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Abstract

This paper describes Seeker, a platform for large-scale text analytics, and SemTag, an application written on the
platform to perform automated semantic tagging of large corpora. We apply SemTag to a collection of approximately
264 million web pages, and generate approximately 434 million automatically disambiguated semantic tags, published
to the web as a label bureau providing metadata regarding the 434 million annotations. To our knowledge, this is the
largest scale semantic tagging effort to date.

We describe the Seeker platform, discuss the architecture of the SemTag application, describe a new disambiguation
algorithm specialized to support ontological disambiguation of large-scale data, evaluate the algorithm, and present our
final results with information about acquiring and making use of the semantic tags. We argue that automated large scale
semantic tagging of ambiguous content can bootstrap and accelerate the creation of the semantic web.
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1 Introduction

The WWW has had a tremendous impact on society and business in just a few years by making information instantly and
ubiquitously available. During this transition from physical to electronic means for information transport, the content
and encoding of information has remained natural language. Today, this is perhaps the most significant obstacle to
streamlining business processes via the web. In order that processes may execute without human intervention, documents
mustbecome more machine understandable.

The Semantic Web [6] is a vision of a future web of machine-understandable documents and data.1 On a machine
understandable web, it will be possible for programs toeasily determine what documents are about. For instance,
the people, places, events, and other entities that a document mentions will be canonically annotated within it. As a
consequence, it is hoped that a new breed of smarter applications will become available.
Where will the data come from? For the semantic web vision to come to fruition, at least two classes of meta-data
must become extensive and pervasive. The first is ontological support in the form of web-available services which will
maintain metadata about entities and provide them when needed. The second is large-scale availability of annotations
within documents encoding canonical references to mentioned entities.

Ontological support for the semantic web is an active area of both research and business development, but not the
focus of this paper. Instead, we use the TAP ontology [43] in our experiments.

In partial support of the second class of data, document annotations, it is expected that enterprises will make business
data available in Semantic Web formats (RDF, XML, or OWL). It is also expected that productivity tools will make it
possible for individuals to author semantically annotated documents.

Nonetheless, for all this to happen, we need applications that can effectively leverage semantically tagged data.
In turn, these applications cannot be useful unless there is enough semantically tagged data on the web in the first
place. Unfortunately, today’s reality is that few documents contain such annotationsa priori, and we are in a state of
circular dependency. Organizations that might create powerful tools based on semantic annotations are leery of sinking
significant developmental effort while the number of available tags remains small; and content creators are similarly
unwilling to create annotations while no tools exist to make use of them. The size of the web makes this bootstrapping
problem both formidable and acute.

1Today, machines can understand very little of the content on the web – almost all the markup contained in web pages pertains to formatting.
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1.1 Our contributions

SemTag is an application that performs automated semantic tagging of large corpora. We apply SemTag to a collection of
approximately 264 million web pages, and generate approximately 434 million automatically disambiguated semantic
tags, published to the web as a label bureau [49] providing metadata regarding the 434 million annotations. To our
knowledge, this is the largest scale semantic tagging effort to date, and demonstrates the viability of bootstrapping a
web scale semantic network. The key challenge is resolving ambiguities in a natural language corpus. To this end, we
introduce a new disambiguation algorithm called TBD, for Taxonomy-Based Disambiguation.

Maintaining and updating a corpus the size of the Web requires infrastructure of a scale which most tagging appli-
cations cannot be expected to support. We also need a platform which different tagging applications can share. Seeker
is a platform designed for this purpose. It provides highly scalable core functionality to support the needs of SemTag
and other automated semantic annotation algorithms.

1.2 Paper structure

The remainder of the paper will consist of a review of the current state of the art (Section 2), an outline of the SemTag
application approach (Section 3), the results of running the SemTag application on the web corpus (Section 4), an outline
of what the underlying Seeker system requires (Section 5), a brief discussion of the design and implementation of that
system (Section 6) followed by general conclusions (Section 7).

2 Related Literature

In the last couple of years, as part of the Semantic Web activity, a number of different systems have been built. These
systems help perform one of two tasks: (1) create ontologies, and (2) annotate web pages with ontology derived semantic
tags. By and large, both classes of systems have been focused on manual and semi-automatic tooling to improve
the productivity of a human ontologist or annotator rather than on fully automated methods. Such systems have the
advantage that humans can provide extremely fine-grained semantic tags. However, as reported in [20], even with the
machine assistance, this is an arduous, time consuming and error-prone task.

A number of annotation tools for producing semantic markups exist. Protege-2000 [40] is a tool which supports
the creation of ontologies for the semantic web. OntoAnnotate [23], a framework for the semantic web, includes tools
for both manual and semi-automatic annotation of pages. Annotea [28] provides RDF-based markup but it does not
support information extraction nor is it linked to an ontology server. SHOE [24] was one the earliest systems for adding
semantic annotations to web pages. SHOE Knowledge Annotator allows users to mark up pages in SHOE guided by
ontologies available locally or via a URL. These marked up pages can be reasoned about by SHOE-aware tools such as
SHOE Search. Such tools are described in [48, 33]. AeroDAML [31] is an interesting tools which takes an ontology
and automatically produces a semantically marked up page which can then be checked by a human.

More recently, there have been efforts to automate some of these tasks using machine learning as a palliative. The
principal tool is “wrapping” (see, for instance, [32, 34, 16]). Despite their successful deployment in particular contexts,
the consensus view is that they require significant training before they are productive. Furthermore, these systems each
model ontologies in different ways and consequently do not run against a common shared ontology.

SemTag is different from both these classes of systems in that it tags very large numbers of pages with terms from
a standard ontology in an automated fashion. Since SemTag operates as a centralized application with access to the
entire database and associated metadata, it has many advantages over a local, per-page taggers. For example, it can
make use of corpus-wide statistics to improve the quality of semantic tags. It can easily be re-run as new annotation
algorithms and new semantic repositories become available. And it can perform operations that are only possible in
the presence of many tags, such as automated alias discovery. More recent work, e.g. [27], which combines natural
language understanding with learning to automatically generate annotations for specific domains is similar in spirit to
SemTag.

