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Abstract 

Ontologies provide a vocabulary to reason about classes of entities. In 

biomedical research numerous ontologies like MeSH [28], SNOMED [25], and 

Gene Ontology [24] are being created and used for analyzing and reasoning 

about diseases, symptoms, root causes on one end, and discovering associations 

by mapping one ontology to another, on the other. However, research on 

mapping ontologies has been limited to mapping ontologies based on research 

documents. In this paper we argue that the ontology representing patents is very 

valuable since it represents the intellectual property owned by businesses and 

also is a means of associating chemical and biological entities that impact 

human health to most other manufactured goods and manufacturing processes.  

In this context we create a tool that allows a user to map patents into the MeSH 

ontology and find related topics and discover relationships that would otherwise 

not been possible if one looks at patents in isolation. We create human ground 

truth mappings that represent the “correct” answers for both training our 

proposed learning algorithms, and comparing the algorithm generated mappings 

to the human-generated ones. We show that the performance of the mapping 

algorithm improves substantially when we incorporate the structure information 

of MeSH and Patent ontologies. 

                                                           
†
 This work was done when Luo Si was visiting IBM Almaden Research Center. 



 2

1. Introduction 

Biomedical information overload is a blessing in disguise. Without the right tools one 

can be buried in it. However, the right data mining tools and data can allow us to 

discover relationships, find new cures, and prevent possible health risks. In this article 

we propose that patents, which record intellectual property related to biomedical 

inventions (such as drugs), can add value to various biomedical data such as Medline 

[30], Medical Subject Headings (MeSH) [28], Unified Medical Language System 

(UMLS) [25] and Gene Ontology (GO) [24] that are currently used for biomedical 

information search. To illustrate this point, consider the following scenarios: 

Latent relationships. A company invents and patents a new drug for a specific 

disease. Another company finds that the critical function accomplished by the drug can 

also be used to fix another health problem. However, the relationship is discovered by 

finding the relationship amongst concepts using an ontology such as MeSH, but not the 

original patent ontology. How can we make such discoveries more automated? 

Prior art search. A patent attorney wants to know what prior art exists on a specific 

patent application. Besides finding Medline documents and patents by key words, the 

examiner would like to be able to find the associated MeSH categories, and extend the 

scope of the search to semantically related concepts and co-occurring concepts using 

MRREL (semantically related concepts) [25] and MRCOC (co-occurrences between 

concepts) [25]. Currently the examiner would have to do this manually. 

Health hazards. Let’s say that a biomedical document mentions that a specific 

chemical can have an adverse effect on the health of an individual, and goes on to 

specify specific symptoms that one might have if the chemical is consumed or inhaled. 

An unrelated patent document describes the use of the same chemical in a 

manufacturing process of a component or a toy. With the current information tools, it is 

not possible to discover this fact automatically [7].  

Tech transfer. Let’s say a researcher in academia invents a new drug and publishes a 

paper on the topic. Next the researcher would like to do more serious tests to verify the 
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viability of the drug. One way to get funded for the work would be to look at companies 

that work on the topic, and related concepts in the patent corpus. Similarly a company 

might want to find academic researchers working on related concepts. Currently we 

would have to do this manually by searching documents within Medline and Patent 

datasets and relating them via the MeSH ontology one-by-one. 

In each scenario listed above, we notice that an automatic association discovery tool 

would be beneficial. While one can still discover the associations today with existing 

tools, it is very labor intensive, time consuming, and prohibitively expensive. In this 

paper we describe a tool that is a step towards this automation process. We use the 

structure information in the patent and MeSH ontologies to create a classification 

algorithm that maps a patent document to semantically closest concepts in MeSH. As a 

by-product the tool also generates a list of most similar documents in the Medline and 

patent corpus. 

We propose several algorithms to map patent documents into MeSH ontology. 

Simple K-nearest neighbor (KNN) [21] algorithms that do not utilize ontology structure 

information are first described in this paper and serve as baseline algorithms. More 

complicated algorithms are proposed to take advantage of structure information among 

source International Patent Classification (IPC) [29] patent ontology and target MeSH 

ontology. In addition, a finer category-specific mapping algorithm is proposed to better 

justify the mapping pattern with respect to different MeSH ontology categories. 

