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ABSTRACT
Most relational query optimizers make use of information about
the costs of accessing tuples and data structures on various storage
devices. This information can at times be off by several orders
of magnitude due to human error in configuration setup, sudden
changes in load, or hardware failure. In this paper, we attempt to
answer the following questions:

• Are inaccurate access cost estimates likely to cause a typical
query optimizer to choose a suboptimal query plan?

• If an optimizer chooses a suboptimal plan as a result of in-
accurate access cost estimates, how far from optimal is this
plan likely to be?

To address these issues, we provide a theoretical, vector-based frame-
work for analyzing the costs of query plans under various storage
parameter costs. We then use this geometric framework to charac-
terize experimentally a commercial query optimizer. We develop
algorithms for extracting detailed information about query plans
through narrow optimizer interfaces, and we perform the character-
ization using database statistics from a published run of the TPC-H
benchmark and a wide range of storage parameters.

We show that, when data structures such as tables, indexes, and
sorted runs reside on different storage devices, the optimizer can
derive significant benefits from having accurate and timely infor-
mation regarding the cost of accessing storage devices.
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1. INTRODUCTION
The complexity of database and storage systems has been increas-
ing steadily, and with it the total cost of ownership. While the
newer systems can accomplish more, installing and managing them
has become increasingly difficult, requiring skilled and expensive
database and storage administrators. Many storage and database
vendors have started addressing this issue by directing their scien-
tists and engineers to design systems that can automatically con-
figure, monitor, and tune themselves. Since such systems would
minimize human intervention, they have the potential to reduce the
total cost for the end user.

There are many scenarios in which automatic control of database
and storage systems is desirable. A database product like IBM DB2
has nearly 150 parameters that have to be configured during setup.
It is not uncommon for database administrators, for example, to use
default (and obsolete) values for the storage throughput and latency
parameters, or to set incorrectly parameters dealing with a RAID
device. Furthermore, while some configuration parameters do not
change over time, other parameters like the effective CPU speed
and storage parameters can change over time due to load changes
on the CPU or on the disk, network delays, device failures, RAID
rebuilds, or maintenance tasks like data backups. Monitoring and
updating dynamic system parameters in real time is not a pleasant
job for any human administrator and some say the job is best done
by autonomic machines. Some of these issues have been raised
in [36].

However, before we can build algorithms that will allow database
systems to adapt themselves to changing levels of storage, network,
and CPU loads, we need to understand the sensitivity of these sys-
tems to such changes. In this paper, we quantitatively characterize
the impact of changes in storage parameters on the database opti-
mizer. We introduce a vector-space framework for analyzing the
costs of executing query plans and then use it to analyze the ef-
fectiveness of a commercial query optimizer on the TPC-H [12]
queries on a commercial database. In particular, we strive to an-
swer the following questions:

• Are inaccurate access cost estimates likely to cause a typical
query optimizer to choose a suboptimal query plan?

• If an optimizer chooses a suboptimal plan as a result of in-
accurate access cost estimates, how far from optimal is this
plan likely to be?

The organization of the rest of this paper is as follows: The next



section describes related literature. In Section 3, we describe our
theoretical framework for characterizing the sensitivity of the query
optimizer. The conditions under which an optimizer might generate
suboptimal plans due to errors in estimating storage access costs are
described in Section 4. The impact of these sub-optimal plans is
discussed in Section 5. Algorithms used for finding optimal plans
and experiments is discussed in Section 6. In Section 7, we give
our experimental design, and in Section 8 we provide the results of
characterizing the IBM DB2 query optimizer.

2. RELATED WORK
Research in autonomic computing is gaining interest. IBM has
started an aggressive program to address this issue [8], which is
similar work being done at Stanford and U.C. Berkeley [24]. The
importance and issues from the database perspective have been out-
lined by Weikum and his colleagues [36].

Much of the recent autonomic computing work in databases has
centered on improving the accuracy of query optimizer statistics.
Chen and Roussopoulos [3] proposed a method of adaptively ad-
justing selectivity estimates by using the access patterns of queries
to collect biased samples of tables. Stillgeret al. [34] developed an
incrementally adaptive query optimization algorithm that updates
the database statistics on-line. Luet al. [23] proposed a similar
strategy for updating statistics. The LEO project [34] at IBM ap-
plies adaptive selectivity estimation to a real commercial system.
Chaudhuri and Narasayya [2] proposed a method for automati-
cally selecting a subset of statistical measurements. Deshpande and
Hellerstein [13] studied methods of reducing the bandwidth needed
to pass optimizer statistics between nodes of a federated database
system.

Parametric query optimization has been studied extensively [15, 21,
6, 18, 14, 25, 28, 5, 4, 19]. For situations in which the selectivi-
ties of predicates in relational queries depend on parameters passed
in by the user during runtime, this approach to optimization cre-
ates a set of optimized plans instead of just one. Depending on
the user-specified runtime parameter, an appropriate query plan is
selected. Much of the work in this field is based on a geometric
interpretation of the query optimization problem that is similar to
the vector-space approach we use in this paper. Some researchers
have conducted experimental analyses to determine the number
of potentially-optimal plans for queries with various types of join
graphs, but we do not know any such analyses to determine the
relative optimality of different plans under varying circumstances.

Researchers have created several different models of the perfor-
mance of storage systems. Worthingtonet al. [37] and Ruemmler
and Wilkes [29] describe realistic simulation models for storage
devices. The complexity of tuning database systems is described
in various product manuals [31, 7]. Evaluation of database sys-
tems is addressed by the Transaction Processing Council (TPC)
which produces the TPC-H benchmark used in this paper [12, 10].
Tools for empirical evaluation of query optimizers were described
in [33]. Impact of RAID rebuilds on storage access was addressed
by Brown and Patterson [1].

For more details on query optimization the reader is referred to the
original article by Selingeret al. [30], and various surveys [20, 22].