In this paper, we present results of SemTag using the TAP knowledge base [44]. TAP is a shallow knowledge base
that contains a broad range of lexical and taxonomic information about popular objects like: Music, movies, authors,
sports, autos, health, etc. We used the TAP knowledge base in its standard ontology. Building a web scale ontology
will require much larger knowledge bases. Future work involves using techniques such as those described in [44] to
bootstrap from TAP to build much larger and richer ontologies.

The current focus of SemTag is detecting the occurrence of particular entities in web pages. One of the critical steps
in this process is that of resolving ambiguities. This is an area with a rich body of work ([52, 45, 35, 38, 42]) from the
language understanding community.

With SemTag’s current shallow level of understanding, RDFS [8] provides an adequate language for representing
the annotations it generates. We expect that in the future, as SemTag’s level of understanding improves, we will have to
use more advanced languages [36] and move towards OWL [50].
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SemTag is built on the Seeker platform for large scale text analytics. The explosive growth of the web, and the
difficulty of performing complex data analysis tasks on unstructured data, has led to several different lines of research
and development. Of these, the most prominent are the web search engines, (see for instance [21, 3]) which have been
primarily designed to address the problem of “information overload.” A number of interesting techniques have been
suggested in this area; however, since this is not the direct focus of this paper, we omit these here. The interested reader
is referred to the survey by Broder and Henzinger [10].

Several authors [1, 25, 5, 46, 37] describe relational approaches to web analysis. In this model, data on the web
is seen as a collection of relations (for instance, the “points to” relation) each of which are realized by a function and
accessed through a relational engine. This allows a user to describe his or her query in declarative form (SQL, typically)
and leverages the machinery of SQL to execute the query. In all of these approaches, the data is fetched dynamically
from the network on a lazy basis, and therefore, runtime performance is heavily penalized.

The Stanford WebBase project [26], while targeting a system that allows easy sequential and random access to a copy
of the web, does not provide the same prototyping and development environment Seeker does. Specifically, it lacks the
functionality that allows developers to annotate web pages, and easily reuse the results of other analysis components.

Compaq SRC web-in-a-box (WIB) project [51] is another system designed to allow researchers to develop text
analysis tools that have access to a copy of the web. While WIB allows analysis components to annotate web pages,
it does not provide storage for any derived data (such as people or organizations) other than web pages. Furthermore,
its architecture does not allow users to compose complex data mining modules from simpler data mining modules, or
re-use data.

The Internet Archive [47], has a different objective. The data is crawled and hosted, as is the case in web search
engines. In addition, a streaming data interface is provided which allows applications to access the data for analysis.
However, a sophisticated querying system is not provided, nor is a method to perform large scale data analysis.

A preliminary version of this paper appeared in the 2003 World Wide Web Conference [17] and a more detailed
description of the infrastructure can be found in [18]. Other components that are used in the Seeker system were further
described in [2, 19].

3 SemTag: A Semantic Tagger
Consider a world in which all documents on the web contained semantic annotations based on TAP. So the sentence:
“The Chicago Bulls announced yesterday that Michael Jordan will. . . ” would appear as:

The <resource ref="http://tap.stanford.edu/
BasketballTeam_Bulls">Chicago Bulls</resource>
announced yesterday that <resource ref=
"http://tap.stanford.edu/AthleteJordan,_Michael">
Michael Jordan</resource> will...’’

Thus, the annotation:

<resource ref="http://tap.stanford.edu/
AthleteJordan,_Michael">Michael Jordan</resource>

says that the string “Michael Jordan” refers to the resource whose URI is “http://tap.stanford.edu/AthleteJordan,Michael.”
It is expected that querying this URI will result in encoded information which provides greater detail about this resource.

The bulk of documents on the web today do not contain annotations of this form. Consequently, application devel-
opers cannot rely on such annotations. On the other side, website creators are unlikely to add annotations in the absence
of applications that use these annotations. A natural approach to break this cycle and provide an early set of widespread
semantic tags is automated generation. This is the goal of SemTag. SemTag seeks to provide an automated processes
for adding these to the existing HTML corpus on the Web. In this paper, we look at what needs to be done to address
this problem at the scale of the web.

We adapt the concept of a label bureau from PICS so that an application of the Semantic Web can obtain semantic
annotations for a page from a third party even when the author of the page has annotated the page. Semantic annotations
can be retrieved separately from the documents to which they refer. To request annotations in this way, an application
contacts aSemantic Label Bureau. A semantic label bureau is an HTTP server that understands a particular query syntax.
It can provide annotations for documents that reside on other servers.

Because SemTag does not have write access to the original document, the resulting annotations are written into a
web-available database. The contents of this data base are made available via a semantic label bureau from which it is
possible to extract semantic tags using a variety of mechanisms. For instance, one application may request the semantic
tags for a given document, while another may request all semantic tags regarding a particular object (say, the basketball
player Michael Jordan).
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3.1 Web Data Characteristics

The Web is an open system in that anyone can publish information onto it without coordinating with anyone else.
Arguably, this feature has been the primary cause for the explosive growth of the web. However, this aspect of the web
also imposes significant requirements on any large scale system for data mining the web.

Transient data The web is a dynamic collection of documents. New documents are constantly being added, and
existing documents are constantly being changed or disappearing altogether.Web mining systems have to pay
close attention to propagation of version information.

Questionable contentThe reliability of information on the web varies widely, from intentional misrepresentation to
extreme minority views. Examples of this include pages that contain obfuscated keyword material to steer users
of keyword indices to their page, deliberate crawler traps, and viruses. However, it is a common perception that
the most timely and correct information on virtually any subject is usually found on the web. Search engines,
and ranking algorithms have addressed the data quality problem by focusing on finding the most reliable and
“authoritative” answer from among the many that are available.This increased focus on precision, as opposed to
“recall” is crucial in the context of data mining as well.Such requirements are not universal – for instance, when
the application requires exhaustiveness rather than consensus.

