computed in

time and space. This type of convolution is
of interest in morphology applications, where the kernel can
be approximated by a convex polygon, or decomposed into a
small number of convex polygons. If is small, this can be
significantly faster than existing approaches for large kernels.
The most closely related work to ours is that of box-filtering
[17]. However, box-filtering is limited to rectangular shapes.
Our approach is a generalization of the box-filtering method to
nonrectangular convex polygons. The notion using continuous
mathematics in interpreting discrete morphological operations
has been considered elsewhere [11], [23]. A preliminary
version of this paper appeared in [14].

II. DEFINITIONS AND NOTATION

We begin with some definitions. Let denote the set of or-
dered pairs of integers, calledgrid pointsand let denote the
set of ordered pairs of reals. Given , define to be a

Fig. 1. Valid digitizations.

semi-open unit square centered at, called ’s pixel

The collection of for all subdivides the real plane
into a collection of pairwise disjoint semi-open unit squares. Let
us think of the image as defining a function ,
where

if and ,

otherwise.

This mapping reflects the convention that image arrays are typ-
ically indexed by row and column from the upper left corner.
Henceforth, our indexing will be done assuming the standard

-coordinate system.
Given a set and , let denote the translate

of by , that is

We will call this translate theplacementof at . Let
, and define to be .

Given a set , adigitization is a mapping of
to a set of grid points. A digitization is valid if for
every pixel that lies entirely within the corresponding grid
point is in the digitization, and for every pixel that is entirely
outside of the corresponding grid point is not in the digitiza-
tion. More formally,

and

Pixels that partially overlap may or may not be in a valid dig-
itization. An example of a valid digitization is themidpoint dig-
itization, denoted by , which consists of all grid points
that lie within . (Fig. 1 shows valid digitizations of three dif-
ferent placements of the same polygon. The one in the center
is the midpoint digitization.)

Given an image and any set of grid points , define
theweightof relative to to be the sum of the image values
of

Let be a convex polygon in the plane, and letbe an image.
We define themidpoint convolutionof by to be an
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image , where is defined to be the weight of the midpoint
digitization of placed at , that is

A valid convolutionof by is defined in the same way, with
replaced by any valid digitization of . Note that

because valid digitizations are not unique, different placements
may be digitized differently. A valid convolution is a variation
of the standard binary convolution, subject to some flexibility
in the shape of the kernel. Our main result is the following.

Theorem 1: Given an image and a -sided convex
polyon , a valid convolution of by can be computed in

time and space.
Henceforth, to avoid the continual need for negations, we will

assume that the kernel for the convolution is , and so the
value of the convolution at each point is just the weight of some
valid digitization of a translate of . The union of the pixels of
the image forms theimage rectangle , where

All grid points outside this rectangle are assumed to have value
0. We assume that the kernelis represented by a cyclic listing
of its vertex coordinates.

III. T HE ALGORITHM

In this section we describe our convolution algorithm. We
begin with an intuitive high-level description of the essential
technique used by the algorithm. Recall thatdenotes the
number of sides of the kernel. The first stage of the algorithm
involves decomposing the kernel into a collection of
simpler shapes, calledprimitive shapes, such that can be
represented as a weighted sum of these shapes. Each primitive
shape is an axis-aligned rectangle or right triangle.

The second stage involves preprocessing the image. We create
sequences of equally spaced parallel lines, where each se-

quence is either horizontal, vertical, or parallel to a side of.
Thesearecalledcanonical lines.Eachsequenceofcanonical lines
decomposes the image rectangle into a collection of thin regions
calledcanonicalstrips.Wewilldigitizeeachstripusingmidpoint
digitizationandpreprocessitbyamethodtobedescribedlater.We
will show that in constant time, it is possible to compute the total
weight of a parallelogram defined by a strip and two lines that are
either horizontal or vertical. We will show that this structure can
be built in time and space for each side of .