Empirical studies show that the category-specific mapping algorithm that also utilizes 

ontology structure information results in more than 20 percent improvement for 

different evaluation measures over simple KNN algorithm. 

2. Literature Survey 

The work described in this article builds on research conducted on ontology mapping 

and text categorization for biomedical and patent documents.  

Ontology mapping related work has been aggressively pursued in the biomedical, 

semantic web, computational linguistics, and the database communities. A good 
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overview on different types of ontology mapping problems and approaches is described 

in Noy [13], including database schema mapping techniques tackled in the database 

community. In some cases, ontology mapping depends only on the descriptions of the 

categories to create a mapping. In other cases, including the work described in this 

article, the mapping takes advantage of the “instances” available within each category. 

Noy and Musen [14] describe an interactive tool that helps domain experts to align 

various ontologies. The ultimate goal of Cantor et al. [3] is to discover relationships 

between diseases and genes by learning the mapping between Systematized 

Nomenclature of Human and Veterinary Medicine (SNOMED) [25] disease ontology 

and the gene ontology using the MeSH ontology as an intermediary. Our work, on the 

other hand, tries to build a relationship between biomedical documents and patent 

documents by using the structure information provided by MeSH and Patent ontologies. 

While there are a few TREC-like biomedical ontology competitions starting up [32,33], 

training corpus for  instance-based ontology mapping does not exist. This forced us to 

create our own groundtruth dataset. 

Ontology mapping has been a quite active research topic in semantic web 

community (Berners-Lee, Hendler, and Lassila [2]).  Agrawal and Srikant [1] propose a 

probabilistic method of mapping web taxonomies like that of Google and Yahoo using 

common web documents as instances for training and for validation. Doan et al. [5] use 

a relational matching approach to create a mapping between ontology nodes using 

instances. They apply their technique to web taxonomy mapping and department course 

taxonomy mapping. Zhang and Lee [22] use various statistical techniques like boosting 

to integrate multiple web taxonomies. Finally, Resnik [15] uses an information-

theoretic approach to assess semantic similarity between taxonomies for linguistic 

disambiguation. 

Another related topic is text analysis and categorization, which deals with building 

statistical classifiers using words and other features from individual documents. The 

classification work has been applied to various types of text documents including 

biomedical documents and patent documents. However the purpose of this result was 
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not to build bridges across document corpuses, but to classify documents within its type 

(e.g. Medline or patent corpus) or learn a new hierarchy based on some principles. 

Chakrabarti et al. [4] and Dumais and Chen [6] learn hierarchical taxonomies from web 

documents. Yang [21] quantitatively compares various statistical text clustering 

algorithms using the Ohsumed corpus, and Kiritchenko, Matwin, and Famili [9] learn 

hierarchical text classifiers for associating genes with gene ontology codes. A review of 

various statistical clustering techniques is provided by Jain, Murty, and Flynn [8]. 

Larkey [11] and Koster, Seutter, and Benney [10] have applied text categorization 

techniques to patent documents where they try to automatically associate a patent with 

its correct category. 

3. Data Description 

The main data sets that we work with are Medline [30] and Patents [27] databases, and 

MeSH [28] and IPC [29] ontologies.  The MeSH ontology is organized into a tree 

structure with 15 top level categories such as A (anatomy), B (organisms) etc, while 

each of them is in turn divided into many subcategories. The current MeSH ontology 

contains 42,611 nodes and has up to 12 levels. In order to provide a more general 

MeSH structure for patent documents, and also to assure better quality of ground truth 

assignment by human judges, the MeSH tree is pruned to the third level (e.g., Heart: 

 

Table 1. The distribution of identified top level MeSH categories of 253 patent documents            

(total 1,148). 
 

Assigned MeSH Top Category Counts 
Assigned MeSH Top 

Category 
Counts 

A: Anatomy 184 H: Physical Sciences 11 

B: Organisms 13 

I: Anthropology, Education, 

Sociology and Social 

Phenomena 

1 

C: Diseases 90 
J: Technology and Food and 

Beverages 
20 

D: Chemicals and Drugs 188 L: Information Science 14 

E: Analytical, Diagnostic and 

Therapeutic Techniques and 

Equipment 

453 M: Persons 8 

F: Psychiatry and Psychology 13 N: Health Care 55 

G: Biological Sciences 98   
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A07.541). This pruning procedure leaves 1,514 categories. A subset of the Ohsumed 

[31] data is utilized to learn the content representation of MeSH ontology. This subset 

contains 133,749 documents published from 1987 to 1989 in the Medline database.   