Failure to conform to standards On the web, exceptions are the rule. This is a pervasive phenomenon. For instance,
while it is commonly true that most web pages which end with a.html suffix are HTML pages, there are
instances of executable files which are served up with this suffix. Pages that a browser will render them may
often fail to abide by the written HTML standard. These violations of commonly held standards are done both
inadvertently and with malicious intent.Dealing with exceptions gracefully is essential to designing a web mining
system.

These characteristics have driven us to a system design philosophy that is fundamentally different from that of many
conventional systems. In many conventional systems, improper inputs lead to system failures. This is desirable since
the emphasis is on getting thecorrectanswer given the data. In the context of the web, the data is noisy, unreliable, and
outside the control of the system from the beginning. Therefore, there is really not much to distinguish the “correct”
answer from one which is statistically reliable. In the design of Seeker, we proceed under the assumption that any
particular datum may be correct or incorrect, current or out of date, available or unavailable, original or duplicated, and
so on. We expect that most Semantic Web systems will differ from traditional database systems in that they will have to
be accomodating of the above mentioned characteristics of web data.

3.2 SemTag flow

The overall SemTag architecture is shown in Figure 1. SemTag works in three phases:

Spot
Window
DB

Minimal Training

SemTag
Spotter

WWW
(In Seeker)

TBD
Algorithm

TAP KB

Figure 1: The SemTag architecture.

Spotting pass Documents are retrieved from the Seeker store, tokenized, and then processed to find all instances of the
approximately 72K labels that appear in the TAP taxonomy. Each resulting label is saved with ten words to either
side as a “window” of context around the particular candidate object. This first stage takes place at approximately
10,000 documents per second on the Seeker infrastructure, naively distributed over 64 machines.

Learning pass A representative sample of the data is then scanned to determine the corpus-wide distribution of terms
at each internal node of the taxonomy, as described in Section 3.4. This processing takes place at approximately
8,000 windows per second on a single machine.
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Tagging passFinally, the windows must be scanned once more to disambiguate each reference. When a string is finally
determined to refer to an actual TAP object, a record is entered into a database of final results containing the URL,
the reference, and any other associated metadata. This pass can be performed sequentially at approximately
1,200-3,000 windows/second on a single machine. For details on the algorithm used in doing this see Section 3.4.

3.3 SemTag Ambiguity resolution

In this section, we describe the Taxonomy Based Disambiguation (TBD) algorithm. TBD performs disambiguation of
references to entities within a large-scale ontology.
Ambiguity within SemTag: Even human-tagged data can suffer from a certain level of mis-classification, but the
problem becomes even more acute in the application of automated tagging algorithms. Thus, sources of ambiguity
within the ontology is a significant concern. There are two fundamental categories of ambiguities:

1. Some labels appear at multiple locations in the TAP ontology. For instance, the string “Michael Jordan” may refer
to a statistician, a basketball player, or many others. This occurs infrequently in the current taxonomy, but we
expect it to occur with increasing frequency as the taxonomy grows.

2. Some entities have labels that occur in contexts that have no representative in the taxonomy. For instance, the term
Natalia sometimes refers to the musician, but ordinarily denotes simply a person’s first name, which has no entry
in the taxonomy. This occurs frequently in our current data set, and will probably continue to occur frequently
even as the taxonomy grows.

Evolution of ontologies: Ontologies such as TAP will continue to evolve. Our expectation is that tailored algorithms
with human-tuned parameters will be applied to a small number of critical sections, with automated approaches still
dealing with the bulk of the ontology. In keeping with this philosophy TBD makes use of two classes of training
information:

Automatic metadata A large amount of automatically-generated metadata allows the algorithm to estimate whether
windows around candidate references are likely to have been generated within a particular subtree of the taxonomy.

Manual metadata A small amount of manually-generated metadata (approximately 700 yes/no judgments regarding
whether a label in a given context refers to some objects) gives the algorithm information regarding nodes of the
taxonomy that contain highly ambiguous or unambiguous labels. These judgments are used to determine which
portions of the taxonomy can most fruitfully benefit from particular disambiguation schemes.

3.4 Overview of TBD

We begin with a few formal definitions. Terms are italicized when first defined.
An ontologyO is defined by four elements. A set ofclasses, Z, asubClassrelationS ⊆ Z × Z, a set ofinstances

I, and atyperelationT ⊆ I × Z. We use the notationt(i, z) to denote the boolean function(i, z) ∈ T ands(z1, z2)
likewise. We assume that instances are closed over super-classing. Namely, for anyi, z1, z2, t(i, z1)&s(z1, z2) ⇒
t(i, z2).

An taxonomyT is defined by three elements: a set ofnodes, V ; a root r ∈ V ; and finally, aparentfunction,p : V 7→
V . We require that (1) the root is its own parent,p(r) = r, (2) for all other nodes, this is not so, i.e. ifv 6= r, p(v) 6= v,
and (3) the rootr is in the ancestry of every node, i.e. for everyv ∈ V , r ∈ {v, p(v), p(p(v)), p(p(p(v))), . . .}.
Henceforth, we will useπ(v) to denote the ancestry chain ofv. The internal nodesof the taxonomy are given by
{u : u = p(v)for somev}. A taxonomy can be derived given an ontology, which is a more general concept.

Each nodev ∈ V is associated with a set oflabels, L(v). For instance, taxonomy nodes aboutcats, football,
computersandcarsall contain the label “jaguar.” Aspot(`, c) is a label̀ in a contextc ∈ C, whereC is the space of all
possible contexts. The context consists of 10 preceding and 10 succeeding words of text surrounding the label, culled
from the document in which the label occurred. We use the spot to tag the label with its semantic tag, which is always
an node ofT .