The third stage of the algorithm computes the actual convo-
lution. It is based on computing valid convolutions for each of
the primitive shapes and then summing the results over all
shapes to get the final convolution. For any placement of a prim-
itive shape, we will define a special valid digitization called the
canonicaldigitization.Wewillshowthatforeachprimitiveshape,
the weight of a single placement of the shape can be computed
in time. Then we will show that once the weight of one
placement is known, it is possible to update the weight in
time whenever the placement is translated by a unit distance, ei-
therhorizontallyorvertically.This isdonewith theaidof thedigi-
tizationsof thecanonicalstrips.Bytranslatingtheprimitiveshape

Fig. 2. Decomposing the kernel into primitive shapes.

to each point of the image, the entire convolution for each primi-
tive shape can be computed in . Finally, we sum the con-
volutions of all primitive shapes, producing the convolution by

in total time. The various elements of the algorithm
are explained in detail in the following subsections.

A. Decomposition Into Primitive Shapes

As mentioned above, the first stage of the algorithm involves
representing as a weighted sum of primitive shapes
and the bounding box . The representation is constructed by
first enclosing in an axis-aligned bounding box, and then
decomposing the difference into a collection of rectangles
and right triangles. We visit the vertices ofin cyclic order and
for each vertex we imagine shooting two bullets horizontally
and vertically away from the interior of , until hitting either
the bounding box or a previous bullet’s path (see Fig. 2). It
is easy to see that these bullet paths subdivide into a set
of rectangles and right triangles with pairwise disjoint interiors.
Together with , these form the set of primitive shapes.

Let denote the number of sides of and let denote the
number of such shapes. Observe that each time a bullet is shot, it
splits some region into at most two subregions. Sincebullets
are shot (two per vertex of ), and we started with the bounding
box , it follows that . Each bullet shoot
can be done in time, since the result depends only on the
location of the bounding box and possibly the result of the bullet
paths of the previous vertex. Theprimitive shapesare denoted

.
Shapes have pairwise disjoint interiors. Let

denote the boundary of . If a grid point in falls on
the boundary between two or more of these shapes, we assign
it uniquely to one of them as follows. Consider the vector

for an infinitesimal . A point on is
assigned to if and only if is in the interior of .1

Intuitively, this means that each shape is semi-open with the
lower-left parts of the boundary belonging to (see Fig. 3).
Note that this is consistent with our convention that pixels are
closed on their lower-left sides. Let us apply this convention to
the convex kernel as well. Because the definition of a valid
digitization provides the freedom to include a grid point on the
boundary of or not, there is no loss of generality in applying
this convention to .

We assert next that can be expressed as a weighted sum of
these shapes and. The bounding box is assigned a weight

1The reason for squaring the second component of the vector is so that the
vector’s angle with respect to thex-axis decreases with�. Because the polygon
is bounded by straight line edges, for all sufficiently small� > 0, the point
p + v cannot lie on the boundary ofK .
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Fig. 3. Examples of semi-open shapes.

of , and all the other primitive shapes are
assigned a weight of 1. Let . Let denote the weight
of . Let be 1 if and 0 otherwise. For all ,
define the weight of to be .

Lemma 1: For all ,

if
otherwise.

(1)

Proof: Points outside are clearly not in and have
weight 0. Points in the interior of have weight 1 since they lie
inside but outside all the other primitive shapes. Because the
primitive shapes other than are pairwise disjoint and cover

, each point of lies in and exactly one shape
and hence has weight .

B. Canonical Lines and Canonical Digitizations

For each , and each primitive shape of , we define a
special digitization of the placement , called thecanonical
digitization and denoted by . This will be done in
such a way that the weighted sum of these digitizations defines
a valid digitization of the placement .

Consider any primitive shape . If is a rectangle then
define to be the midpoint digitization, that is, the
set of grid points lying in the intersection of and the image
rectangle . If is a right triangle, then the main issue is how
to digitize its slanted side (the one that is not axis parallel). To
do this we introduce the notion of acanonical line. We consider
two cases depending on the slope of’s slanted side. If the
absolute value of the slope of the slanted side of the triangle
is less than 1, we call a low-slope triangle; otherwise, we
call it a high-slope triangle. Below we consider the high-slope
case. The low-slope case is handled in a symmetrical manner,
by swapping the roles of the- and -axes.

