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Abstract

The emerging paradigms of service oriented architec-
tures and utility-based computing have the potential to
greatly reduce the cost of data management. Data man-
agement service providers negotiate with their customers to
agree on a service level agreement (SLA) that guarantees
performance and reliability. However, these providers have
the freedom to cut costs by taking advantage of economies
of scale across multiple customers.

In this paper, we examine the problem of choosing a QoS
level for each table or index in a service provider’s backend
databases so as to minimize thedollar costof provisioning
storage while satisfying application-level SLAs. This prob-
lem is difficult because changes in the access cost of differ-
ent portions of the database can cause the database to alter
its access patterns. We develop an algorithm that optimizes
the choice of query execution plans and storage layoutsi-
multaneouslyto meet an SLA at minimum cost.

In our experiments we use a part of the TPC-H bench-
mark as the workload and several models of the incremen-
tal cost of placing a volume at a high quality of service.
Our results show that significant cost savings are possible
through selective use of high storage QoS levels.

1 Introduction

A recent trend in enterprise computing is the use of
service-oriented architectures for managing business data.
By using service description languages like WSDL [5] and
standard architectures like OSGA [23], businesses can pro-
vide easy and transparent access to their data, both for per-
forming internal processes and coordinating with partners,
customers, and suppliers.

This standardization has spawned a new industry in web
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Figure 1: Architecture of an outsourced web service provider.
The provider maintains web services on behalf of several
clients. The services share a local cluster of relational
databases servers, and a storage virtualization layer allocates
on-disk storage to these databases. A global resource manage-
ment framework allocates CPU and database resources among
services and storage resources among database instances.

service outsourcing. Because different services use the
same platforms and interfaces, companies like IBM [17]
and HP [15] can manage web services on behalf of many
clients at a single centralized facility. These providers can
realize significant economies of scale by sharing hardware
and software resources among many clients (See Figure 1).

Currently, outsourcing web services is a manual process.
The client negotiates workflow descriptions, service level
agreements (SLAs) and pricing with the provider. Then the
provider implements and hosts the web service. Research
prototypes in the Grid community are moving towards au-



tomating the service creation process with technologies like
GRAM [14] and SRM [28]. In either case, service outsourc-
ing clients solicit bids from different providers.

To provide competitive bids, providers need a reliable
way to minimize the cost of provisioning their resources to
meet service level agreements. For data-intensive business
applications, meeting a service level agreement typically
requires performing a mix of relational database queries
within a specified amount of time. The performance of
this query mix in turn depends on the speed with which the
database can fetch the relevant records from secondary stor-
age.

Service providers need to allocate their storage resources
to ensure that database queries execute sufficiently quickly.
This provisioning problem is complicated by the fact that
there are often several ways to obtain the answer to a rela-
tional query. Each of thesequery execution planscan stress
different on-disk data structures. For example, a database
might have the option of fetching records directly from a
relation or indirectly using an index. The optimal storage
provisioning depends on the query execution plan, and the
optimal query execution plan depends on how storage is
provisioned.

In this paper, we examine the storage provisioning prob-
lem for services that store their data on relational databases.
We show how to optimize the choice of query execution
plans and storage QoS levelssimultaneouslyto meet an
application-level SLA at minimum cost.

2 Background

To allow storage-intensive applications like databases to
share a single device, researchers have developed storage
systems that provide Quality of Service (QoS) guarantees
[3, 30, 19, 20]. With a QoS-enabled storage manager, a ser-
vice provider can guarantee that each database will always
receive a certain amount of bandwidth and latency from a
centralized storage device.

QoS does not come for free, however. Internally, stor-
age management software meets QoS guarantees through
techniques such as overprovisioning time-shared resources
like network bandwidth; moving high-priority data to faster
disks or solid-state cache; replicating data across several de-
vices for higher read bandwidth; and leaving portions of a
disk drive empty.

There can be a significant dollar cost to increasing the
QoS level of a volume; depending on whether disk or net-
work bandwidth is the limiting factor in the storage system’s
performance, it may be necessary to add additional disks or
network interfaces.