The patent documents studied in this paper come from the United States Patent and 

Trademark Office (USPTO) [27] database. All the patent documents in USPTO 

database are assigned with category/categories from the International Patent 

Classification (IPC) ontology. The IPC ontology has a depth of 5 levels and contains 8 

top level categories (e.g., A: Human Necessities). Patent documents from three IPC 

categories (A61 -- medical or veterinary science, hygiene; C07 -- organic chemistry and 

C12 -- biochemistry) are selected for our biomedical mapping work. This selection 

procedure was validated by checking the patent distributions of large biomedical 

companies such as Pfizer and Novartis. In particular, patent documents in these 

categories approved in 1990 and 1991 are used.  

Two human judges provide ground truth data of MeSH categories for 253 patent 

documents. First, a simple K near-nearest neighbor algorithm is applied on these patent 

documents to generate MeSH category candidates for each patent document; then the 

judgment of each candidate in top 20 categories for each patent document is provided 

by the human judges. This procedure produces 1,148 identified categories for the 253 

patent documents. The detailed distribution of top level MeSH categories for these 

patent documents is shown in Table 1. The 253 patent documents were assigned to 13 

out of 15 top level MeSH categories, all categories except K (Humanities) and Z 

(Geographic Locations). 

4. Problem Statement 

The patent documents are originally organized in the source IPC ontology and our task 

is to map them into the target MeSH ontology. In this section we formally define the 

mapping problem. 

Each patent document d  is represented by a set of word { }lwww ,,, 21 K and a set of 

attribute features showing its position in the source ontology. We denote the source 
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ontology as S and the target ontology as T. Both the source and target ontologies 

contain hierarchical information. For example, target ontology T includes a set of 

categories as { }tccc ,,, 21 K  while all the category nodes are organized in a hierarchical 

tree (each node has a single direct ancestor while there is a single root for the whole 

tree). The Ancestor(c) operator obtains the direct ancestor of a particular category node 

c. Category node c belongs to another category node c’ as long as c’ is the (direct or 

indirect) ancestor of category c; this is denoted as 'cc ∈ . The structure of source 

ontology S is defined in a similar way as target ontology T. 

  Given all the available information for target ontology T and source ontology S, the 

ontology mapping task is to identify whether a particular patent document d should be 

assigned into a particular category node c in the MeSH ontology. To put this decision 

procedure into probabilistic setting, we calculate the probability that the patent 

document d should be put into MeSH category c as }),,,{|1( TScdAP = . A is a binary 

random variable which is 1 when the document should be assigned into the category 

and 0 otherwise. 

5. Ontology Mapping Algorithms 

We now describe simple K-nearest-neighbor-based ontology mapping algorithms and 

several more sophisticated algorithms that utilize structure information of ontologies.  

5.1 K-Nearest neighbor based ontology mapping  

One straightforward algorithm to map patent documents into MeSH ontology is to 

ignore the structure information in both IPC patent document ontology and MeSH 

ontology and to apply standard text categorization technique (e.g. K-nearest neighbor 

[21]) for flattened MeSH categories (all the category nodes are treated separately).  

In the testing phase, each patent document d  is compared against each Medline 

document medd  in the Ohsumed corpus using a similarity measure. Our similarity 

measure is derived from Okapi information retrieval system: 
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which calculates the accumulated belief scores for all overlap words that appear in both 

the patent document and the Medline document. The word belief score is calculated 

according to the Okapi formula [26]. 

After the similarity scores of the patent document and Medline documents are 

calculated, the K top-ranking Medline documents are identified as )(dKNN  and are used 

to calculate the score for each MeSH category as: 

∑
∈∧∈

=
)(

),(),(
dKNNddc

med

medmed

ddSuppdcScore  
(2) 

where ),( medddSupp is the evidence contributed by document medd for classifying d as 

category c. The equally weighted KNN algorithm treats all categories in the set of K 

nearest neighbors equally by setting 1),( =medddSupp ; while the score weighted KNN 

algorithm favors categories from Medline documents with higher similarity scores 

as ),(),( medmed ddSimddSupp = . Finally, all the MeSH category candidates can be sorted 

with respect to these scores. If binary decisions have to be made, some thresholding 

strategies should be applied [21]. 