Let denote the slope of the slanted side of. Consider
the sequence of lines (sorted, from left to right) that intersect
the image rectangle , have slope , and have -intercept an
integer multiple of 0.5 (see Fig. 4). Observe that the horizontal
distance between two consecutive canonical lines is 0.5. (In the
low-slope case, -intercepts are used instead, and the vertical
spacing is 0.5.) These lines subdivideinto a collection of thin
regions, calledcanonical strips. (The reason for the choice of
0.5 as the separation distance will be discussed later.)

Lemma 2: For any primitive shape and an image
rectangle , the number of canonical lines and number of
canonical strips generated by is .

Proof: Assume for concreteness thatis positive and
. The proofs for the other cases follow from simple symmetry.

Recall the definition of the image rectanglefrom Section II.
By considering the lines passing through the upper left corner

and the lower right corner of , it

Fig. 4. Canonical lines.

Fig. 5. (a) Range of canonical lines and (b) the intersection of a triangleK

with R.

Fig. 6. Canonical digitization.

follows that a line of slope intersects only if its -intercept
lies within the interval

[see Fig. 5(a)]. Since it follows that the length of this
interval is at most .

The canonical digitizationof a right triangle is de-
fined as follows. Consider the linesupporting the slanted side
of . If does not intersect the image rectangle, then the in-
tersection of is either empty or a rectangle [see Fig. 5(b)].
In the latter case, the canonical digitization is defined as in the
rectangle case to be the set of grid points lying within this rec-
tangle. Otherwise, let us assume for the sake of concreteness
that the triangle lies to the right of the slanted line. (The other
case is symmetrical.) Select the nearest canonical linethat
lies on or to the right of [see Fig. 6(a)]. This can be accom-
plished in constant time by computing the-intercept of , and
then rounding to the next larger integer multiple of 0.5. In gen-
eral, is rounded toward the interior of the triangle it supports.
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The canonical digitization of is defined to be the set of
grid points that lie within the intersection of the bounding rec-
tangle of and the image rectangle, and are either on or
to the right of . [These are shown as black points in Fig. 6(a).]
Notice that by rounding to the canonical line lying toward the
interior of the triangle, the canonical digitization consists of a
subset of the grid points lying in . Thus it is a subset of
the midpoint digitization of . [For example, in Fig. 6(a)
two grid points in the midpoint digitization have been excluded
from the canonical digitization.]

Given the canonical digitization for a single primitive shape,
we define the canonical digitization for as the weighted sum
of the canonical digitizations for primitive shapes . More
formally, recalling the weights introduced above, we define
the canonical digitization of to be the weighted sum of
the digitizations of , that is

In other words, a pixel lies in the canonical digitization if the
weighted sum of sets containing this pixel is 1, and does not lie
in it if this weighted sum is 0. [An example is shown in Fig. 6(b).
The grid points belonging to the final digitization are shown as
black points in this figure.] Since the primitive shapes lie outside

, observe that the sides are rounded away from the interior of
, and hence the points of the canonical digitization ofare

a superset of the points in the midpoint digitization of. Next
we show that the result is a valid digitization of.

Lemma 3: For any convex polygon , and any vector
, the canonical digitization is a valid digitization

of .
Proof: By the definition of a valid digitization, it suffices

to show the following for each grid point . Recall that
is the pixel (semi-open unit square) centered at.

1) If lies entirely within then is assigned
a weight of 1.

2) If is entirely outside of then is assigned
a weight of 0.

3) Otherwise is assigned a weight of either 0 or 1.
Recall that a grid point is in the midpoint digitization of a

shape if and only if lies in that shape. To establish 1), observe
that if lies entirely within then its midpoint

does as well. Every grid point in is given an
initial weight of 1 because it lies within the bounding rectangle

. Furthermore, because each of the canonical digitizations
is a subset of the midpoint digitization, no canonical digitization
for any primitive shape can contain this point. Thus, its total
weight is 1.

To establish 2), consider a pixel that is disjoint from
. If lies entirely outside the bounding box ,

or outside the image bounding box, it is not allocated to any
canonical digitization, and so it is given a weight of 0. Other-
wise, lies within and outside , and
hence lies in a unique primitive shape . We assert that is
in the canonical digitization of some shape . Observe that
if this is true, then because the primitive shapes are disjoint,

Fig. 7. Proof of Lemma 3.

does not lie in the canonical digitization of any other primitive
shape. But does lie within , and hence it is assigned a weight
of .