With each internal nodeu ∈ T we associate asimilarity functionfu : C 7→ [0, 1] mapping from a context to a
similarity. Good similarity functions have the property that the higher the similarity, the more likely that the spot contains
a reference to an entity that belongs in the subtree rooted atu. The similarity functions encapsulate the automatically-
generated metadata regarding nodes of the taxonomy.

We can use the similarity function to define an algorithm Sim to guess whether a particular contextc is appropriate
for a particular node, as follows. We will then use Sim to define TBD. The definition of Sim is given in Figure 2.

For our problem instance, we must focus on disambiguating references in the taxonomy versus references outside
the taxonomy. If the focus is instead on disambiguating references that may belong to multiple nodes of the taxonomy,
then the testb = r should be replaced withb 6= p(v).
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Sim(c, v)
Let b = argmin

u∈π(v)

{fu(c)}

if b = r return 0
else return 1

Figure 2: Algorithm Sim

TBD(c, u)
Let u be the nearest ancestor ofv with a measurement.
if | 0.5−ma

u |>| 0.5−ms
u |

if ma
u > 0.5
return 1

else
return 0

else
if ms

u > 0.5
return Sim(c, u)

else
return 1 - Sim(c, u)

Figure 3: Algorithm TBD

Finally, with a small number of popular internal nodesu ∈ T we associate ameasurement(ma
u,m

s
u) ∈ [0, 1]2.

ma
u gives the probability as measured by human judgments that spots for the subtree rooted atu are on topic.ms

u
gives the probability that Sim correctly judges whether spots for the subtree rooted atu are on topic. Thus, the set of
measurements encapsulates the manually-generated metadata in the system, and can be seen as a training set for the
algorithm.

Algorithm TBD is defined in Figure 3. The algorithm returns 1 or 0 to indicate whether a particular contextc is on
topic for a nodev ∈ T .

Thus, the small numbers of measurements allow TBD to determine whether it is operating in a region of the taxon-
omy that is highly unambiguous, or a region that is highly ambiguous. If the former, it will choose to adopt references
with certainly; if the latter, it will apply a probabilistic algorithm.

In Section 4 we evaluate various different approaches to the similarity functionfu.

4 Results

We implemented the SemTag algorithm described above, and applied it to a set of 264 million pages producing 270G of
dump data corresponding to 550 million labels in context. Of these labels, approximately 79% are judged to be on-topic,
resulting in a final set of about 434 million spots, with accuracy around 82%. Details are given below.

4.1 Methodology

As described above, we first dumped context surrounding each spot. We then processed those contexts as follows:
Lexicon generation: We built a collection of 1.4 million unique words occurring in a random subset of windows
containing approximately 90 million total words. Following standard practice, we created a final lexicon of 200,000
words from the 1.4 million unique words by taking the most frequent 200,100, and removed the most frequent 100. All
further computations were performed in the 200,000-dimensional vector space defined by this set of terms.
Similarity functions: We estimated the distribution of terms corresponding to each of the 192 most common internal
nodes of the taxonomy in order to derive the similarity functionfu described in Section 3.4. We experimented with
several standard similarity measures; the results are given in Section 4.2.
Measurement values:Based on 750 relevance judgments from human judges, we determined the measurement values
associated with the 24 largest taxonomy nodes, as described in Section 3.4.
Full TBD processing: We applied the TBD algorithm to the entire dataset of 550 million spots using the family of
similarity functions deemed to be most effective in Section 4.2, and using the human- and machine-generated metadata
described above.
Evaluation: Finally, we collected an additional 378 human judgments against a previously unevaluated set of contexts
in order to evaluate the effectiveness of TBD.

We now describe briefly our process for collecting human judgments, our measure of accuracy, and some baseline
experiments regarding the difficulty that human judges have in coming to a single unambiguous conclusion about a
particular spot.
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4.1.1 Evaluation and human judgments

As is well known from research in Knowledge Acquisition [22] and more recently from studies of manual semantic
tagging of documents, there are many cases where different people choose different terms from an ontology with which
to tag a phrase or a document. Therefore, we need to be careful when evaluating the results of SemTag.

We created a web-based tool that displays to an evaluator a spot consisting of a label in a context. The tool asks the
evaluator to determine whether the spot is on topic for a particular node of TAP. This information is used to generate the
measurements of Section 3.4.

Because there are several locations in TAP that may be appropriate for a particular entry (we evaluate this phe-
nomenon below), the tool also checks to see if TBD suggested that the spot belongs elsewhere—if so, the tool also asks
whether the algorithm’s output is a valid answer.

We gathered two sets of evaluations. All volunteers were from the technical staff at the IBM Almaden Research
Center. For the first set of evaluations, a set of 11 volunteers were asked to examine 1100 selections made by SemTag.
The first 2/3 of these evaluations were used as human-generated metadata for TBD. The remaining 1/3 of the evaluations
were used to score the performance of the algorithm.

Finally, a set of three volunteers were each asked to evaluate the same set of 200 labels in context, using the same tool
described above. Of these 200, all three evaluators agreed on 137; i.e., only 68.5% were unambiguous to the humans.
Furthermore, the tool was modified in this experiment to allow the users to indicate that a particular piece of context
(typically ten words to either side of the label) was insufficient to understand the denotation of the label. The evaluators
each selected this option in only 2.5% of the instances. Therefore, we conclude that while a 10-word window to either
side of a label is typically sufficient to understand the sense of the label, human judgment is highly ambiguous regarding
the placement of the label into the taxonomy.

The remainder of this section proceeds as follows. Section 4.2 describes our evaluation of different similarity
functions. Sections 4.3 and 4.4 then give results of a sensitivity analysis to the availability of machine- and human-
generated metadata to develop the similarity functions and measurement values respectively of Section 3.4.