5.2 Utilizing hierarchical structure information of ontologies for mapping 

One limitation of the simple K-nearest neighbor algorithm is that it does not utilize the 

structure information of either the source IPC ontology or the target MeSH ontology. 

Categories within local structure of source and target ontologies (e.g., category nodes 

with the same direct ancestor category node) generally tend to represent similar 

semantic concepts, and also categories within source ontology may share similar 

semantic concepts with corresponding category nodes within target ontology. This type 

∑
∧∈

=

)(

),,(),(

ddw

medmed

med

ddwbeliefddSim  (1) 



 9

of local semantic consistency and cross ontology semantic relationship may provide 

useful information for the mapping of patent documents into target MeSH ontology.  

For example, for a specific MeSH category candidate for a patent document, if 

many other top-ranking category candidates are found to be in a small local structure of 

the category, it is intuitive to assign a higher probability of choosing this category 

because of more semantic supporting evidence from other similar categories. This 

example shows the advantage of utilizing the structure information of the MeSH target 

ontology to improve the mapping accuracy. In particular, three features are formally 

defined to represent the target ontology information. First, a group of L (i.e., 20 in this 

work) top-ranking category candidates for document d  is identified as )(dLTopCat by a 

simple K-nearest neighbor algorithm. Then, for a specific category candidate c, 

additional supporting evidence from similar categories is defined as: 

∑
∧∈

=

)()('

1arg ),'(),,(

dLTopCatcAncestorc

t dcScoreTdcf  (3) 

The first feature of MeSH target ontology sums up the supporting evidence of all 

category nodes that belong to the director ancestor of the category node in consideration. 

The second feature considers a larger local structure, which includes all top-ranking 

category nodes that belong to the second level ancestor of the category node in 

consideration as: 

∑
∈∧∈

=

)('))(('

2arg ),'(),,(

dLTopCatccAncestorAncestorc

t dcScoreTdcf  (4) 

Finally, an additional normalization feature is introduced, which sums up the 

supporting evidence of all top-ranking categories: 

∑
∈

=

)('

3arg ),'(),(

dLTopCatc

t dcScoreTdf  (5) 

Equation 3, 4 and 5 introduce additional evidence to the direct evidence between 

category c and patent document d , which is denoted as the feature 

),(),( dcScoreTdf direct = . Then the next question is how should we combine the direct and 
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indirect evidence. What weights should be associated with this set of evidence when 

they vote for category candidates. We accomplish this evidence integration by learning 

the weights of an exponential model using training data. Formally, the probability of 

assigning a particular category c in the MeSH target ontology to patent document d  is 

calculated as: 

)*****exp(1

)*****exp(
}),,,{|1(

143arg32arg31arg21

143arg32arg31arg21

arg
fffff

fffff
TScdAP

tttdirect

tttdirect

t
λλλλλ

λλλλλ

+++++

++++
==  (6) 

This model is denoted as Mtarg and maps ontologies using the structure information 

of target ontology. The weights }41{ ≤≤ jjλ are associated with different features. The 

bias feature 1f  is always set to 1. These weights are estimated using the training data as 

follows. Let O be the number of training documents. The training goal is to maximize 

the log-likelihood of correctly assigned category nodes of those documents: 

}),,,{|(logmaxarg arg
1 )(

*

arg TScdaAP itruet

O

i dLTopCatc

t

i

== ∑ ∑
= ∈λ

λ  (7) 

where 
*

argtλ  is the set of estimated feature weights of Mtarg, atrue is the true annotation 

(whether a category belongs to a document or not). This is a convex optimization 

problem and many algorithms have been proposed for it. We use the Quasi-Newton 

algorithm [12] to estimate the model parameters as it has been demonstrated to be 

better than several other alternatives. With the estimated weight parameters, we can 

rerank the category candidates from the results of simple K-nearest neighbor algorithm 

for better accuracy.  