To establish this assertion, suppose thatlies within the
bounding box , but outside , and is not in the
canonical digitization of any primitive shape. We derive a
contradiction. Clearly is in a unique primitive shape ,
but not in the canonical digitization of . For the sake
of concreteness, let us consider the case of a high-slope side
where lies to the right of its slanted side (see Fig. 7).
Since is not in the canonical digitization, it lies to the left of
the associated canonical line. However, by construction, the
canonical line is to the right of the slanted side of by a
horizontal displacement of at most 0.5. Therefore the slanted
side of lies to the left of by a horizontal displacement
of less than 0.5. Since the pixel is of width 1 and is its
midpoint, it follows that the slanted side of intersects

. However, this contradicts hypothesis 2). The low-slope
case is proved symmetrically, using vertical distances.

Finally, to show 3), consider a pixel that intersects the
boundary of . If lies outside the bounding box

, it is assigned a weight of 0. Otherwise,will be assigned
an initial weight of 1 because it lies inside the bounding box. We
claim that can be in the canonical digitization of at most one
other primitive shape. This is becausecan lie in at most one
primitive shape, and hence it lies in the midpoint digitization of
at most one primitive shape. Because the canonical digitization
of a shape is a subset of the midpoint digitization,lies in at
most one canonical digitization. If is in some such canonical
digitization, its final weight is 0, and otherwise its weight is 1.
This establishes 3), and completes the proof.

The reason for rounding lines toward the interior of the prim-
itive shape triangles and the choice of 0.5 as the separation dis-
tance between canonical lines is apparent from the proof. The
proof of part 2) relied on the fact that the horizontal distance is
half the width of a pixel. The proof works as long as the dis-
tance between canonical lines is at most 0.5. By reducing the
spacing between the canonical lines it is possible to produce
a digitization that is arbitrarily close to the midpoint digitiza-
tion. However this would result in proportionally more canon-
ical strips, and hence the algorithm’s running time and storage
costs would increase proportionally. Note that the proof of 3)
relied on the fact that canonical digitizations are subsets of the
associated midpoint digitizations. If this were not the case, a
pixel whose center is in but which is intersected by two sides
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Fig. 8. (a) The two translatest +K (dotted) andt +K (solid) and the rectangles� and� which form the symmetric difference, (b) the initial image
pixel weights, and (c) the weights after computing prefix sums within each column.

of might conceivably be assigned to the canonical digitiza-
tions of two difference primitive shapes. The resulting weight
of the associated grid point would be , and this
does not correspond to any valid digitization of.

C. Updating Canonical Digitizations

The main algorithmic tasks needed to compute the digitiza-
tion are 1) computing the weight of the canonical digitization
of a single placement of a primitive shape, and 2) updating the
weight of the canonical digitization when the shape is shifted
by one unit distance, either horizontally or vertically. The first
task can be accomplished by applying any standard algorithm
for digitizing convex polygons [7]. The second task will be ad-
dressed in the remainder of this section.

1) Rectangular Shapes:We first consider the case of a rect-
angular primitive shape , since it is the simplest. For concrete-
ness we consider the case of a translation to the right by one unit.
(The other unit shifts are handled similarly.) Letand be two
placement vectors where that . We assume that
the weight of the canonical digitization of is known, and
we want to compute the weight of the canonical digitization of

. First, observe that the symmetric difference between
and is the union of two congruent rectangles

and , each of unit width, where lies to the left of
and lies to the right of [see Fig. 8(a)]. The weight of

is equal to the weight minus the weight of
and plus the weight of . Since we are dealing with canonical
digitizations, this means

Observe that if the width of is less than 1 then and
overlap. However, this is not a problem because the weights in
the region of overlap will cancel when we add one and subtract
the other.

The incremental change in weight can be computed in con-
stant time once we know the weights of the two unit-width rect-
angles and . To do this we preprocess the image as fol-
lows. For each column and each grid point we store the total
weight of the image points in that same column that have equal
or smaller -values. This is called aprefix sum.