Because setting QoS levels high is expensive, it is desir-
able to do so only for those areas of storage that are impor-
tant to application performance. For applications with static

access patterns, one can determine the performance-critical
portions of storage by examining traces of application exe-
cution. Modern databases, however, havequery optimizers
that adapt storage usage patterns to the relative performance
of different volumes, choosing query execution plans that
favor volumes with higher bandwidth and lower latency.

This adaptivity creates additional opportunities for cost
savings. Different parts of a database can be of widely
varying sizes, and placing the smaller on-disk data struc-
tures at high QoS levels can be considerably less expensive
than doing the same for larger data structures. If a database
provider configures these smaller data structures for higher
performance, the query optimizer will react by altering its
choice of query plan to favor the smaller data structures. In
this way, the database can meet the requirements of its ser-
vice level agreement with a less expensive combination of
service QoS levels.

In this paper, we examine the problem of choosing the
optimal set of QoS guarantees for the storage underlying
a relational database. We pose the problem as a cost-
minimization problem in which the independent variables
are the storage QoS levels for each volume in the database.
The objective is to meet response time requirements for a
given query workload while minimizing the amount of ad-
ditional hardware that must be added to the storage system.
We model the marginal cost of QoS for storage systems that
are network-limited, disk-limited, or a combination of the
two. We also take into account the behavior of the database
query optimizer choosing different query execution plans
depending on the relative speed of accessing different por-
tions of the database.

In the next section we compare our work to related lit-
erature. In Section 4, we provide our theoretical frame-
work for our analysis. Next, in Section 5.3 we show that
the SLA satisfaction problem can be posed as a mathemati-
cal optimization problem. To demonstrate our methdology,
we conducted experiments using the TPC-H workload and
the experimental design described in Section 6. Finally, the
economic impact of our automatic provisioning algorithm
is discussed in Section 7.

3 Related Work

The problem of allocating resources within a storage sys-
tem to meet a priori quality of service requirements has
received much attention in the storage community in re-
cent years. Alvarezet al. [1] describe a system that uses
constraint-based heuristic optimization to design storage
layouts that meet complex performance requirements. An-
dersonet al. [2] present a similar system that uses a con-
straint solver to select configuration parameters for RAID
logical volumes based on performance specifications. Our
work differs from this previous work in that we study



database query response time and account for different stor-
age parameters resulting in different query plans.

The field of query optimization [27, 29] is as old as re-
lational databases themselves. The techniques in this paper
use a traditional query optimizer as a subroutine and there-
fore take advantage of this earlier body of work. Some tools
for physical database design [11, 26, 24] use a similar archi-
tecture to ours to solve the problem of choosing indexes.

The problem of resource allocation to maximize a utility
function is well-studied in the field of economics; an opti-
mization algorithm for resource allocation under conditions
similar to those investigated in this paper is described in [9].

4 Theoretical Framework

In this section, we describe a theoretical model of a rela-
tional database system performing queries using data struc-
tures that reside inside centralized storage. This formalizing
is similar to that in [25, 16, 12, 11]. Later in the paper we
use this model to set up the database layout problem as a
cost-based optimization problem.

The rest of the section is organized as follows. First,
we model the workload characteristics and the storage sys-
tem cost functions. Next, we model query plans as vectors
whose components are resource usage amounts. The no-
tion of linear cost now becomes a matter of taking vector
products of resource usage vectors and storage cost model
vectors. This linear cost model is then used in the query
optimization process.

4.1 Storage and Workload Models

We model the database workload as a set of ordered pairs
(q, wq), q = 1, . . . , Q. whereq is an index to theqth re-
lational database query, andwq is the query’s associated
weight. These weights can be used to either model the fre-
quency with which queries appear in the workload, or the
relative importance of queries to customers. The service
provider can compute the query workload for a given appli-
cation from a trace of the application’s calls to the database.

The queries in this workload run over a set of out-of-core
data structuresD = {D1, D2, . . . , Dn} such as data tables
or B-Tree indexes. Data structureDi takes upσi units of
data on disk.