4.2 Similarity between a Spot and a Collection

Consider some fixed node of the taxonomy, and a new spot(`, c) that may belong in the subtree rooted at that node. As
presented in Section 3.4, TBD must determine whether the contextc corresponding to the new spot looks similar to the
contexts that typically occur around spots from that node. We evaluate four standard candidates for similarity functions.

First, we must cover the preliminaries. We generate a 200K-dimensional vector (over the terms of the lexicon)
corresponding to each internal nodeu ∈ T , or more precisely, to the contexts that occur around spots for theu. In
scheme “Prob”, each entry of the vector is simply the probability of the term occurring in the window. In scheme “TF-
IDF”, each entry of the vector is the frequency of the term occurring at that node, divided by the corpus frequency of
the term. In all cases, the vectors are normalized to length 1.

Next, we consider two variants of algorithms to compute the similarity of a spot given a vector. Algorithm “IR”
computes the standard “cosine measure” vector product of the sparse vector corresponding to the current spot and the
(probably dense) vector corresponding to the node. Algorithm “Bayes” computes the probability that the terms in the
context would have been generated by a source generating terms independently according to the distribution given by
the vector corresponding tou.

Algorithm IR Bayes
Prob 78.04% 76.98%

TF-IDF 82.01% 78.31%

Table 1: Accuracy (probability of correctness) for each algorithm under each vector weighting scheme over test set.

The results are shown in Table 1. As the table shows, the most effective scheme is the cosine measure with tf-idf
weightings. Furthermore, the tf-idf weighting scheme dominates the unweighted scheme, and so we adopt it henceforth
for our other comparisons, and simply compare the IR and Bayes algorithms.

Overall, the accuracy of classification under the favored scheme is roughly 82%. As we show later, even comparing
human judgments to other human judgments shows a systematic error rate of roughly this amount, leading us to believe
that significant improvements will be quite difficult to achieve.

4.3 Sensitivity to availability of human-derived metadata

Next, we consider the sensitivity of TBD to the amount of human-derived metadata present in the system. When TBD
has access to all human-derived metadata, 24 internal nodes ofT have sufficiently many measurements in their subtree.
Figure 4(a) shows for each such node what fraction of the total labels are covered by that node. The first node with
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measurement data is the rootr, whose subtree covers all measurements; thus, the leftmost point of the graph hasy-value
100. The next node with measurement data corresponds to cities in the United States, and covers around 13% of the
total spots. The actual values, and node labels, are given in Table 2.

Figure 4(b) shows the performance of TBD when measurements from onlyi of the 24 internal nodes are available
to the system. As the figure shows, TBD is effective even when metadata applies to very few internal nodes.

(a) (b)

Figure 4: (a) Percentage of spots influenced by hand classified data; (b) Accuracy of the two algorithms employed in
SemTag.

Node Fraction of spots
Class 100.00%
UnitedStatesCity 12.97%
ProfessionalType 10.21%
Country 9.66%
Musician 8.14%
City 7.86%
ProductType 7.31%
Fortune1000Company 4.41%
TechnologyBrand 3.45%
PersonalComputerGame 3.45%
University 3.45%
Book 3.17%
Movie 3.03%
UnitedStatesState 2.90%
Actor 2.07%
OperatingSystem 1.93%
MusicalInstrumentBrand 1.66%
ComedyTVShow 1.38%
Author 1.38%
ConsumerElectronicsCorporation1.10%
Athlete 1.10%
ComicStrip 0.97%
HomeAndGardenBrand 0.83%
SportingGoodsBrand 0.83%

Table 2: Nodes of TAP with percentage of spots occurring in corresponding subtree.
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Fraction Num entries IR Bayes
0.0001 15K 79% 71%
0.0005 15K 79% 71%
0.001 15K 80% 73%
0.0025 15K 81% 76%
0.005 16K 81% 77%
0.01 18K 81% 78%
0.025 27K 81% 80%
0.05 44K 81% 79%
0.075 62K 81% 80%
0.1 80K 81% 80%
0.2 155K 81% 79%
0.3 230K 81% 80%
0.4 305K 81% 80%
0.5 381K 81% 79%
0.6 456K 81% 79%
0.7 532K 81% 79%
0.8 608K 81% 79%
0.9 683K 81% 78%
1.0 759K 82% 78%

Table 3: Nodes of TAP with percentage of spots occurring in corresponding subtree.

4.4 Sensitivity to availability of machine-generated metadata

Finally, we consider the sensitivity of the algorithm to the amount of automatically-generated metadata maintained at
internal nodes of the taxonomy. As described above, the representation of the similarity function is a vector of 200K
dimensions. We now consider keeping only the largest few dimensions of that vector for each of the internal nodes of
the taxonomy. We proceed as follows. We fix some fractionf , and for each internal nodeu ∈ T with vector~u, we keep
only the largestmax (100, f · | {i|~ui 6= 0} |) entries of~u. Table 3 shows, for various different values of the fractionf ,
the total number of non-zero entries over all internal nodes (i.e., the total number of values that must be maintained in
order to execute TBD), and the performance of the IR and Bayes algorithms using this smaller set of machine-generated
metadata. The performance of the IR algorithm is extremely stable down to 100 non-zero entries per node, and the
performance of the Bayes algorithm begins to degrade slightly sooner.

5 System Requirements

The purpose of this paper is to describe an approach to large-scale automated centralized semantic tagging delivered to
consumers through a label bureau. SemTag is an application that demonstrates the feasibility of this approach. However,
SemTag relies upon Seeker, which we have developed as an ongoing platform to support increasingly sophisticated text
analytics applications, particularly including future generations of semantic taggers.

The goal of Seeker is to provide Scalable, Extensible Extraction of Knowledge from Erratic Resources. Anerratic
resourceis one that may have limited availability, a rapid rate of change, contain conflicting or questionable content, or
may be impossible to ingest in totality (e.g., the World Wide Web). We have identified the following design goals:

Composibility There are multiple ways a page might be annotated. These annotations should be available to other
annotators, to allow for more complex observations to be created incrementally. This requirement of shared
annotation is not unlike the blackboard system approach [39].