For example, in Fig. 8(b) we show the weights of the pixels of
the image. Observe that the total weight of is .
In Fig. 8(c) we show the result after computing the prefix sums
for each column. The weight of is the difference between

the prefix sums of the topmost grid point in the rectangle and the
grid point just below the bottommost grid point, that is,
. Doing the same for we find that its weight is ,

and hence the total change of weight between placementsand
is . The weight of is 12 and hence after only

three arithmetic operations (after preprocessing) we determine
that the weight of is .

The prefix sums for each column can be computed by a simple
scan in time, implying that all the prefix sums can be com-
puted in total time. The weight of the canonical digitiza-
tion of any rectangle of unit width can be computed in constant
time by rounding its -coordinates to determine the grid column
that it spans, and then rounding its-coordinates to determine
the elements of the prefix sum whose difference is to be taken.
A vertical unit-length translation is handled similarly, but it re-
sults in two rectangles of unit vertical height. The preprocessing
for this case consists of computing prefix sums for each of the
rows.

2) Triangular Shapes: Horizontal Translation:Next we
consider how to update the weight of the canonical digitization
of the placement of a right-triangle primitive shape. We will
assume that the slanted side of has a slope that is positive
and at least 1. The cases for negative and/or low slopes are
handled similarly. Let us first consider the case of a horizontal
translation; we will consider vertical translations later. As
before, let denote the current placement of , whose
weight we know, and let be the new placement, whose
weight we wish to compute. Let [see Fig. 9(a)].

In the rectangular case, we reduced the problem to that of
computing the difference of weights of two rectangles of unit
width. In this case we will see that the problem reduces to com-
puting the difference of weights of a rectangle and a parallelo-
gram. Consider two shapes and [see Fig. 9(b)]. is a
rectangle of unit width that lies to the right of , and is a
parallelogram of unit width lying to the left of , with hor-
izontal top and bottom sides and slanted sides that are parallel
to the slanted side of . These two shapes overlap one another,
but observe that the symmetric difference of and
is equal to the symmetric difference of and . Thus, we
have

The horizontal width of is one unit, and hence it spans
exactly one column of grid points. Its weight can be computed
in constant time using the same method described earlier for
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Fig. 9. Updating weights for the horizontal translation of a triangle.

Fig. 10. Updating weights for the vertical translation of a triangle.

rectangles. [For example, the weight in Fig. 9(c) is
.]
Next, we consider the canonical digitization of . Observe

that the horizontal distance between the slanted sides in the
canonical digitization of this parallelogram is exactly one unit.
This follows from the facts that the original slanted lines of the
triangle before and after translation are separated by a distance
of one unit, and both slanted lines are rounded in the same direc-
tion to an -intercept that is a multiple of 0.5. Thus spans
exactly two canonical strips. It suffices to compute the sum of
the weights of the two parallelograms resulting from the inter-
section of and these two canonical strips.

As before, we assume that the image has been preprocessed
by computing the prefix sums within each canonical strip. [This
is shown in Fig. 9(d).] Once these prefix sums have been com-
puted, we compute the difference between the prefix sum of the
topmost grid point in each of the two parallelograms and the
topmost grid points in the strip lying immediately below each
parallelogram. (Details will be discussed in Section III-C4.) If
there is no pixel below the parallelogram, then the value 0 is
used.

In Fig. 9(d), the weight of the left parallelogram is
and the weight of the right parallelogram is and hence
the weight of is . Finally the difference between

and is . The weight of is 8, and
hence using only six arithmetic operations we determine that
the weight of is .

3) Triangular Shapes: Vertical Translation:The last case to
be considered is the incremental change in the weight of a right
triangle primitive shape, again with a high slope, but in the case
of a vertical translation. Assume that the triangle is translated
vertically downward by one unit. Let denote the cur-
rent placement of , whose weight we know, and let
be the new placement, whose weight we wish to compute. Let

[see Fig. 10(a)]. As in the horizontal transla-
tion case, the change in weight can be expressed as the differ-
ence of the weights of a parallelogram and a rectangle. Con-
sider two shapes and . is a rectangle of unit vertical
width lying beneath . is a parallelogram of unit ver-
tical width lying above , with vertical left and right sides
and slanted sides that are parallel to the slanted side of[see
Fig. 10(b)]. As before, these two shapes overlap one another, but
the symmetric difference of and is equal to the
symmetric difference of and .