The database provider can choose a differentquality of
servicefor the storage partition that holds each data struc-
ture. We assume that there areL different service levels,
which we index byl, l = 1, . . . , L.

Associated with each service levell is a transaction
timeparameterTt(l), which indicates the average time that
elapses between the database requesting a transfer of data
and the transfer commencing. In this context, the term
transactionrefers to a single request for one or more blocks

of data from the storage system. The transaction time pa-
rameter models queueing time, network latency, seek time,
and rotational latency.

Each service levell also has an associated data transfer
rate which can be used to calculated thetime per datum
Td(l). This quantity models the time required to transfer a
unit of data to or from the storage utility once the transfer
operation has begun.

We assume that the service levels are totally ordered; that
is, Tt(1) < Tt(2) < . . . < Tt(L), andTd(1) < Td(2) <
. . . < Td(L).

We model the cost of provisioning different qualities of
service by assigning astorage costCS

l and network cost
CN

l to each service levell. Storage cost is measured in units
of money per gigabyte stored, and network cost is measured
in units of money per gigabyte transferred.

Each mapping from data structures to service levels de-
fines a functionα : D → {1, 2, . . . , L}. That is, data
structureDi resides on storage with quality of service level
α(Di).

For each such mapping α, we de-
fine a resource time cost vector

Tα =
(
Tt(α(D1)), . . . , Tt(α(Dn)), Td(α(D1)), . . . , Td(α(Dn))

)>
(1)

Intuitively, the firstn elements of the resource time cost
vector model the time required to begin transferring data
to or from data structuresD1 throughDn, and the nextn
elements model time required to transfer a unit of data to or
from those data structures.

4.2 Query Plans

For each queryq, the database system can use any of a
number of query plansP = {P1, P2, . . . , Pn}. Each query
planPi has an associatedresource usage vector

Ui =
(
U1

t (i), U2
t (i), . . . , Un

t (i), U1
d (i), U2

d (i), . . . , Un
d (i)

)>
(2)

wheren is the number of out-of-core data structures.
ElementU j

d(i) of the resource usage vector indicates how
many units of data the query plan transfers to and from data
structurej. Likewise, elementU j

t (i) of the vector indicates
how many times the query plan will initiate such data trans-
fers.

4.3 Linear Cost Model

We assume that query execution time adheres to a linear
cost model similar to that used by Selinger et al. [27] and
most commercial query optimizers and that this execution
is I/O-bound. That is, the time to execute a query planp



(the time costof p) under service level mappingα is equal
to

U>
p · Tα (3)

whereUp andTα are vectors as defined in Sections 4.1 and
4.2 and· is the dot product operator. Intuitively, this equa-
tion converts the query plan’s counts of storage transactions
and data units transferred into units of time by multiplying
these counts by the constants inTα. We ignore the CPU
time that a query plan requires.

4.4 Query Optimizer Model

We assume that the database system uses a relational
query optimizerto choose a query plan for each query that
minimizes the time cost (See Equation 3.) of the query.
For a given queryq and service level mappingα, the query
optimizer searches the space of all possible query plans, es-
timates their resource usage vectors, and picks the plan with
the lowest estimated time cost underα. We denote thisesti-
mated optimal planby po, so the resource usage vector (See
Section 4.2.) of the optimal plan isUpo .

Of course, a query optimizer can make inaccurate esti-
mates of resource usages if it has inaccurate estimates of
the selectivities of relational operators. For the purposes
of this paper, we assume that the optimizer has a method
of obtaining accurate selectivity estimates. Intuitively, the
storage provisioning analysis we propose is a long-running
offline process, so the optimizer has time to obtain accurate
estimates of the operator selectivities by running different
query plans on a sample of the database.

A relational query optimizer typically considers a very
large set of potential query plans when optimizing a query.
However, only a subset of these plans can ever become the
optimal plan as a result of changes in storage performance.
We call this set of plans thecandidate optimalplans.

More formally, a query planp with resource usage vector
Up is candidate optimalif there exists a mappingα and a
resource time cost vectorTα such that, for any query plan
p′ with resource usage vectorUp′ , Up′ · Tα ≤ Up · Tα.