It is reasonable to assume that the structure information of source ontology is also 

valuable. For example, for a specific MeSH category candidate of a patent document, if 

many other patent documents in the same IPC category of this specific patent document 

also rank the category highly, it is more probable that the category is a correct 

assignment of the patent document. Based on this intuition, four features are introduced 

in this work to utilize the structure information of source IPC ontology: 
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∑
∑∈

∈

∈
=

)('

)'('

1

)','(

)',(

)}('{

1
),,(

dAncestord

dLTopCatc

src

dcScore

dcScore

dAncestordC
Sdcf  (8) 

This feature averages all the (normalized) supporting evidence of category c from 

patent documents that belong to the same ancestor of the patent document in 

consideration. The averaging and normalization procedures are introduced to consider 

the variation of number of patent documents in local source ontology structure and also 

the variance of the supporting evidence score of patent document and target ontology 

category (i.e., normalize the document length factor as introduced in Equation 1). 

)}('{ dAncestordC ∈ denotes the number of patent documents that belong to the same 

ancestor of the patent document in consideration. The second feature 2srcf  averages the 

supporting evidence of all category nodes that belong to the direct ancestor of the 

category node in consideration from the set of patent documents in a similar way as the 

first feature. Two more features 3srcf  and 4srcf  sum up supporting evidence in a similar 

way as 1srcf and 2srcf  but from a set of patent documents that belong to the second level 

ancestor of the patent document in consideration.   

Furthermore, an exponential model associated with direct evidence directf and the 

four features that utilize structure information of source IPC ontology can be defined 

similarly as Equation 6. This model is denoted by Msrc and creates mapping by using 

the structure information of the source ontology or Msrc. It is also trained with the 

Quasi-Newton method. 

Finally, it is straightforward to utilize the structure information of both the target 

MeSH ontology and the source IPC ontology. In particular, we built an exponential 

model that incorporates the directf  feature associated with the direct evidence, the 3 

features associated with the target ontology information, the 4 features associated with 

source ontology information and 1 constant bias feature. We denote this model as 

Mtarg_src. 
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5.3 Category-Specific mapping algorithm 

In Section 5.2 we presented several learning algorithms that utilize structure 

information of target ontology and source ontology to improve the accuracy of mapping 

patent documents into MeSH ontology. One particular issue about these algorithms is 

that they apply the same model to calculate the probabilities of choosing different 

categories for a particular document. This general model may be too coarse for 

distinguishing different categories. For example, if all the features have the same 

supporting evidence for different features, the particular document will have the same 

probabilities to be assigned into different categories. This may not be correct if there are 

some categories that appear much more frequently than other categories. 

Therefore, a finer category-specific algorithm is proposed to build different models 

for different types of categories. As there are more than 1,500 categories in the pruned 3 

level MeSH ontology, in order to avoid the overfitting problem of limited amount of 

training data, only 13 top level (i.e., shown in Table 1) category-specific models are 

built. All the training data that belong to a top level category is used to build one model.  

In order to alleviate the data sparseness problem for some small top level categories 

(e.g., 2 top level categories have less than 10 positive training examples), a Laplacian 

prior is associated with the parameters of category-specific model. Specifically, a 

general model (e.g. Mtarg in Equation 6) is first built with all training examples. This set 

of model parameters is used as prior for the category-specific model. For example, a 

category-specific model for top level category “E” based on Mtarg can be described as: 

)*****exp(1

)*****exp(
}),,,{|1(

14_3arg3_2arg3_1arg2_1_

14_3arg3_2arg3_1arg2_1_

arg_
fffff

fffff
TScdAP

EtEtEtEdirectE

EtEtEtEdirectE

tE
λλλλλ

λλλλλ

+++++

++++
==  (9) 

and is trained with the maximum a posterior criterion as: 

)}),,,{|(log(maxarg
1

0arg_

1 )(

*

arg_ λλλ
λ

−−== ∑ ∑
= ∈

rTScdaAP truetE

O

i dLTopCatc

tE

i

 (10) 
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where 
1

0λλ −  represents the Laplacian prior with respect to the general model 0λ  and 

r reflects the weight of prior, which is arbitrarily set to 10 in the work. Note that this 

model is trained only for MeSH categories under a specific top level category (e.g., E). 

Category-specific models based on Msrc andtarg_src can be built similarly. 