The vertical width of is one unit, and hence it spans ex-
actly one row of grid points. Its weight can be computed in con-
stant time, using the same method described earlier for rectan-
gles, but this time using prefex sums along the rows. [For ex-
ample, the weight in Fig. 10(c) is .]

Let denote the slope of the slanted side of. In the hor-
izontal translation case, the slanted parallelogram was of unit
width and hence spanned exactly two canonical strips. In this
case the slanted parallelogram is of unit vertical width and hence
of horizontal width . By hypothesis this is a high slope prim-
itive shape, and hence . Because each canonical strip is of
horizontal width 0.5, it follows that (depending on the vagaries
of rounding) the slanted parallelogram spans either 0, 1, or 2
canonical strips. (By the way, this is why we need to distinguish
between the high-slope and low-slope cases. Ifwere less than
1, then the parallelogram might span an arbitrarily large number
of canonical strips.)

The processing is exactly the same as in the horizontal trans-
lation case, except that we determine how many canonical strips
(0, 1, or 2) are spanned by by rounding. We then compute
their total weight using the prefix sums for these strips and re-
turn the total. For example, in Fig. 10(d), spans only one
canonical strip, and its total weight is computed by taking the
difference between the topmost grid point and the grid just be-
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Fig. 11. Technical issues in the algorithm.

neath the parallelogram, for a weight of . Combining
this with the weight of it follows that the total weight change
is . Since the weight of is 8, the weight of

is . The number of arithmetic operations needed
to compute the updated weight is no greater than the horizontal
translation case.

4) Technical Issues:There are a couple of technical issues
that were not fully discussed in the previous sections. The first
involves how prefix sums are computed. We consider the case of
high slopes. Low slopes follow from a symmetrical argument,
and horizontal and vertical strips have already been discussed.
Each canonical strip is of width 0.5. We begin by pairing con-
secutive strips together to form a collection of disjointdouble
stripseach of unit width. We can compute the grid points of the
image rectangle that lie within each wide strip by applying
an appropriate modification of any standard line digitization al-
gorithm, for example, Bresenham’s midpoint algorithm [2], [7]
[see Fig. 11(a)].

As we walk along this digitized line from bottom to top, we
can determine which grid points lie in the left canonical strip
and which to the right and update a prefix sum counter for each
such strip. In Fig. 11(b), we show this for the left strip. Finally
we store the prefix sums for each canonical strip as a vector with
one entry for each row of the image, even if this row does not
contribute a grid point to the canonical strip. This is shown on
the right of Fig. 11(b).

The time to apply this to each double strip is proportional to
the number of grid points in the strip. Because the double strips
are of unit width, each grid point of occurs in one double
strip, and hence the total time to compute the prefix sums is
proportional to the image size, which is . The total space
used is also by the same argument. Note that the only
essential difference for the low-slope case is that prefix sums are
computed and stored by columns, rather than by rows. Hence,
we have the following.

Lemma 4: The preprocessing for all canonical strips for a
given slope can be done in time and space.

The second technical issue is how to determine which prefix
sum values are used in computing the weights of shapesand

. For the rectangular cases, this simply involves rounding
the coordinates of the appropriate side to the next smaller in-
teger and accessing the associated prefix value. In the case of
horizontal translation, the-coordinates of the top and bottom
sides of the parallelogram are simply rounded to the appropriate
integer values. Because prefix sums for high-slope canonical

strips are stored for each row, we can access the appropriate
prefix sum values in constant time. The case of vertical trans-
lation is somewhat more involved. This is because the left and
right sides of the parallelogram are vertical. Consider the case
of a parallelogram for a high-slope primitive shape [as shown in
Fig. 11(c)]. To access the appropriate element of the prefix sum,
we compute the -coordinate of the intersection of the vertical
side with the top edge of the canonical strip. We then round this
down to the next smaller integer, and access the prefix sum value
associated with this row.

Combining the discussion of this and previous sections, we
have the following result.

Lemma 5: After preprocessing has been completed, if the
weight of the canonical digitization of a placement of a primitive
shape is known, then the weight of the canonical digitiza-
tion of any unit-length translation of the primitive shape, either
horizontally or vertically, can be computed in constant time.

