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ABSTRACT: We present a new class of array codes based on a generalization of the
RAID5 XOR parity code. The R5X0(n, r, p) code protects an array of n data disks and
p parity disks with r symbols per column from as many as p arbitrary column erasures.
Decoding and encoding in R5X0 is computed using only XOR and cyclic shift operations.
R5X0 is a simple geometric generalization of RAID5 and has optimal update complexity
(the number of parity symbols affected by a single data symbol is exactly p) and asymp-
totically optimal storage efficiency for its distance. The only geometric constraint on the
R5X0 layout is that r ≥ (p− 1) · n.
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1. Introduction

We consider the problem of building reliable codes in the storage system model. The
storage model emphasizes three principle metrics: reliability, storage efficiency, and perfor-
mance. The reliability of an array code is a function of its column distance. A code of
column distance d can recover from the erasure of d− 1 entire disks without data loss. The
storage efficiency of a code is the number of independent data symbols divided by the total
number of symbols used by the code. We measure a code’s performance via its average
update complexity (UC): the average number of parity symbols affected by a change in a
data symbol. (However, the worst-case UC could also be used instead if that is more appro-
priate for a paritcular application.) Update complexity affects the number of IOs required
to modify a data symbol, which in turn affects the throughput of the storage system.

Reed-Solomon [RS60] codes have been proposed for the storage model [Pla97], but they
require finite field arithmetic and are therefore impractical without special purpose hard-
ware. Various new codes like Turbo codes [Mac], Tornado codes [LMSS01], LT codes [Lub02],
and Raptor codes [Sho03] have been proposed in the communication literature, but their
probabilistic nature does not lend itself well to the storage model. Furthermore, the commu-
nication model puts stress on the computational cost of encoding and decoding as opposed
to the cost of IO seeks, which dominate in storage systems.

Array codes [BFv98] are perhaps the most applicable codes for the storage model, where
large amounts of data are stored across many disks, and the loss of a data disk corresponds
to the loss of an entire disk of symbols. Array codes are two-dimensional burst error-
correcting codes that use XOR parity along lines at various angles. While Low Density
Parity Check (LPDC) codes [Gal62, Mac] were originally invented for communication pur-
poses, the concepts have have been applied to the storage system framework. Convolution
array codes [BFv98, FHB89] are a type of array code, but these codes assume semi-infinite
length tapes of data and reconstruction progresses sequentially over these tapes, and their
parity elements are not independent. These codes are not directly applicable to the storage
model where the efficient reconstruction of randomly located data blocks is required.

Conventional RAID algorithms, such as RAID5, RAID51, and RAID6, are another type
of array code [HP03, Mas97]. In RAID5, any number of data disks can be protected against
a single disk erasure by adding a single disk containing a parity check of the data disks.
Previously known high distance extensions to RAID5 are too inefficient to be practical in
most storage system environments. For instance, RAID51 achieves column distance 4 by
mirroring the RAID5 layout, effectively halving the storage efficiency.

Maximum Distance Separable (MDS) codes, or codes with optimal storage efficiency,
have been proposed in the literature [BR99, BBBM95, XB99, ZZS83]. The Blaum-Roth
(BR) code [BR99], EvenOdd (EO) code [BBBM95], and Row-Diagonal Parity (RDP) [CEG+04]
are all distance three codes and achieve optimal storage efficiency but have non-optimal up-
date complexity. The X-Code (XC) [XB99] and ZZS code [ZZS83] achieve both optimal
storage efficiency and optimal update complexity but do not generalize to distances greater
than three. A variant of the EvenOdd code [BBV96] achieves column distances greater

1



than three for certain array dimensions, but still has non-optimal update complexity. The
recently patented code from LSI Logic, Inc. [Wil01] provides a non-MDS simple distance
3 code with good update complexity, but only 50% storage efficiency, which is marginally
better than RAID51.

The R5X0 code relaxes the MDS constraint by an arbitrarily small amount to achieve
optimal update complexity for any distance with very few array constraints. In particular,
while EO, BR and RDP codes restrict the number of rows to p− 1, (where p is a prime and
the number of data disks n ≤ p), R5X0 allows for any n provided the number of rows be
greater than (q − 1)n where q is the number of parity disks. Furthermore, the redundancy
scheme for R5X0 is a simple geometric generalization of RAID5 parity and has an intuitive
proof of reconstruction for the general case.