3. THEORETICAL FRAMEWORK
In this section, we describe a vector-based framework for reason-
ing about the decisions a query optimizer will make in the face of

inaccurate access cost estimates. These constructs are similar to
concepts used in some recent work on parametric query optimiza-
tion [14, 19].

3.1 Cost Model
We assume that the database has access ton time-shared resources
for performing operations on tuples. Each resourceri has atrue
resource costci. The true cost of usingui units of resourceri is
ui · ci.

For the purposes of this paper, we assume that query execution ad-
heres to anadditive cost modelsimilar to that used by most query
optimizers today [30, 20, 22]. Thetrue total costof a query plan is
given by:

T =

n∑
i=1

ui · ci. (1)

The plan that minimizesT given in Equation 1 for a particular
query is thetrue optimal planfor that query.

The time required to access data stored on a hard drive is generally
not directly proportional to the amount of data accessed. To model
hard drives more accurately, we treat a hard diskd as two resources:
ds to model queueing time, rotational delays, track-to-track seeks,
etc.; anddt to model sequential reads and writes. For example, a
disk operation that involved 2 seeks and read a total of 3 blocks
of data would incur a cost of2 · cds + 3 · cdt . This model of
disk drive access time, though not entirely accurate, is a good first
approximation of drive behavior [29, 37].

3.2 Vector Notation
We can convert the scalar notation of the previous section to vector
notation as follows:

Recall the cost equation

T =

n∑
i=1

ui · ci. (2)

whereci is cost of using a unit of resourcei andui is the number
of units of resourcei that a query plan uses.

We can rewrite this equation as

T = U · C (3)

WhereU = (u1, u2, . . . un) andC = (c1, c2, . . . cn). We callC
the resource cost vectorandU the resource usage vectorfor the
query plan.

3.3 Modeling Inaccurate Access Costs
Since we focus in this paper on storage access cost parameters, we
assume that the query optimizer makes accurate estimates of the
amount of each resource that a given query plan uses. In particu-
lar, we assume that the optimizer’s estimates of the selectivities of
predicates and the sizes of intermediate results are accurate.

For resource usage costs, however, we assume that the optimizer
may not know the exact value of each costci. Rather, the optimizer
has a set ofestimated resource costŝci. The optimizer uses these



estimated resource costs to compute anestimated total costfor each
candidate query plan:

T̂ =

n∑
i=1

ui · ĉi. (4)

or, in vector notation,

T̂ = U · Ĉ (5)

Using any of a variety of optimization algorithms [30, 22, 18, 32],
the optimizer chooses a query plan that minimizes the estimated
total costT̂ . We call this plan theestimated optimal plan.

Differences between the estimated resource costs and the true re-
source costs can arise from sources such as:

• The storage or network hardware may undergo a period of
heavy load or a partial failure.

• The optimizer may use costs for hardware that is older or
newer than the actual hardware.

• The optimizer may use costs for a different number of disks,
CPU’s, network cards, etc., than the system actually uses.

We assume that the optimizer’s costs may be off by at most a certain
finite amount. That is, the true resource cost vector must always fall
within a large but finite region of the cost vector space that contains
the estimated resource cost vector. We call this region thefeasible
cost region, and we refer to any resource cost vector that falls within
this region as afeasible cost vector.

4. CIRCUMSTANCES LEADING TO
SUBOPTIMAL PLAN CHOICES

An important element of our sensitivity analysis is the answer to the
question: Under what circumstances will a query optimizer choose
a suboptimal query plan due to inaccurate access cost estimates?

In this section, we introduceswitchover planesandregions of in-
fluence, constructs which formalize which regions of the resource
cost vector space cause a particular candidate optimal query plan to
become the optimal plan.

4.1 Equicost Lines
The dot-product ofU andC as defined in Equation 3 is equal to the
component ofU in the direction ofC. Thus, all resource utilization
vectors along a line perpendicular toC will have the same total cost
underC (See Figure 1.). We call such a line anequicost line.

More precisely, letA andB be the resource utilization vectors of
query plansa andb, respectively. We notice that, if the resource
cost vectorC is the same for both plans, then the two plans have
the same total cost if and only ifA · C = B · C. It follows that, if
both plans have the same cost, then the dot product(A−B)·C = 0.
Thus, any two utilization vectorsA andB that lie on an equicost
line result in the same total cost.

4.2 Switchover Planes

C
A

equicost line

Figure 1: An equicost line. Any resource utilization vector
along this line will have the same cost as querya under the
resource costs given byC.

A

B

Switchover
Plane

Plan b more expensive

Plan a more expensive
when cost vector is on
this side.

when cost vector is on
this side.

Figure 2: The switchover plane for two queries. A is the re-
source usage vector for querya, and B is the resource usage
vector for query b. If the resource cost vector is on theB-
dominated side of the switchover plane, then planb is more
expensive than plana. Likewise, if the resource cost vector is
on theA-dominated side of the plane, plana is more expensive.

Consider two vectorsA andB, representing the resource utiliza-
tions of query plansa andb, respectively. Theswitchover planeof
A andB is a plane such that, if the resource cost vectorC is in the
switchover plane, then the total cost of query plana is the same as
the total cost of query planb.

More precisely,

SwitchoverA,B = {C ∈ <n|A · C = B · C}
= {C ∈ <n|(A−B) · C = 0}

SwitchoverA,B is a plane through the origin and orthogonal to the
vectorA−B (See Figure 2).

4.3 Half-Spaces
SwitchoverA,B divides the vector space into two half-spaces. If
the resource cost vector is on one side of the switchover plane,a
always has a higher cost thanb. On the other side,b is always more
expensive thana.
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Figure 3: Dominated plans. Each plana dominates over any
plan that is in Qa, the positive first quadrant relative plan a (de-
noted by dotted lines). Thus, plansA1, and A5 are not candi-
date optimal plans because they are dominated by other plans.

More precisely, we define theA-dominated half-spaceas{C ∈
<n|A ·C > B ·C}, and theB-dominated half-spaceas{C ∈ <n|
A · C < B · C}.