Modularity Various types of annotations require differing methodologies. The architecture needs to support the “plug-
ging in” different approaches, as well as the switching to newer, better implementations of existing approaches as
they evolve.

Extensibility As we have found with SemTag, approaches to annotation evolve rapidly when confronted with real data.
It is thus important that the Seeker architecture allow essentially arbitrary new approaches to annotation to be
constructed and deployed.

Scalability Scalability is important in two respects; first, the ability to develop a particular annotation approach on a
representative subset of the corpora is an important design tool. Once an approach has been proved out on a test
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sub-corpora, it is desirable that the code scaled up to a multi-billion document corpora with minimal changes (e.g.,
none).

RobustnessOn very large, distributed systems, failure of individual components is not a possibility, it is a certainty.
The system needs to deal intelligently with failure of portions of the system, so that the faults in one component
do not bring the whole system down.

6 The Seeker Design

To meet the design requirements expressed in Section 5, we adopt the architecture shown in Figure 5.

Index

Crawler Store Joiner

C

A B

Infrastructure Analysis Agents

Applications

Seeker Run Time Environment

Vinci XML Substrate

Figure 5: Architecture of the Seeker system.

Because the system must be modular and extensible, we adopt a web services style architecture in which all agents
communicate with each other through a set of language-independent network-level APIs defined on an XML substrate.
To support scalability and robustness, we classify a small set of critical services within this web services framework
as infrastructure components. These are large, scalable, well-tested, distributed, high-performance components that
provide baseline functionality such as crawling, indexing, storage of data and annotations, and query processing. A
larger set of loosely coupled analysis agents communicate through a centralized data store (itself an infrastructure
service). Such an agent may execute at a different time and place, and in a different language, than another agent it
depends on. The runtime environment performs monitoring and control of all services in the system. For analysis
agents, the runtime monitors them, manages their work flow, scheduling, and (where possible) parallelism, and causes
them to see the set of data and annotations necessary for their success.

The current Seeker environment consists of 128 dual processor 1GHz machines, each attached via switched gigabit
network to 1/2 terabyte of network attached storage. Half of this cluster was used for the SemTag tests. Since each of
these nodes runs at approximately 200 documents per second, the total time taken to reprocess the web is 32 hours.

IO for this speed completely occupies one of the two 1GHz processors, requiring that the spotter/classifier run at
around 200 docs per second (3MB/sec) on a single 1GHz processor. This limits the complexity of the spotter/classifier
that can run.

In Section 6.1 we describe the XML substrate of Figure 5. Section 6.2 then describes the current set of infrastructure
components within Seeker. Finally, Section 6.3 describes the analysis agents, which include the various components of
SemTag.

6.1 The XML substrate

Functionality in Seeker is delivered through a network services model, in which components publish their availability
through a centralized registry, and export a network-level API. Thus, Seeker is aservice oriented architecture(SOA):
a local-area, loosely-coupled, pull-based, distributed computation system. We require high speed (≈ 10, 000 RPCs
per second), high availability (automatic fail-over to backup services), and efficient multiple programming language
support (due to integration and performance issues). As a result we choose to base our network services on Vinci [2] a
SOAP [7]-derived package designed for higher performance intra-net applications.

Vinci uses a lightly encoded XML (employing thextalk protocol) over raw TCP sockets to provide the required
RPC rate. It includes translation gateways allowing SOAP components to be integrated with minimal difficulty.

6.2 Infrastructure components

Infrastructure services must address issues of reliability and scalability; therefore, the implementation of these core
services includes a systems engineering problem. The main infrastructure components of Seeker include a centralized
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store, an extensible full-text indexer, a scalable web crawler, and a query processing component called the joiner.

6.2.1 The Data Store

The data store is the central repository for all long-term shared data storage within Seeker. The store not only serves as a
storage service for the rest of Seeker, but it also serves as the main communication medium between miners. Annotators
store their output in the data store, and other miners depending on them retrieve that information from the store, possibly
much later and in a very different environment, enabling loose coupling of miners (this is an extension to the blackboard
system approach [39]).

A Seeker store containsentities, each of which is identified by a globally unique 128 bitUniversal Entity Identifier
(or UEID). The store provides both fast batched and random access to entities. Entities are of a particularentity type.
A web page would be stored as an entity of type “Page,” for instance, while the information about a particular person
would be stored as an entity of type “Person”. The key/value pairs associated with an entity describe all the information
that has been extracted about that entity.

We give a concrete example. When a web page is first crawled, the crawler creates a number of keys. The raw
content of the page is stored as a BLOB in the key named “Crawl:Content.” The latency of the fetch is stored as a 32-bit
integer in key “Crawl:Latency;” the MIME type as reported in the header is stored as a string in key “Crawl:MimeType;”
and so forth. When the page is stored, a UEID is generated for the new entity by the store. As other miners process the
page, they add additional keys. For example, if the page is found to be a mirror of another page, the mirror-detection
miner may add a key “Mirror:MasterCopy” that contains the UEID of the master copy of this page2. Other types of
miners may create entities of different types. For instance, as part of the Social Networks application, a miner may
generate entities of type “Person”.

To support the constantly changing nature of the data being mined, subsets of keys are tagged with timestamps.
These timestamps are set by the miners writing these keys to be the validity time for the raw data from which these keys
are derived. For instance, in the case of data based on a particular web page, the timestamp would be the time at which
that page was crawled. These timestamps allow a miner reading multiple keys to make a decision on whether the data
presented to it is consistent. Furthermore, these timestamps may be used by a store implementation supporting archiving
of historical data to refer to specific versions of entities stored.