5 Cost-Based Optimization

In the previous section we introduced the notation and
representation for storage systems, workloads, and linear
cost models. In this section we will use the representation
to pose the database layout problem as a quadratic opti-
mization problem. First we define the weighted time and
weighted dollar costs and then we setup the constrained op-
timization problem based on these cost models.

5.1 Weighted Time Cost

Using the workload model from Section 4.1 and the
query optimizer model from Section 4.4, we define the
weighted time costof a query workload(q, wq) under a ser-
vice level mappingα andquery plan mappingβ : q → P
as:

τ(α, β) =
Q∑

q=1

wq × (Time to execute queryq)

=
Q∑

q=1

D∑
d=1

wq × (Tt(α(Dd))× Ud
t (β(q))

+Td(α(Dd))× Ud
d (β(q)))

whereβ is a mapping from queries to query plans.
Intuitively, the weighted time cost is proportional to the

expected running time of the average query in the workload.

5.2 Weighted Dollar Cost

We model the incremental cost of placing data at a QoS
level as having two components:

• A storage pricecomponent that models the disk re-
sources required for each gigabyte of additional data
stored.

• A network pricecomponent that models the additional
network resources required per gigabyte transferred.

Depending on the configuration of the storage system,
one of these two components will tend to dominate. For ex-
ample, if there is ample disk bandwidth but network band-
width is limited, the network price will be the dominant
price. The important distinction between these two types
of cost is that storage price varies with the amount of data
stored on disk, while network price varies with the amount
of datatransferred.

Each service levell has its own storage and network
prices, which we denote byCS

l andCN
l , respectively.

Using these cost constants, we define thefixed dollar
costof a mappingα as

D∑
d=1

σd × CS
α(Dd). (4)

Recall that data structureDi takes upσi units of data
on disk. Intuitively, the fixed dollar cost models the cost
of keeping data on storage with a particular QoS guarantee,
regardless of how much that data is accessed.



Conversely, thevariable dollar costof service level map-
pingα and query plan mappingβ is

Q∑
q=1

D∑
d=1

wq × Ud
d (β(q))× CN

α(Dd). (5)

5.3 The Optimization Problem

The database administrator needs to choose a mapping
from data structures to service levels that minimizes dol-
lar cost while meeting an average response time constraint.
That is, given the current workload(q, wq) and the maxi-
mum response timeT0, he or she needs to choose a mapping
functionsα andβ so as to minimize the total costg(α, β)
subject to the constraint thatτ(α, β) < T0.

Let αdl ∈ {0, 1} be a binary variable that indicates the
assignment of a data structure (a table or an index) to a stor-
age service class. If there areD dats structures andL ser-
vice levels, thend = 1, . . . , D andl = 1, . . . , L. Further-
more, if αdl is non-zero it implies that data structured is
assigned to service levell. Each row in the0− 1 matrixαdl

contains only one non-zero entry.
Similary, let the number of queries beQ and the number

of possible plans for queryq bePq. Letβqp ∈ {0, 1}, where
q = 1, . . . , Q andp = 1, . . . , Pq be a binary variable that
indicates which plan is being used for a particular query.
For example, ifβ79 = 1, it implies that plan number 9 is
being used for query 7. Also notice that since only one
plan can be used for a query, each row of theβqp should
have only one non-zero entry. The optimization problem
can now be stated as:

minimizeg(α, β) =
D∑

d=1

L∑
l=1

αdlC
S
l σd +

D∑
d=1

L∑
l=1

Q∑
q=1

Pq∑
p=1

αdlβqpwqU
d
t (p)CN

l

subject to

T0 ≥
Q∑

q=1

D∑
d=1

L∑
l=1

Pq∑
p=1

αdlβqpwqTt(l)Ud
t (p)

+
Q∑

q=1

D∑
d=1

L∑
l=1

Pq∑
p=1

qαdlβqpwqTd(l)Ud
d (p)

L∑
l=1

αdl = 1 for all 1 ≤ d ≤ D

Pq∑
p=1

βqp = 1 for all 1 ≤ q ≤ Q

U(p) · T (l) ≤ U(p′) · T (l) for all p 6= p′ iff βqp = 1
αdl ∈ {0, 1}
βqp ∈ {0, 1}

The above problem is a integer quadratic programming
problem with binary variables. This problem is well stud-
ied in the literature [21] and there are numerous software

packages available to solve such problems [22, 4].
While the above formulation is correct, we were not able

to find public domain optimzation packages that could solve
the above integer quadratic programming problem. In Ap-
pendix A we use a trick that converts the problem into alin-
ear binary programming problem by variable transforma-
tion. There are public domain optimization packages avail-
able for such problems.