4.4 Candidate Optimal Plans
A relational query optimizer typically considers a very large set of
potential query plans when optimizing a query. However, only a
subset of these plans can ever become the optimal plan as a result
of changes in access method costs. We call this set of plans the
candidate optimalplans.

Let Q denote the positive first quadrant and be defined asQ =
<n

+∪{0}. The positive first quadrant relative to a plana is denoted
by Qa and is defined asQa = {x ∈ <n|x = a+ q whereq ∈ Q}.

A query plana with resource usage vectorA is candidate optimal
if there exists a feasible resource cost vectorC such that, forany
query planb with resource usage vectorB 6= A, A · C ≤ B ·
C. In fact, one can easily show that a plan cannot be a candidate
optimal plan if it lies in the positive first quadrant relative to any
other plan (See Figure 3). That is, a plana dominatesover all plans
whose resource usage vectors line inQa, the positive first quadrant
relative toa.

4.5 Regions of Influence
We are interested in determining the resource cost scenarios under
which different query plans become optimal. LetA denote the re-
source usage vector for query plana. Theregion of influenceof A
is the set of cost vectors under which plana is the optimal query
plan.

More precisely, letR = {A1, A2, . . . , Am} denote the set of re-
source usage vectors for all plans for queryq, and letU ⊂ <n

denote the feasible cost region. We define the region of influence
Vi for planAi ∈ R with respect toR andU as:

Vi = {v ∈ U |Ai · v ≤ Aj · v for all j 6= i} . (6)

Regions of influence are convex polytopes whose borders are
switchover planes (See Section 4.2). They are similar to Voronoi
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Figure 4: Regions of influence. Each candidate optimal plan
has a regions of influence in which it is the optimal plan. These
regions of influence are cone shaped with the apex at the origin.
The regions of influenceV2, V3, and V4 corresponding to the
candidate optimal plansA2, A3, and A4 are shown here.

regions [26] except that there is a Voronoi region corresponding to
every “site” whereas in our case there is a Voronoi “cone” corre-
sponding to every candidate optimal plan andnonefor plans that
are not candidate optimal. This is illustrated in Figure 4.

5. POTENTIAL SEVERITY OF SUBOPTI-
MAL PLAN CHOICES

In addition to knowing whether a query optimizer may choose a
suboptimal plan as a result of inaccurate access method cost pa-
rameters, it is also important to know how far from optimal such a
choice would be.

In this section, we introducerelative total cost, a measure of how
far from optimal a query plan is under a set of resource costs. We
use relative total cost to formalize how far from optimal the query
optimizer’s choice of plan will be.

5.1 Relative Total Cost
We define therelative total costof query plana with respect to
query planb under resource costsC as

Trel(a, b, C) =
Total cost ofa
Total cost ofb

. (7)

Relative total cost is useful for two particular purposes:

• The set of cost vectors for which the relative cost of plansA
andB is exactly 1 is the switchover plane (See Section 4.2.)
between the two plans.

• Relative total cost is a way ofnormalizingthe total cost of a
query plan. In particular, relative total cost isunitless. It is
generally more useful to know that a particular query plan is
k times as expensive as the optimal plan than it is to know
that a query plan has a total cost that isj units greater than
the total cost of the optimal plan.

5.2 Global Relative Total Cost
If the query optimizer chooses a suboptimal plan, we would like to
know how far from optimal the plan is likely to be. To gauge the



relative “badness” of a query plan, we use a measure calledglobal
relative cost.

The global relative cost of query plana under resource costsC,
writtenGTCrel(a, C), is defined as the relative total cost ofa with
respect to theoptimalquery plan underC. Intuitively, global rel-
ative cost measures how many times as fast the query would have
run had the optimizer chosen the correct plan.

We observe that query plana is a candidate optimal plan (See
Section 4.4.) if and only if there exists a cost vectorC such that
GTCrel(a, C) = 1.

5.3 Invariance of Relative Total Cost
Multiplying the resource cost vector by any constant scaling fac-
tor will not change the relative total cost of any pair of resource
utilization vectors.

Consider a cost vectorC and an arbitrary scaling factork. Let A
andB be the resource usage vectors for plansa andb, respectively.
Let α andβ denote the angles betweenA andC, andB andC,
respectively. Then we have:

OBSERVATION 1. Trel(a, b, C) = Trel(a, b, kC)

Proof:

Trel(a, b, kC) =
A · kC

B · kC
= Trel(a, b, C).

Intuitively, Observation 1 means that the relative total costs of dif-
ferent query plans do not change at all unless the costs of accessing
resources changerelative to each other. A change in the system
that makes all resources faster or slower by the same multiplicative
factor will have no effect on the relative costs of different query
plans.

Observation 1 also implies that regions of influence (See Sec-
tion 4.5.) are cone-shaped and radiate out from the origin of the
cost vector space.

5.4 An Upper Bound
If the optimizer knows the cost of accessing storage devices to
within a factor ofδ, then the query plan it chooses will be within a
factor ofδ2 of optimal. The following theorem and corollary state
this bound more rigorously:

THEOREM 1. Leta andb be two query plans. Let
C = (c1, c2, ..., cn) be a resource cost vector, and let
Ĉ = (ĉ1, ĉ2, ..., ĉn) be another resource cost vector such thatĉi is
betweenci/δ and ci · δ for all i from 1 to n. If the relative total
cost ofa andb underC, Trel(a, b, C), is γ, then the relative total
cost ofa andb underĈ must be betweenγ/δ2 andγ · δ2.

Proof:
Let A andB be the resource usage vectors for plansa andb, re-
spectively. LetCmax = (c′1, c

′
2, ..., c

′
n) denote the choice of̂C

that maximizesTrel(a, b, Ĉ). Then we have:

Trel(a, b, Cmax) =
A · Cmax

B · Cmax

≤ A · (δ × C)

B · Cmax
,

since each element ofCmax is within a factor ofδ of the corre-
sponding element ofC.