As mentioned earlier the constant factors in the time are quite
small. For each of the sides of the kernel the preprocessing
involves digitizing a line of this slope, and visiting each pixel
of the image once in order to compute the prefix sums. The
number of primitive shapes is at most , and each update
step essentially involves rounding coordinates to determine the
appropriate prefix sums to access, and then applying up to six
arithmetic operations to these sums.

D. Canonical Convolution Algorithm

We now give the complete description of the algorithm for
computing the approximate convolution. As mentioned before,
the algorithm operates by computing the weights of the canon-
ical digitizations for each of the primitive shapes, and then
computing the weighted sum over all these shapes. Lemma 3
states that the resulting sum is a valid digitization, and hence
the resulting convolution, called thecanonical convolution, is a
valid convolution. Here is the entire algorithm, which is given
the input image and the kernel polygon

with sides.

1) Using the method of Section III-A, subdivide into
primitive shapes denoted .

2) Compute the prefix sums for the rows and columns of the
image in time. Initialize the convolution result
image to 0.

3) For from 1 to , perform the following steps:

a) if is a right triangle shape, compute the prefix
sums for the canonical strips for the slanted edge
of ;

b) by brute force, compute the weight of the canonical
digitization of the placement of in the lower left
corner, [see Fig. 12(a)];

c) for from 2 to , do the following:

i) compute the weight of the canonical digiti-
zation of by updating the weight
of through a vertical trans-
lation of one unit [see Fig. 12(b)];

ii) for running from 2 to , compute the
weight of the canonical digitization of

by updating the weight of
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Fig. 12. Complete algorithm structure.

through a horizontal trans-
lation of one unit [see Fig. 12(c)];

d) as each new digitization weight is com-
puted in steps b) and c), add the result to the appro-
priate index in the convolution matrix in.

The correctness of this procedure has been established in the
previous discussion. The running time of step 1) is . Step 2)
can be performed in time. By Lemma 4, Step 3a) can be
performed in time. Step 3b) can be performed, by any
algorithm for digitizing convex polygons [7], [10]. The running
time of such an algorithm is proportional to the number of pixels
covered by , and this can be at most . By Lemma
4, steps 3c-i) and 3c-ii) take time each, and since they are
performed times, the total time for each iteration of the
loop in step 3) is . Since this loop is repeated for each
of the primitive shapes, step 3) takes total time .
Hence, the total running time is .

As mentioned in Lemma 4, the space requirements are
per slope. Since we can discard the prefix sums

computed in step 3a) after their use in step 3c), we need to
keep only three copies of the prefix sums at any time (one for
the slanted slope, one for the rows, and one for the columns).
Thus the total space requirements are . This
establishes our main result, Theorem 1.

IV. CONCLUSIONS

We have presented an efficient algorithm for computing
approximate (valid) convolutions for binary kernels that are
modeled as convex-sided polygons. The algorithm runs in

time on an image, irrespective of the area or
perimeter of the kernel. Our approach is based on a special type
of digitization of the kernel, called a canonical digitization,
which varies from one placement to the next. We have shown
that canonical digitizations can be updated efficiently through
the use of prefix sums. Although we have showed that the
constants hidden by the O-notation are reasonably small, this
method would not be competitive with existing convolution
algorithms for small or rectangular kernels. However, applica-
tions involving large convex kernels should benefit from this
approach.

Some interesting open problems are suggested by this work.
One question is whether these techniques can be generalized to
convolutions involving kernels that are multi-valued (grayscale)
or to nonconvex simple polygons. In theory, such a kernel
could be subdivided into single-valued, convex parts. However,
Lemma 3, which establishes the validity of the canonical

digitization, does not generalize immediately to collections of
convex polygons.

Another question is: If valid convolutions are used to approx-
imate morphological operations (such as dilation), what can be
said about the properties of the resulting shapes, as compared
with their exact counterparts, and what is the magnitude of the
resulting discrepancy in practice. As mentioned at the end of
Section III-B, by placing canonical lines closer together it is
possible in increase the accuracy of the digitization to any de-
sired level, but since this would result in more canonical strips,
a proportional increase in computation time and space would be
paid.
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