6 Experiment Design

Using the theoretical framework from Section 4, we de-
signed an experiment that measures the potential cost sav-
ings from the selective use of high storage QoS. We then
ran this experiment with the DB2 query optimizer [6, 13]
and the queries from a subset of the TPC-H benchmark [8].

Our experiment proceeded in three stages:

1. Find all candidate optimal plans (See Section 4.4.) and
their resource usage vectors (See Section 4.2.).

2. Remove plans that will not occur under the current ser-
vice levels.

3. Use the remaining plans and service level cost to com-
pute the least expensive mappings from data structures
to service levels.

6.1 Experimental Setup

In choosing our experimental setup, we attempted to
model a real-world database. Towards this end, we used the
query optimizer from a leading commercial database, IBM
DB2, and a database schema and queries from a well-known
database benchmark, TPC-H.

6.1.1 Database Design and Statistics

We used the database schema and optimizer statistics from
an actual published run of the TPC-H benchmark [7] for the
computations in our experiments. In particular, we obtained
statistics from the 100 GB database used in this benchmark
run and loaded these statistics into the system catalogs of
IBM DB2 Version 8.1.

We configured the database system to divide the storage
resources of the schema in as fine-grained a manner as pos-
sible. The DB2 query optimizer ”saw” each table and its
indexes as residing on a different simulated storage devices.
With seven TPC-H tables and a temporary space, our exper-
imental setup had a total of 15 out-of-core data structures.

6.1.2 Queries

We ran our analysis on six of the queries from TPC-H. In
particular, we used queries 1, 4, 6, 12, 17, and 19. We



chose these queries to maximize coverage of the TPC-H
benchmark while using a set that let our linear programming
solver complete in approximately five minutes for each data
point in our plots. The number of candidate optimal plans
for these queries ranged from 2 to 28. We weighted all the
queries evenly.

6.1.3 Service Levels

We used three storage QoS levels in our experiments. The
highest QoS level had 10 times the performance of the next
highest level and 100 times the performance of the lowest
level.

Since different storage systems may have different bot-
tleneck components, we considered several possible models
for the marginal cost of placing an out-of-core data structure
at a given service level:

• The storage onlycost structure models a storage sys-
tem in which disk bandwidth is the major constraint.
In this model, the network cost of each service level is
zero. The price per megabyte of managed storage is
proportional to the bandwidth of each service level.

• Thenetwork onlycost structure models a storage sys-
tem whose performance is constrained by the amount
of network bandwidth available. In this model, the
storage cost of each QoS level is zero, while the cost of
transferring data to and from managed storage is pro-
portional to bandwidth.

• Under thenetwork and storagecost structure, network
and storage costs are both proportional to bandwidth
and are normalized to be approximately equal. This
cost structure models a storage system in which both
disk and network bandwidth are heavily utilized.

We chose the the queueing time and time per datum pa-
rameters (See Section 4.1.) of each service level such that
they were always related by the same constant multiple.
This constraint allowed us to group the queueing and data
transfer elements of our resource usage vectors into a single
dimension, halving the dimensionality of these vectors.

6.2 Stage 1

The first stage of our experiment computed the set of
candidate optimal plans for all of the queries, as well as
computing their resource usage vectors. We conducted this
stage using the software described in [25]. Briefly, this soft-
ware works in three passes:

1. Sample the resource time cost space (See Section
4.1.) through iterative subdivision similar to a high-
dimensional quad-tree [10].

2. Augment the set of time cost vectors from Pass 1 until
there are enough vectors to calculate resource usage
vectors for all known plans by Gaussian elimination.