Formally, the store is defined by a network-level API that provides three basic services: i)get , which retrieves a
subset of an entity’s key/value pairs, ii)insert , which creates a new entity with a given initial set of key/value pairs,
and iii) modify , which modifies or deletes an entity. Additionally, the Store may provide additional services, such
as an Enumeration service and a Work-Queue service, to support more sophisticated access patterns. All store APIs
are entity-type agnostic. Thus, the store supports the requirement of text analytics applications that are not document
centric, but are rather focused on entities such as people or organizations.

The simple API defined for the store service allows extending the system by implementing different variations of the
store service to answer particular customer-driven requirements. Miners operating in the system require only the name of
a Store—they then locate the corresponding service using the service registry, and speak to that service using the network
API. An implementation of the store API may add additional functionality, or different performance characteristics. For
example, for smaller datasets Seeker includes an in-memory store.

Stores may optionally provide implementations of the Enumeration spec that support store-specific query languages.
For instance, a store may support SQL-like relational querying by providing an enumeration service where the client
specifies a SQL-like query when opening the enumeration. To support queries that access multiple stores (required,
for instance, when proprietary customer data has to be joined against Seeker-native data) a federating query front-end,
known as the Joiner service, is provided. This service implements the Enumeration spec with a query language that
allows passing sub-queries to individual stores and join the result sets returned.

6.2.2 The Crawler

The size, unpredictability, low availability and poor connectivity of the web dictates that it must be gathered into a
repository for mining, rather than minedin situ. The crawler maintains as fresh a copy of the web as possible by
tracking change rates of individual pages and asynchronously recrawling them accordingly. The recrawl strategy of
subsets of the web may be manipulated manually in response to customer needs. It runs as a fully distributed, shared-
nothing parallel application, in which sites are carved up and assigned to machines for crawling. The Seeker crawler is
capable of crawling the web at a rate well in excess of 1000 pages per second given enough bandwidth and machines.
Much of the code complexity and computation surrounds the need to obey politeness and robots restrictions. Much of
the I/O is consumed by maintaining data structures that keep track of which pages have been crawled, and scheduling
of pages to be crawled or recrawled.

Maintaining freshness is complicated by several factors. First, while the web used to contain primarily human-
authored documents that changed only when they were edited by hand, it now contains more and more traditional

2Keys of type UEID are used to store relationships between entities in the store.

11



databases and content management systems exposed through HTTP interfaces. Second, it is now commonplace for
sites to offer live data services accessible through a single URL, where the content changes frequently (perhaps even
changing each time someone requests the data for the URL). And third, it is difficult to predict with any accuracy when
documents will change, or for how long they will be available. See [19] for more details.

Because the crawler interacts with a large number of unreliable data sources that are outside its control, it must be
designed to tolerate a wide variety of failure modes. Many servers fail to implement the HTTP protocol correctly, or do
not supply trustworthy headers. Congestion and network outages impact the ability to fetch a particular page at a point in
time. And finally, some web sites deliberately attempt to increase their visibility in web mining operations (particularly
within text search engines that are used by the public to locate information in the web). In order to preserve statistical
correctness of mining operations, a crawler must be designed to resist direct manipulation and give fair coverage to the
web at large.

6.2.3 The Indexer

The Seeker system contains a generic large-scale distributed indexer capable of indexing sequences of tokens. The
indexer is a distributed, shared-nothing parallel application, partitioned by document. The index built contains not only
a positional text index of the web, but also additional document annotations generated by miners. The indexer is fed
documents as a stream of tokens, similar to the MultiText model [15], which allows us to achieve high performance
during indexing due to the simple data model. For flexibility, each token occurrence that is indexed can have arbitrary
attribute data associated with it. Analysis agents can generate additional tokens that overlay text tokens to indicate
higher-level semantic information. These tokens are indexed along with the text, and may be used in queries to mix
semantic information with full-text queries.

Tokenization occurs outside the indexer, and is decomposed into a number of independent miners rather than a single
monolithic process. For example, a base text tokenizer breaks a web page into textual tokens. Other miners may extract
attributes such as geographical references, proper names, or corporations that appear in the page. Clients may, for
example, then contact the indexer service through its network API to request pages that refer to corporations cooccuring
with northern European locations. Details of the ranking function and quantitative benchmarking results are available
in [29].

Finally, indexers within the system are generic components. The indexer described above builds and serves a po-
sitional index that allows proximity queries, phrase search, and so forth. However, for some applications, an index
that supports range queries of numeric values might be more appropriate—consider for example queries for locations
within a particular region. The index build process supported by the system allows multiple indexers to process the same
dataset, and includes mechanisms to join together results from several different index servers.

6.2.4 The Joiner

Indexers within the system are generic components. The indexer described above builds and serves a positional index
that allows proximity queries, phrase search, and so forth. However, for some applications, an index that supports range
queries of numeric values might be more appropriate—consider, for example, queries for locations within a particular
region. Other queries may desire information about closure of spans of information, or be geospatial in nature, or be
part of a hand-selected collection or any of a number of restrictions.

The joiner is a service that takes a request, for example

SELECT url FROM web WHERE
SemTag = ’Athlete,Jordan,_Michael’

and PageLocation within 20 miles of SanJose

and returns the set of URLs of pages that meet the restriction criteria.
The joiner allows more complicated annotators to examine only those documents which meet some basic criteria,

allowing them to take more time on those pages of interest. It also has a role as part of the flexible “glue” that allows
bringing together different components into a single system, supporting a single consistent API.