6. Experimental Protocol 

One natural measure to evaluate the effectiveness of mapping patent documents into 

MeSH ontology is to use the F1 measured used for text categorization. Specifically, F1 

measure is derived from the measure of precision and recall. Precision (P) is the 

proportion of correctly chosen category nodes among all the chosen category nodes. 

Recall (R) is the proportion of correctly chosen category notes by a mapping algorithm 

among all the correct category nodes. F1 is the harmonic mean of precision and recall: 

F1=2PR/(P+R).  

However, one implicit requirement of using Recall measure is that all correct 

category nodes for every testing patent document have been identified. This may not be 

true as human judges only provide ground truth data for top 20 categories ranked by 

simple KNN algorithm of each patent document. This set of correct categories may not 

be complete. For example, if some MeSH categories do not appear in Medline 

documents of the Ohsumed subset, they cannot be labeled by human judges. Therefore, 

in addition to the F1 evaluation measure, we report a rank-based Precision measure. 

This measure evaluates the precision of correctly identified category nodes in the top 

ranking categories by averaging across all testing patent documents. 

In the empirical study, 100 out of 253 annotated patent documents are randomly 

selected and used for training while the rest are used as testing data. For a more 

thorough analysis, the random split process is repeated ten times for each set of 

experiment and the evaluation results are averaged. Although simple KNN algorithm 

does not utilize the training data, its effectiveness is still measured on the same set of 10 

random split data as other algorithms for the comparison.  
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7. Experimental Results and Discussion 

We now first discuss the empirical results of simple KNN algorithms; then we show the 

effectiveness of mapping algorithms by utilizing ontology hierarchical structure 

 
                                         Fig 1 (a)                                                               Fig 1 (b) 

Fig 1 (a). Averaged precision of top-ranking categories for testing patent documents by mapping 

algorithm using structure information of two level target ontology (MTARGL2), or one level target 

ontology (MTARGL1), and the baseline score weighted KNN (SW_KNN) algorithm. Fig 1 (b). 

Averaged F1 measure with respect to different rank cut thresholds by these algorithms. 

 
                                         Fig 2 (a)                                                               Fig 2 (b) 

Fig 2 (a). Averaged precision of top-ranking categories for all testing patent documents by 

mapping algorithm using structure information of two level source ontology (MSRCL2), or one 

level source ontology (MSRCL1), and the baseline score weighted KNN (SW_KNN) algorithm. 

Fig 2 (b). Averaged F1 measure with respect to different rank cut thresholds by these 

algorithms. 
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information; and finally we demonstrate the advantage of category-specific mapping 

algorithm. 

7.1 Effectiveness of mapping algorithms that utilize hierarchical structure 

information of ontologies 

We conducted baseline empirical experiments with two simple KNN algorithms -- 

equally weighted KNN algorithm and score weighted KNN algorithm -- which are 

described in Section 5.1. Our experiments show that the two simple KNN algorithms 

have very similar performance. Therefore, only the result for score weighted KNN 

algorithm is reported. 

 The next set of experiments demonstrates the power of mapping algorithms that 

utilize ontology structure information.  Two models that use structure information of 

target ontology are compared with the score weighted KNN baseline algorithm in 

Figure 1. One model MTARGL1 uses one-level structure information as features ftarg1 and 

ftarg3 (i.e., normalization feature), while the other model MTARGL2 utilizes all the two 

level features ftarg1, ftarg2 and ftarg3.  It can be seen that the improvement of MTARGL1 over 

simple KNN algorithm is rather small while the advantage of method MTARGL2 is much 

 
                                         Fig 3 (a)                                                               Fig 3 (b) 

Fig 3 (a). Averaged precision of top-ranking categories for all testing patent documents by 

mapping algorithm using structure information of two level target ontology (MTARGL2), or 

source (MSRCL2) ontology, or both target and source ontology (MTARGSRCL2), and the baseline 

score weighted KNN (SW_KNN) algorithm. Fig 3 (b). Averaged F1 measure with respect to 

different rank cut thresholds by these algorithms. 
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larger. This demonstrates the importance of using more complex hierarchical ontology 

structure than the single level structure. The same set of experiments has been 

conducted to study the models that utilize structure information of source ontology. The 

results are shown in Figure 2 demonstrate the advantage of utilizing complex 

hierarchical ontology structure. 