3. Verify that Pass 2 found all candidate optimal plans by
computing and checking the vertices of all the region
in which each plan is optimal. If new candidate opti-
mal plans are found, go back to Pass 2.

The software from [25] is compatible with any query op-
timizer that allows users to set the cost of accessing different
storage devices and to retrieve the estimated total cost of the
current optimal plan. However, this software takes several
hours to run. For a real-world implementation of the ideas
in this paper, the implementor should use parametric query
optimization [16] [18] to compute the set of candidate opti-
mal query plans more quickly.

6.3 Stage 2

The first stage of our experiment computed the set of
plans that could become optimal under any set of storage
time costs. With a finite set of storage service levels, only
certain storage time costs are possible. The second stage of
our experiment removed candidate optimal plans that could
not become optimal under the discretized set of storage time
costs. This stage worked by solving a set of linear con-
straints for each candidate optimal plan.

Recall that a given query planPi is optimal if, for all
other plansPj for the same query, the time cost ofPi is
less than or equal to the time cost ofPj . Therefore,Pi can
become optimal under a set of service levelsL if there exists
a mappingα from data structures to service levels such that

Ui · Tα ≤ Uj · Tαfor all j 6= i, (6)

whereUi, Uj , andTα are vectors as defined in Sections
4.1 and 4.2.

As in Section 5.3, we converted these constraints into a
Boolean linear programming problem by adding an indica-
tor variableαdl ∈ {0, 1} for each data structured and each
service levell, whereαdl = 1 if data structured is assigned
to service levell. Stage 2 of our experiment solved this
rewritten problem using the OPBDP solver [4].

6.4 Stage 3

The final stage of our experiment computed the optimal
mappings from data structures to storage service levels un-
der different cost structures, using the candidate optimal
plan sets generated in Stage 2. Stage 3 worked by solv-
ing the linear program described in Section 5.3 using the
OPBDP solver [4].
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Figure 2: Costs of provisioning managed storage as a func-
tion of workload response time requirements when storage is
disk-bound (See Section ). The cost savings from choosing the
optimal strategy over the naive one range up to 35 percent.

We first computed the minimum and maximum possible
response times for the query workload. These times oc-
cur when every data structure is mapped to the fastest or
slowest storage service level, respectively. We then chose
20 response time thresholds between these two extremes.
For each response time requirement, we computed the dol-
lar cost of meeting the requirement by placing every data
structure at the same storage service level. We refer to this
first cost as thenaive costof meeting the response time re-
quirement. Finally, we applied the OPBDP solver [4] to
the constraint formulation in Section 5.3 to compute the
mapping from data structures to storage devices that meets
the response time requirement while minimizing total dollar
cost. We refer to this second dollar cost as theoptimal cost
of meeting the response time requirement.

7 Experimental Results

7.1 Results with Storage Only Cost Structure

Our first cost structure simulated a storage system whose
performance was limited by disk bandwidth. In this model,
the storage system increases QoS levels by replicating or
striping data or by using faster drives. As such, we assumed
that the cost per megabyte of data stored in this model is
proportional to the bandwidth that the storage must deliver.

Figure 2 shows a graph of the cost of provisioning man-
aged storage under this cost structure and varying query
response time thresholds. The line labeled “naive layout”
shows the dollar cost of provisioning storage to meet the re-
sponse time requirement when all data structures have the
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Figure 3: Costs of provisioning managed storage when the
storage system is network-bound. The savings available
through flexible use of QoS levels, while less than in Figure
2, are still significant.

same quality of service. As the response time requirements
become less stringent, the naive layout strategy shifts the
entire database to lower QoS levels at once, resulting in
large jumps in dollar cost.

The line labeled “optimal layout” shows the dollar cost
of provisioning storage when each data structure can have
any quality of service. Because the optimal layout places
only the more performance-critical data structures on high
QoS storage, the dollar cost curve for the optimal layout is
smoother and dips more quickly as response time require-
ments are relaxed. Cost savings range up to 35 percent, with
the greatest savings occurring when the naive strategy pro-
vides response times significantly less than what is required.