≤ A · (δ × C)

B · ( 1
δ
× C)

= δ2 A · C
B · C

= δ2 × Trel(a, b, C).

The other half of the bound follows from the same reasoning.

Corollary: If the optimizer’s cost estimates are within a multiplica-
tive factor of1/δ to δ of the true costs, then the cost of the plan the
optimizer chooses will be withinδ2 of the cost of the optimal plan.

The above bound is tight, as demonstrated by the following exam-
ple:

EXAMPLE 1. Consider two plansa andb with two-element re-
source usage vectors,A = (1, 0) and B = (0, 1), respectively.
Under the cost vectorC1 = (1, 1), the relative total cost of the
plans is:

Trel(a, b, C1) =
A · C1

B · C1
=

(1, 0) · (1, 1)

(0, 1) · (1, 1)
= 1.

Under the cost vectorC2 = (δ, 1/δ), the relative total cost of the
plans is:

Trel(a, b, C2) =
A · C2

B · C2
=

(1, 0) · (δ, 1/δ)

(0, 1) · (δ, 1/δ)
= δ2.

Thus we see that the bound is tight.

5.5 A Tighter Bound for a Special Case
If the relationship between the resource usage vectors of candi-
date optimal plans meets certain criteria, then a significantly tighter
bound on induced optimizer error can apply.

Let A andB denote the resource vectors for query plansa andb,
respectively. We calla andb complementary query plansif there
exists ani such that theith element ofA is nonzero and theith
element ofB is zero, or vice versa.

If there areno complementary plans for a query, then arbitrary
changes in resource costs can only induce a constant change in the
relative cost of any two query plans. Regardless of how inaccurate
the query optimizer’s estimated resource costs are, the optimizer
is guaranteed to choose a plan that is within a (potentially large)
constant factor of optimal.

We will use the following result regarding ratios of dot products in
the proof of the theorem in this section:

LEMMA 1. Let a1 and b1 be real numbers greater than zero.
Then, for any real numbersa2 andb2 greater than zero, such that



a2
b2

≤ a1
b1

, and any real numbersc1, c2 ≥ 0:

a1c1 + a2c2

b1c1 + b2c2
≤ a1

b1
(8)

Proof:
If c1 = 0, then the lemma is trivially true. Otherwise:

a2

b2
≤ a1

b1

a2b1 ≤ a1b2

a2b1c2 ≤ a1b2c2

a1b1c1 + a2b1c2 ≤ a1b1c1 + a1b2c2

b1(a1c1 + a2c2) ≤ a1(b1c1 + b2c2)

a1c1 + a2c2

b1c1 + b2c2
≤ a1

b1

That completes our proof.

We now prove a bound on the relative speedup of non-
complementary plans.

THEOREM 2. Let a andb be query plans that are not comple-
mentary, and letA = (a1, a2, ..., an) andB = (b1, b2, ..., bn) be
the resource usage vectors fora and b, respectively. Letra,b

max =
max1≤i≤n

ai
bi

, and letra,b
min = min1≤i≤n

ai
bi

. Then the relative

total cost ofa andb under any cost vectorC must be betweenra,b
min

andra,b
max.

Proof:
Without loss of generality, assume that all elements ofA andB
are greater than zero and thata1

b1
= ra,b

max. Consider an arbitrary
resource cost vectorC = (c1, c2, ..., cn).

From Lemma 1, we have:

a1c1 + a2c2

b1c1 + b2c2
≤ a1

b1

Applying the lemma again gives us:
(a1c1 + a2c2) + a3c3

(b1c1 + b2c2) + b3c3
≤ a1c1 + a2c2

b1c1 + b2c2
≤ a1

b1

Applying the lemman− 3 more times gives:
a1c1 + a2c2 + ... + ancn

b1c1 + b2c2 + ... + bncn
≤ a1

b1

A · C
B · C ≤ a1

b1

So, by definition:

Trel(a, b, C) ≤ a1

b1
= ra,b

max

The other half of the bound follows from the same reasoning.

Corollary: If there are no complementary plans, then the cost of
the plan the optimizer chooses will be within a multiplicative factor
of

maxa,b(max(ra,b
min, ra,b

max)) (9)

of the cost of the optimal plan, wherea andb range over all pairs
of candidate optimal plans.

Of course, the ratios between corresponding elements of two re-
source usage vectors could be quite large, as the following example
illustrates:

EXAMPLE 2. Consider a query with the following join graph:

T1 − T2 − T3 (10)

We assume that join predicates are independent and that each table
has one million tuples and the joins have selectivities of1× 10−8.
We also assume that tableT1 is located on storage resource 1, and
all other tables and indexes are on storage resource 2.

Consider the following two alternative plans for the query:

• Plan A scans tableT1 and probes indexes on tablesT2 and
T3, in that order.

• Plan B scans tableT3 and probes indexes on tablesT2 and
T1, in that order.

Since it scans tableT1, planA will read all one million tuples from
the table and does not use any indexes onT1. PlanB, on the other
hand, executes ten thousand probes against the index on tableT1

and fetches one hundred tuples from the underlying table.

Thus, planA will use ten thousand times more of resource 1 (the
disk storing tableT1) than planB. So the maximum ratio between
the cost vectors of plansA andB is 10000.

As the ratios between corresponding elements of resource usage
vectors increase, the bound in Theorem 2 becomes less and less
meaningful. In particular, if there exist complementary plans for
a given query, then the bound does not hold at all. In this case,
changes in resource costs by a multiplicative factor between1/δ
andδ can cause the query optimizer to choose a plan that is subop-
timal by as much asδ2, following the bound in Theorem 1.

5.6 Circumstances Leading to Complemen-
tary Plans

In our analyses of resource usage vectors (See Section 8.2), we
discovered three main causes for a given pair of plans being com-
plementary or having a large ratio between corresponding elements
of their resource usage vectors.