Another set of experiments show the performance of the MTARGSRCL2 model. This 

model takes advantage of the two level structure information of both the target ontology 

and the source ontology. The results are shown in Figure 3. It substantially outperforms 

the simple KNN algorithm. However, it has very similar performance as that of 

MTARGL2. One possible explanation is that structure information of target ontology may 

provide more semantic information than the source ontology as the task is to map 

document into target ontology. This is more probably true in the case of ontology 

structures with fine granularity (e.g., 1,514 possible categories in our application).  

7.2 Effectiveness of category-specific mapping algorithms  

In Section 5.3 we discussed the potential problem of using the same general model like 

Mtarg_src for all category candidates and have proposed a category-specific mapping 

algorithm. The power of this finer algorithm is seen in the experimental results shown 

in Figure 4. This figure compares the results of category-specific MTARGSRCL2SPEC model 

and the original MTARGSRCL2 model that uses a single general model for all categories. It 

can be seen from Figure 4 that category-specific MTARGSRCL2SPEC model has a large 

advantage over the original general MTARGSRCL2. This suggests the importance of finer 

category-specific model. More experiments have been conducted to study the category-

specific Mtarg and Msrc models, and both of them show improvement over their original 

versions. 

 Finally, the large advantage of category-specific MTARGSRCL2SPEC model over the 

baseline score-weighted KNN algorithm explicitly shows the advantage of building 

effective ontology mapping algorithm. A more detailed analysis shows that the 

category-specific MTARGSRCL2SPEC algorithm achieves 24 percent improvement on 
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average. This is calculated by computing the percentage improvement of average of 

ranked-based precision values against the average of simple KNN algorithm (see Figure 

4(a)).  The improvement of maximum F1 measure is 24.4 percent (see Figure 4(b)). 

8. Discussion 

In our work we have used only the hierarchy information in the MeSH and IPC 

labelings. When the ontologies have richer structural information (e.g. DAGs), the 

computational methodology outlined in our paper remains the same – extract local 

features and estimate the weights corresponding to the features using the training 

dataset. The algorithm is quite dependent on the features and we have proposed no 

systematic way of coming up with an “optimal” set of features. These features have to 

be hypothesized and then selected using the standard pattern recognition methodologies 

using training and test data. 

Ontologies are manually curated and represent a rich amount of knowledge. The 

success of the ontology mapping algorithm heavily depends on the manually curated 

“mappings” between the ontologies. While we have used manually created mappings to 

 
                                        Fig 4 (a)                                                               Fig 4 (b) 

Fig 4 (a). Averaged precision of top-ranking categories for testing patent documents by category-

specific MTARGSRCL2SPEC algorithm, the original MTARGSRCL2 algorithm and score weighted KNN 

algorithm. Fig 4 (b). Averaged F1 measure with respect to different rank cut thresholds by these 

algorithms. 
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compare our algorithm-generated mappings, one has to realize that mappings created by 

two humans are not going to agree most of the time. In fact, in the information retrieval 

community, it has been found that “inter-rater agreement” between two human curators 

is less than 50% [17,18]. Furthermore it has been reported [19,20] that if human 

judgments are “pooled,” prior to use in algorithm training, the performance of the 

algorithm is in general improves. Thus, for ontology mapping, too, the performance of 

the algorithm will depend on the manually created ontology mappings, which is a 

laborious process. However, bootstrapping approaches and online relevance feedback 

methods can speed up the process dramatically and keep improving the mapping while 

users use the system. 

9. Conclusion 

Automatic mapping of patents to MeSH ontology opens up new ways to drug discovery, 

detecting possible health hazards, intellectual property search, etc. We presented a text 

analysis tool that helps us move closer to this objective of automated discovery of 

associations. We presented a learning algorithm that was trained using human 

judgments. We showed that we get about 24% better mapping performance when we 

use the structure information present in the two ontologies. In this work we used 

ontologies that are  simple structured thesauri. It will be interesting to apply our 

techniques on more complex ontologies (e.g., ontologies within UMLS [25]). We 

intend to extend this work by using chemical and gene annotations, cross-references, 

and other sources like the SNOMED [16,25] and OMIM [23] corpuses. 
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