7.2 Results with Network Only Cost Structure

Our second cost structure simulated a storage system in
which network bandwidth is the major performance con-
straint. In particular, we set the network cost of each service
level to be proportional to the bandwidth the level provides.

Figure 3 shows a graph of the cost of managed storage
as a function of the maximum average query response time.
According to this graph, savings attainable by selective use
of high QoS levels are about half as much under the network
only cost structure as they are under a storage only cost
structure. As before, cost savings were maximized when
the naive strategy overshot the desired response time.

7.3 Results with Mixed Cost Structure

Our third cost structure combines the storage and net-
work costs of the first two cost schemes, weighting these
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Figure 4: Costs of provisioning managed storage is equally
network and disk bound. Results are in between those in Fig-
ure 2 and those in Figure 3.

cost components so as to make them approximately equal
under the naive storage provisioning scheme. As shown in
Figure 4, the results for this third cost structure were inter-
mediate between the results for the first two cost structures.

7.4 Discussion

Our experiments demonstrate that database administra-
tors can achieve significant cost savings through selective
use of high storage QoS levels. In particular, storage sys-
tems whose performance is limited by disk bandwidth a
are more amenable to optimization than those that are con-
strained by network bandwidth.

In the course of our experiments, we also observed an
interesting phenomenon. In those cases when assigning all
tables to the same service level causes the database to meet
its response time requirements almost exactly, the cost of
the naive layout comes close to the optimal cost. This effect
may be an artifact of the TPC-H queries that we used for our
experiment. The queries tend to exercise the different parts
of the database equally. Hence, the value of fast access to
a particular data structure in TPC-H is roughly proportional
to the size of the data structure, and the naive provisioning
strategy works well. Real-world query workloads tend to
show more skew in their access patterns than does TPC-H.
This skew should increase the benefits of selective use of
high QoS levels.

8 Conclusion and Future Work

In this paper, we have studied the potential for data man-
agement service providers to save money through judicious

use of storage quality of service. We have developed a the-
oretical model for reasoning about the problem. Using this
model, we have given a rigorous definition of the problem
of allocating out-of-core data structures to service levels so
as to minimize dollar cost while meeting query response-
time requirements. We have demonstrated how to convert
this problem formulation into a Boolean quadratic program
and then into a Boolean linear program. Finally, we have
applied publically-available software to this linear program
to demonstrate the potential for significant cost savings for
a typical decision support workload on several classes of
storage system.

Our experimental results lead us to conclude that, as IT
outsourcing grows, service providers will benefit from hav-
ing a software tool that maps portions of the database onto
different QoS levels. Future database systems may even se-
lect storage service levels transparently without human in-
tervention.

One issue that implementors of such a tool will face is
that of scalability. The solver that we used in our experi-
ments worked well for the scale of problem that we used
in this paper. However, systems that provision storage for
a significantly larger number of more-complex queries will
benefit from using a more efficient optimization package.
We are currently investigating the use of quadratic program-
ming toolkits and approximation algorithms like simulated
annealing and genetic programming as more scalable solu-
tions to the storage provisioning problem.
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A Linearization of the Quadratic Binary Op-
timization Problem

In this section we show how we map our the quadratic
problem into a linear integer programming problem in bi-
nary variables. Without loss of generality, we will use a
simpler notation to illustrate the process.

Let the binary quadratic objective function be∑
i

∑
j qijxixj where xi, xj ∈ {0, 1}. We define

variablesyij to representxixj . The new problem becomes:

Maximize
n∑

i=1

n∑
j=1

qijyij

Subject to

yij ≤ xi for all i andj

yij ≤ xj for all i andj

yij ≥ xi + xj − 1 for all i andj

yij , xi ∈ {0, 1} for all i andj

First two constraints ensure thatyij must be zero if either of
xi or xj is zero. The next constraint ensures thatyij is one
if both are one. The rest constrain the variables to be binary.

The above system can be solved using branch-and-bound
algorithms [21]. We used the OPBDP solver [4] but any ap-
propriate solver could have been used (see the NEOS web-
site [22]).
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