• If the plans access different numbers of tuples from a partic-
ular table, we call themtable complementaryplans.

• If the plans access the same numbers of tuples from a table,
but they use different access paths to retrieve the tuples, we
call themaccess path complementaryplans.

• If of the plans makes extensive use of temporary out-of-core
data structures such as sorted runs or hash buckets, while the
other plan does not, we call the planstemp complementary
plans.

6. ALGORITHMS
In this section we provide the algorithms used for finding the worst-
case performance degradation due to incorrect query plan. We also
provide an algorithm for computing the resource usage vector cor-
responding to a particular query plan. These algorithms were used
in the experiments described in Section 8.



6.1 Worst-Case Analysis
Our first experiment aimed to determine the maximum possible
effect of access method costs on the query optimizer’s choice of
query plan. The experiment proceeded as follows:

1. Choose a set of typical resource costsC0 = (c1, c2, ..., cn),
theinitial resource cost vector. We call the query planp0 that
is optimal under these resource costs theinitial query plan.

2. Allow all resource costsci to vary independently by a multi-
plicative factor between1/δ andδ. For each possible set of
costs, compute the global relative total cost (See Section 5.2.)
of the initial query plan.

3. Report the maximum global relative cost asδ, the size of the
cost ranges, increases.

In designing this experiment, we took advantage of the following
observation:

OBSERVATION 2. If the feasible cost region is a convex poly-
tope with verticesV , then, for any query plana, there must ex-
ist a vertexv ∈ V such that, for anyu ∈ V , GTCrel(a, v) ≥
GTCrel(a, u).

Briefly, the proof of Observation 2 goes as follows: Leta andb be
two arbitrary candidate optimal plans with resource usage vectors
A andB. Recall from Section 5.1 that the relative total cost of
plansa andb is Trel(a, b, C) = A·C

B·C . The value of this expression
is determined by the angles betweenA andB, respectively, and the
resource cost vectorC. Because of this relationship,Trel(a, b, C)
is monotonic asC varies along any straight line. It follows that
there must exist a vertex of the feasible cost region that maximizes
Trel(a, b, C). Sincea andb are arbitrary plans, there must be a
vertexv ∈ V that maximizes global relative cost.

Observation 2 allowed us to calculate the worst-case global relative
cost for a query plan by measuring the global relative cost at each
of the vertices of the feasible cost region. Intuitively, a vertex of
the feasible cost region for this experiment is a point at which the
cost of each resourcei is eitherci · δ or ci/δ.

We used the DB2 query optimizer to calculate the cost of the opti-
mal plan at each vertex of the feasible cost region. To determine the
cost of the initial query plan under arbitrary resource costs, we used
the optimizer to find the total cost of the plan at several different re-
source cost vectors. We then estimated the resource usage vector
of the initial query plan using a least squares estimation technique
described in the next section.

6.1.1 Least Squares Estimation of Resource Usage
Vectors

An important aspect of our experimental design was to use the
query optimizer from a well-established DBMS for computing the
costs of query plans. In order to take advantage of the capabilities
of an industrial-strength query optimizer, however, we needed to
work around its limitations. In particular, commercial optimizers
do not provide access to resource usage vectors for the query plans
they consider. To obtain these vectors for different query plans, we
needed to estimate them from information that the optimizerdoes
provide. We made this estimation as follows:

Let n be the number of resources. Consider a candidate optimal
plan p, andm (m ≥ n) resource cost vectorsC1, C2, . . . , Cm

under which planp is the optimal plan. Lett1, t2, . . . , tm de-
note the total cost of planp under the resource costs given by
C1, C2, . . . , Cm, respectively. Finally, letUp denote the resource
usage vector for planp. Since the cost model is linear, we have:

C1 · Up = t1

C1 · Up = t2

...

Cm · Up = tm .

We can write the above equations in a compact form asCUp = T
whereC is am × n matrix with m rows of cost vectorsCi, and
T is am× 1 vector of the observed costs reported by the database
optimizer. The least squares estimate ofUp is given by [35, 17,
27]

Ûp =
[
CtC

]−1
CtT

Solving for Up gives the resource usage vector for query planp.
The matrix inverse is computed using Gaussian elimination [35,
17, 27].

In our experiments, we obtained each sample point(Ci, ti) by feed-
ing the costs inCi into the DB2 optimizer and asking it for the
optimal query plan and its estimated total costti. In the ideal no-
error case,m = n points are sufficient to find then unknownsci.
However, to compensate for quantization error within the query op-
timizer, we always used at leastm = 2n samples when estimating
resource usage vectors using least squares.

We validated this method by using the estimated resource usage
vectors to compute the total cost of the query plan under additional
cost vectors and comparing this cost with the cost that the query op-
timizer returns. We found the discrepancy between these computed
total costs to be less than one percent.

6.2 Analysis of Resource Usage Vectors
Our second set of experiments involved computing the resource us-
age vectors for every candidate optimal plan (See Section 4.4.) for
a given query and feasible cost region. The purpose of these exper-
iments was to provide greater insight into the results of the first set
of experiments.

6.2.1 Finding Candidate Optimal Plans
The analysis of each query began by identifying the candidate op-
timal plans for the query and determining their resource usage vec-
tors.

We located the candidate optimal plans through a five-step process:

1. Choose a set of resource cost vectorsS, all of which fall
within the feasible cost region (See Section 3.3.).

2. Use the query optimizer to determine the optimal plan and
its total cost under each cost vector inS.

3. Sample additional resource cost vectors until there are
enough sample points to estimate the resource usage vector
of each query plan found.

4. Use least squares to estimate (See Section 6.1.1.) the re-
source usage vectors of the plans found thus far.



5. Determine whether the plans found so far comprise all the
candidate optimal plans. If there are additional candidate op-
timal plans, go back to step (3).