6.2.5 The Cluster Management System

The cluster management system (CMS) must run a huge number of semi-debugged services on a large amount of failure-
prone hardware. It must run these services efficiently (i.e., in a load balanced fashion) while identifying problems and
taking appropriate corrective action before the problem cascades. When an error condition is beyond the “autonomic”
abilities of the system to correct, a logging system keeps track of all alerts raised by all system components, and a human
operator is called in. The CMS component is designed to allow application level code to be developed without the need
for explicit handling of parallelism or crash recovery.
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The CMS system operates as a hierarchy of “nanny” programs. The services and miners themselves are launched by
a nanny program that forks and execs them within a sandbox (i.e., in memory, disk, file system and CPU limited fashion).
These services and miners convey status information to the per-service nanny parent. Third-party software packages are
wrapped as necessary with a custom nanny service to allow uniform viewing and control of all components. Each
machine has a head nanny that makes sure each of the individual nannies are running, and periodically (every second or
so) collects information from them as well as information on various machine resources (total memory/disk/CPU usage,
network collisions, etc). Information from the head nannies is aggregated at a central location to generate overview
statistics, and to provide controls by which agents or the key operator can take corrective and tuning actions, propagating
commands back down the chain. Ultimately, these commands cause individual services and miners to be installed,
uninstalled, stopped and/or started on various machines.

A module called the Foreman manages sets of interdependent miners. It exploits the extensibility of the store API
to “fake” a store, and uses regular IPC facilities to hand entities directly from miner to miner, allowing multiple miners
to run on the same piece of data without incurring the penalty associated with multiple read/writes. The Foreman also
allows direct control over the sequencing of the miners, and logs errors to CMS and performs automated recovery when
a miner in the sequence fails and needs to be restarted. Since failures may be from accumulated errors or caused by a
specific entity, the Foreman first retries the miner on the same entity, and if the failure recurs the entity is skipped. This
gives the system a high degree of robustness in the presence of possibly unreliable miners.

6.3 Analysis agents

An analysis agent is an encapsulated piece of functionality that executes in the Seeker environment, roughly equivalent
to a “module” in a traditional programming language. As such, it is a completely generic object that could perform
simple processing of individual pages, or could perform complex distributed operations with built-in fault tolerance and
parallelism. Clearly, it is not possible to provide development tools that will make all annotators easy to write. Instead,
we identified a limited but common class of analysis agents calledannotatorsand we have worked to provide significant
support for these agents, while allowing the more sophisticated user full generality to create more complex agents. All
the initial SemTag components are annotators. We then defineminersto be agents that do not fall into this limited set.

6.3.1 Annotators

An annotator is defined as an analysis agent that can be written to process each entity of a certain type independently. We
focus immediately on the most common category of annotators, in which the entity type is the page, and the annotator
performs some local processing on each web page, and writes back results to the store in the form of an annotation.
For example, analysis agents that scan each web page and recognize geographic locations, or proper names, or weights
and measures, or indications that the page contains pornographic content, are all annotators. Similarly, analysis agents
that perform complex tokenization, summarization, or language identification, or that automatically translate between
languages, are also annotators.

Annotators manifest strong locality of reference in that they can be run independently on each individual web page
without reference to other pages. Thus, they can be executed by the system on a machine with limited resources, and
handed one page at a time. The system provides special support for annotators, making them almost trivial to program.
The programmer need write only a simpleprocess one page() function, and the system will make sure the function
is applied to all pages in the dataset, and the results are published in the store for all others annotators to use.

In SemTag, the operation of dumping all windows containing references to TAP objects is coded as an annotator.
Due to the simplicity of creating and running annotators, it was possible to post-process the TAP RDF file in order to
extract the labels for each node of the ontology, create an annotator to extract the windows around each label, and run
the annotator on the full set of data, within a 24 hour period.

A similar annotator can be used to write annotations back into the store once processing has completed on the large
collections of windows. However, the intermediate processing, generation of automatic metadata, and incorporation of
manual metadata from human judgments, does not fit the limited definition of an annotator, and must therefore be coded
as a more general miner.

6.3.2 Miners

Miners are analysis agents that need to look at a number of entities (of one or more entity type) together in order to arrive
at their conclusions. The overall SemTag application (using the TBD algorithm) is a good example of such a system, as
it looks at the results of spots on many pages in order to disambiguate them.

Seeker provides the same CMS support for starting, stopping, monitoring, logging, and maintaining a cross-entity
annotator as it does for a per-entity annotator, but it does not provide automatic support for data parallelism and replica-
tion. Because the functionality of such a annotator is more complicated, the programmer must take on responsibility for
the data management task. However, the data handling capabilities of the infrastructure components may be brought to
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bear on many such problems. For example, a programmer wishing to provide drill-down into co-occurrences of particu-
lar tokens could simply create a Seeker index containing the tokens, plug in an appropriate ranking function, and extract
co-occurrences using index queries.

6.3.3 Link Analysis

As an example of per-entity and cross-entity mining, we describe tools in Seeker that enable link analysis.
The “Link Annotator” is a per-entity annotator that extracts links from web pages and stores the results in a form

that facilitates the rapid accessing of a relatively limited subset through store fetch operations. This is useful in such
applications as finding the back-links from a particular page, or set of pages (see [14]), in the finding of “hubs and
authorities” for particular queries[30] or other forms of specialized search and analysis[13, 12].

However, other instances of link analysis cannot be supported by per-entity annotators alone. The best known of
these are the computation of PageRank[9, 41] and the examination of the large-scale (“bow tie”) structure of the Web
[11] (or a combination of the two[4]). For such purposes the entire Web graph must be extracted, edited and stored in
compact form. This is the function of the “Graph Annotator,” a cross-entity annotator that runs on the entire link graph
of the web and then at termination inserts final results (such as a page’s ranking) back into the store.

7 Conclusions and Future Directions

The current results are available as a label bureau onhttp://tap.stanford.edu/semtag/index.html .
We believe that automated tagging is essential to bootstrap the Semantic Web. As the results of the experiments

with SemTag show, it is possible to achieve interestingly high levels of accuracy even with relatively simple approaches
to disambiguation. In the future we expect that there will be many different approaches and algorithms to automated
tagging. Unfortunately, storing a copy of the web and creating the infrastructure for running a tagger on billions of pages
is beyond the scope of most researchers. It is our goal to provide a tagging of the web as a label bureau. We would
also like to provide Seeker as a public service for the research community to try various experimental approaches for
automated tagging.
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