To determine whether a set of candidate optimal plans is complete,
we took advantage of the following observation:

OBSERVATION 3. Let C1 and C2 be two arbitrary resource
cost vectors. If query plana is the optimal plan under the costs
given by bothC1 and C2, thena is the optimal plan under any
convex combination ofC1 andC2.

Briefly, the proof of Observation 3 goes as follows: Letb 6= a be
an arbitrary query plan, and letA andB denote the resource usage
vectors for plansa andb, respectively. Letβ be a constant such
that 0 ≤ β ≤ 1, and let the convex combination of the cost be
C̄ = βC1 + (1− β)C2. Then we have:

Cost of plana underC̄ = A · C̄
= A · (βC1 + (1− β)C2)

= βA · C1 + (1− β)A · C2

≤ βB · C1 + (1− β)B · C2

= B · C̄
= Cost of planb underC̄

Corollary to Observation 3:If query plana is optimal at every ver-
tex of a convex polytope in the cost vector space, then it is optimal
at every point within the polytope.

Observation 3 provided us with a method to determine whether our
set of candidate optimal plans was complete. The method involved
dividing the feasible cost region into polytopes such that, for each
polytopeP , a single plana was optimal at every vertex ofP . To
generate such polytopes, we calculated the region of influence (See
Section 4.5.) of each plan under the assumption that our set of
candidate optimal plans was complete and contracted each region
of influence by a very small amount.

7. EXPERIMENT DESIGN
Using the theoretical framework from Section 3, we designed a set
of experiments that measure the sensitivity of a query optimizer to
changes in access method costs on a set of queries. In choosing
our experimental setup, we attempted to choose a setup similar to
real-world databases. Toward this end, we used the query optimizer
from a leading commercial database and the database schema and
queries from a well-known database benchmark.

7.1 Optimizer
In order to obtain results that apply to real-world database systems,
we designed our experiments to work with any query optimizer that
meets the following criteria:

• The optimizer uses a linear cost model, as described in Sec-
tion 3.1.

• The optimizer allows the user to set the values of all resource
costs.

• The optimizer reports the estimated total cost (See Section
3.3.) of the estimated optimal plan, as well as enough infor-
mation to identify each plan uniquely.

Most commercial query optimizers in use today support the above
functionality. For the results in this paper, we used a well-known
commercial query optimizer, the IBM DB2 Version 8.1 for Linux
optimizer [9, 16]. This optimizer considers a robust set of alter-
native plans, including plans with bushy join trees and plans with
such exotic operations as index ORing and star joins.

7.2 Database Design and Statistics
We chose the database schema from the TPC-H benchmark for
our test database. In particular, we used the indexes that IBM
used in an actual published run of the benchmark [10]. Informa-
tion on the specific indexes used can be found in the Full Dis-
closure Report on the benchmark run [10]. We obtained opti-
mizer statistics from the 100 GB database described in the report.
These statistics were the result of running the DB2 SQL com-
mand RUNSTATS ON TABLE <table name> WITH DIS-
TRIBUTION AND DETAILED INDEXES ALLon each table
in the schema, after using the Transaction Processing Performance
Council’s dbgen software [11] to load the database. The bench-
mark group at IBM used thedb2look [7] utility to create a dump
of the statistics, and we loaded this dump into the catalog of our
empty test database. With the transplanted statistics in place, the
query optimizer on our test database estimated operator selectivi-
ties for the database used in the benchmark run.

7.3 System Parameters
We ran our experiments using the DB2 Enterprise Edition for Linux
Version 8.1. The DB2 query optimizer was configured to generate
query plans for a 32-way symmetric multiprocessor. To speed our
experiments, we loaded an identical copy of the database statistics
into each node of a 4-node cluster of 1.39 GHz Pentium III com-
puters. The computers in the cluster each ran a separate instance
of DB2 Enterprise Edition for Linux Version 8.1 [9] on top of Red
Hat Linux version 7.3.

To ensure that the query optimizer on our test databases “saw”
the same system parameters it would use while running the TPC-
H benchmark, we duplicated all of the DB2 environment variable
settings and database parameters listed in the “Tunable System Pa-
rameters” section of the Full Disclosure Report that affect the DB2
query optimizer. We used thedb2fopt utility to “fool” the opti-
mizer into thinking that our test database had a 2.5 GB buffer pool
and a 512 MB sorting heap, as on the benchmark system. We con-
figured the optimizer to use the same optimization level that was
used in the benchmark run.

The following table lists some of the more important system pa-
rameters we set.



Parameter Name Value
DB2 EXTENDEDOPTIMIZATION YES
DB2 ANTIJOIN Y
DB2 CORRELATEDPREDICATES Y
DB2 NEWCORRSQFF Y
DB2 VECTOR Y
DB2 HASHJOIN Y
DB2 BINSORT Y
INTRA PARALLEL YES
FEDERATED NO
DFT DEGREE 32
AVGAPPLS 1
LOCKLIST 16384
DFT QUERYOPT 7
OPTBUFFPAGE 640000
OPTSORTHEAP 128000

To the extent that the DB2 query optimizer can accurately predict
the cost of executing query plans, the results of our experiments
should apply directly to a 100 GB instance of the TPC-H bench-
mark.

7.4 Queries
We analyzed the 22 queries in the TPC-H benchmark suite in our
experiments. The text of these queries can be found in the bench-
mark specification document [12].

8. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments. Using
the experimental setup in Section 7 and the procedures in Section
6, we performed two separate analyses of the 22 TPC-H queries.

8.1 Results of Worst-Case Analysis
Our worst-case analysis experiment used the algorithm in Section
6.1 to determine the maximum possible effect of various multi-
plicative changes in resource costs. To model a system administra-
tor who leaves DB2’s resource cost estimates at their default values
instead of computing the actual values for her storage setup, we
used DB2’s default values of 24.1 time units and 9.0 time units for
ds anddt (See Section 3.1.), respectively. We used a starting CPU
cost of1.0 × 10−6 time units per instruction. We then allowed
these costs to vary independently by multiplicative factors ranging
from 1

δ
to δ. For each level of variation, we recorded the maxi-

mum global relative total cost (See Section 5.2.) that could occur if
each of the query optimizer’s resource cost estimates was off by a
multiplicative factor of up toδ.

8.1.1 All Tables and Indexes on Same Device
In our first worst-case analysis experiment, we simulated a database
system that places all of its tables and indexes on the same storage
device. That is, we constrained the cost to access a page of tu-
ples from a given table to be the same as for any other table in the
database. Thus, there was effectively a total of three resources in
this analysis: The two disk parametersds anddt (See Section3.1.)
and the CPU.

As shown in Figure 5, the DB2 query optimizer proved relatively
insensitive to changes in resource costs in this experiment. Even
when we allowed costs to vary arbitrarily by a factor of 10000, the
initial query plan was never more than a five times more expensive
than the optimal query plan. The shape of the curves indicates that
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Figure 5: Worst-case global relative cost of the TPC-H queries
with all tables on the same storage device. Thex-axis measures
the error in the optimizer’s estimates of resource costs. At point
δ on the x-axis, the true cost corresponding to each estimated
resource costci is allowed to range from ci

δ
to δ × ci. Each line

represents the worst-case relative performance of one of the 22
TPC-H query plans that the optimizer would choose with in-
creasingly inaccurate resource cost estimates. Even under ex-
treme errors in estimating the costs of accessing resources, the
cost of the chosen plan was within a factor of 5 of optimal.Note
that they-axis of this plot is on a logarithmic scale.

all the queries had only non-complementary plans and therefore
followed the constant bound in Section 5.5. For 10 of the queries,
the total cost of initial query plan was within a factor of 0.02 of that
of the optimal plan throughout the experiment.

The queries that displayed the most variation in global relative cost
were queries 8, 19 and 20. We used DB2’sEXPLAIN PLANfa-
cility to examine the candidate optimal query plans for these three
queries. In the case of queries 8 and 19, we found that the choice
of join method for a join between theLINEITEM andPART ta-
bles was relatively sensitive to the relative cost of sequential and
random I/O. Recall from Section 3.1 that we model a disk drived
using two parameters,ds anddt. When the “seek time” parame-
terds was relatively high, the optimizer choose to joinLINEITEM
andPARTusing a hash join. When the “transfer time” parameter
dt was relatively high, the optimizer favored using a foreign key
index onLINEITEM to perform index nested loops join with the
PARTtable. With query 20, the optimizer initially chose to use in-
dexes to filter thePARTSUPPandSUPPLIERtables before joining
them. When random I/O became expensive, the optimizer switched
to table scans. Removing the filter operation changed the effective
cardinalities of these relations, causing a different join order to be-
come optimal. However, this new join order did not significantly
alter the amount of data read from the other tables in the query.

8.1.2 All Tables and Indexes on Different Devices
In our second worst-case analysis experiment, we simulated a
database system that places all of its tables and indexes on different
storage devices. We allowed the cost of accessing each table and
the cost of accessing each table’s indexes to vary independently in
this experiment. We also allowed the cost of accessing temporary
space to vary independently of all other storage costs. Due to limi-
tations of the database system we used, we modeled all indexes for
a given table as being on the same storage device. We also kept
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Figure 6: Worst-case global relative cost of the TPC-H queries
with all tables and their indices on different storage devices.
The x-axis measures the error in the optimizer’s estimates of
resource costs. At pointδ on the x-axis, the true cost corre-
sponding to each estimated resource costci is allowed to range
from ci

δ
to δ × ci. Each line represents the worst-case relative

performance of one of the 22 TPC-H query plans that the opti-
mizer would choose with increasingly inaccurate resource cost
estimates. Errors in estimating the costs of accessing resources
can cause the query optimizer’s chosen plan to be suboptimal
by an large margin. Note that they-axis of this plot is on a loga-
rithmic scale.

the disk parametersds anddt (See Section 3.1.) in a fixed ratio
to reduce the running time of the experiment. For ak-table query,
this analysis effectively considered the cost of accessing2k + 2
resources: one resource for each table and one resource for each
table’s indexes, plus a single temporary resource and a single CPU
resource.

The results of this second analysis are quite different from the first
(See Section 8.1.1.). As the variation in access cost,δ, increases,
the worst-case global relative cost increases quadratically withδ
for 18 of the 22 queries. This asymptotic behavior indicates that
the queries had complementary plans and followed the quadratic
bound given in Section 5.4.

Of particular interest in this analysis were queries 11, 16, and 20.
The global relative cost of queries 11 and 16 increased slowly un-
til δ reached approximately 100, at which point the global relative
cost increased quadratically withδ. This behavior is due to the
presence of alternative query plans with varying ratios between cor-
responding resource usage vector elements (See Section 5.5.). At
low values ofδ, an alternative plan that was not complementary to
the initial plan became optimal. At higherδ values, another alterna-
tive plan that was complementary to the initial plan but had higher
overall resource usage to begin with eventually began to dominate.

Query 20, on the other hand, was almost an order of magnitude
more sensitive than the other queries to changes in resource costs.
ExaminingEXPLAIN output showed that this sensitivity was due
to the optimizer’s choice of join method for joining thePART
andPARTSUPPtables. The initial optimal plan used an index on
PARTSUPPto perform index nested loops join. Increasing the cost
of accessing this index penalized this plan, causing the optimizer
to switch to using hash join. Since the cost of joiningPARTand
PARTSUPPdominated the costs of the candidate optimal plans for
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Figure 7: Worst-case global relative cost of the TPC-H queries
with a separate storage device for each table and its corre-
sponding indexes. Thex-axis measures the error in the opti-
mizer’s estimates of resource costs. Each line represents the
worst-case relative performance of one the 22 TPC-H query
plans that the optimizer would choose with increasingly inac-
curate resource cost estimates. Errors in estimating the costs
of accessing resources had an effect in between the effects in
Figures 5 and 6.

this query, the choice of query plans was especially sensitive to the
cost of accessing the index onPARTSUPP.

8.1.3 One Device Per Table and Corresponding
Indexes

After obtaining the results in Section 8.1.3, we wondered how
much of the worst-case global relative cost we observed was due
to placing tables on separate storage devices from their indexes, as
opposed to being due to placing the tables on separate devices from
each other. We reasoned that the costs of accessing a table or its
indexes are likely to be correlated. For example, in a distributed
database, the indexes for a table are likely to be stored at the same
site as the table itself. To determine the effects of separating tables
and indexes, we designed a third experiment that was intermediate
between the first two experiments.

In this experiment, we simulated a database system that places each
table of the TPC-H schema, along with the indexes for the table, on
a different storage device. That is, we varied the cost of accessing
each table by the same amount as we varied that of accessing the
table’s indexes. For ak-table query, this analysis effectively con-
sidered the cost of accessingk+2 resources: one resource for each
table, plus a temporary resource and a single CPU resource.

The results from this third worst-case analysis were intermediate
between those of the first two experiments. Worst-case global rela-
tive cost for 15 of the queries approached a constant, following the
bound in Theorem 2. Five of the other seven queries saw worst-case
global relative cost rise proportional to the square of the error in es-
timating resource costs, approaching the bound in Theorem 1. The
global relative cost of query 9 reached a constant at aδ value of
approximately 500 and then began increasing quadratically when
δ reached approximately 5000. As in Section 8.1.2, this behavior
is indicative of a complementary alternative query plan with rela-
tively high usage of the non-complementary resources. Query 16,
which had previously exhibited quadratic behavior, saw global rel-



ative cost tail off at approximately 1000, indicating that there was
an alternative query plan that accessed a particular resource 1000
times less than the initial plan.

Tying the access costs of tables and their corresponding indexes to-
gether reduced the number of complementary plans for each query
and also reduced the ratios between corresponding elements of the
non-complementary plans. Intuitively, many of the differences be-
tween the candidate optimal plans in Section 8.1.2 involved choices
between index and table access. Making these two types of access
equally expensive removed what had been an important differenti-
ating factor between plans.

8.2 Analysis of Resource Usage Vectors
Using the technique described in Section 6.2.1, we located the can-
didate optimal plans for the TPC-H queries for each of the cases
we tested in our first set of experiments. For the experiments de-
scribed in Sections 8.1.1 and 8.1.3, we found all candidate optimal
plans and their resource usage vectors. For the experiments in Sec-
tion 8.1.2, we obtained candidate optimal plans and resource usage
vectors for 16 of the 22 queries.

On the experimental setup that simulates placing all of the
database’s tables on the same device, we found no complementary
candidate optimal plans for any query. For each of the queries,
the maximum ratio between corresponding dimensions closely
matched the worst-case global costs found in Section 8.1.1.

On the experimental setup that simulates placing each table and
each table’s indexes on a separate storage device, we found a large
number of complementary plans. For those queries that experi-
enced worst-case global costs of greater than 100 in Figure 6, more
than half of the possible pairings of candidate optimal plans for a
given query were complementary or had ratios of greater than an or-
der of magnitude between corresponding elements of their resource
usage vectors. Further analysis revealed that all of these comple-
mentary and near-complementary plans were access path comple-
mentary or temp complementary (See Section 5.6.). No pair of
candidate optimal plans was table complementary.

As with the worst-case analyses, the experimental setup that sim-
ulates placing tables on different storage devices but co-locating
them with their respective indexes produced results that were in
between those that the first two setups produced. Correlating the
costs of accessing tuples via indexes and via the tables themselves
eliminated access path complementary plans (See Section 5.6.), but
we still found a large number of temp complementary plans.

8.3 Discussion
When on-disk data structures all reside on the same storage de-
vice, our experiments indicate that the DB2 query optimizer will
choose a plan with a cost that is within a small constant factor of
the optimal plan, even if the optimizer’s estimates of the relative
costs of accessing storage resources are off by a large margin. We
attribute this result to the non-complementary nature of the query
plans that the optimizer considers with this storage configuration.
In our experiment, there are essentially only three resources that
can vary in cost: CPU time, number of disk seeksds, and num-
ber of blocks transferreddt (See Section 3.1.). As noted in Section
8.2, every candidate optimal plan used a nonzero amount of each
resource. Furthermore, these plans used the resources in relatively
fixed ratios. As a result, the candidate optimal plans for the queries

were highly non-complementary, and the global relative cost of the
initial query plan approached the bound in Theorem 2.

As we decoupled the access costs of different on-disk data struc-
tures, the query optimizer became progressively more sensitive to
the accuracy of its cost estimates. When we placed all tables and
their indexes on separate disks, the optimizer found complementary
candidate optimal plans (See Section 5.5.) for 18 of the 22 queries
in the TPC-H benchmark. The results of our experiments demon-
strate that, for the TPC-H queries and schema, a commercial query
optimizer can reach the upper bounds on error in cost estimation
that we show in Sections 5.4 and 5.5.

9. CONCLUSION
The proliferation of managed and shared storage resources in enter-
prise computing is changing the way that database systems access
their hard drives. This new generation of storage systems can make
the throughput and latency of virtual storage devices change dra-
matically and sometimes unexpectedly.

In this paper, we have articulated a vector-based framework for
studying the sensitivity of relational query optimization to stor-
age access costs. Using this framework and a set of experiments
on a commercial query optimizer, we have examined the quality
of the optimizer’s plan choices when the optimizer has inaccurate
information about the cost of accessing storage resources. Our re-
sults indicate that, when data structures such as tables, indexes, and
sorted runs reside on different storage devices, a query optimizer
can choose plans that are suboptimal by a significant margin if its
estimates of the costs of accessing these storage devices are inac-
curate. Users of databases that are laid out in this manner may
achieve noticeable performance improvements by providing their
query optimizers with accurate and timely information about the
current status of their storage devices.
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