The R5X0 code description, decoding algorithm, and its proof of correctness are de-
scribed in Section 2. In Section 3 we discuss the properties of R5X0 codes and compare
these properties against several other codes. Next, a few efficiency-boosting optimizations
for the general R5X0 code are described in Section 4.

2. R5X0 Description

2.1. The R5X0 Encoding

The R5X0(n, r, p) code layout consists of n + p disks and r rows (symbols on a disk).
The number of data disks is n the number of parity disks is p, and the constraint on the
number of rows r is r ≥ (p−1) ·n. Each symbol on the disk can be of arbitrary size. That is,
a symbol can be either a bit, or a byte, or a sector, etc. We denote the jth data disk by Dj ,
0 ≤ j < n, and the ith data symbol in the jth disk by Dj

i , 0 ≤ i < r. Similarly, we denote
the parity disks by P k, 0 ≤ k < p. The R5X0 code enforces the following constraints:

P k
i =

n−1⊕
j=0

Dj
〈i−j·k〉r ; (1)

Dj
i = 0 for 0 ≤ j < n and r − j · (p− 1) ≤ i < r . (2)

where 〈x〉r denotes x modulo r. We denote (1) as our parity constraint and (2) as our preset
constraint. The parity constraint assigns to disk P k the RAID5 parities of the r × n data
matrix taken along diagonals of slope k with modulo r wrap-around. The preset constraint
assigns (n−1)(p−1)(n)/2 data elements to zero. We call these assigned elements the R5X0
presets. Geometrically, the presets form a triangle of width n− 1 and height (n− 1)(p− 1)
in the lower right corner of the data matrix. We choose these elements as presets because
they allow us to omit the modulus from (1): whenever i− j ·k < 0, the index wraps around
and falls in the preset region where Dj

i−j·k = 0. The layout for R5X0(5, 6, 2) is illustrated
in Figure 1.
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Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Parity 0 Parity 1
D0

0 D1
0 D2

0 D3
0 D4

0 P0
0 P 1

0

D0
1 D1

1 D2
1 D3

1 D4
1 P 0

1 P 1
1

D0
2 D1

2 D2
2 D3

2 D4
2 ← 0 P 0

2 P 1
2

D0
3 D1

3 D2
3 D3

3 ← 0 D4
3 ← 0 P 0

3 P 1
3

D0
4 D1

4 D2
4 ← 0 D3

4 ← 0 D4
4 ← 0 P 0

4 P 1
4

D0
5 D1

5 ← 0 D2
5 ← 0 D3

5 ← 0 D4
5 ← 0 P 0

5 P 1
5

Figure 1: Data and parity layout for R5X0(n = 5, r = 6, p = 2). The
inputs to parity element P 0

0 are typeset in bold font. The inputs to parity
element P 1

0 are underlined. The presets form a triangle with width n− 1
and height (p− 1)(n− 1) and thus there are (p− 1)(n− 1)(n)/2 presets.

2.2. Proof of Distance

Lemma 1. An R5X0(n, r, p) code can recover from the erasure of any x, 0 ≤ x ≤ p, data
disks using any x parity disks and the remaining data disks.

Proof: We prove this Lemma inductively. Consider the topmost unknown elements from
each of the x missing data disks. Initially, these elements are simply the topmost row
elements of the missing disks. However, in the general case, the topmost unknown elements
will form a downward facing convex pattern as shown in Figure 2. We consider the convex
hull formed by these unknown elements. Because there are at most x topmost unknown
elements, the top surface of this convex hull is defined by at most x − 1 lines of distinct
slope. Because we are given x redundancy (parity) disks, each with a RAID5 XOR parity
along a different integer slope, it is clear that at least one parity disk has a slope distinct
from the slopes that compose the convex surface. We will use such a parity disk to solve
for one of the topmost unknown data elements, thereby reducing the number of unknown
elements by one. Repeated application this argument will necessarily solve for all the erased
data elements.

To see how we solve for one of the topmost unknown elements, denote Lost[l] as the
disk index of the lth lost disk for 0 ≤ l < x and where Lost[l] < Lost[l′] whenever l < l′.
Likewise, denote Par[l] as the slope of the lth available parity disk for 0 ≤ l < x and where
Par[l] > Par[l′] whenever l < l′. Furthermore, denote sl as the slope of the convex hull
between disk Lost[l − 1] and Lost[l] for 0 < l < x. We define s0 = ∞ and sx = −∞. For
future reference, observe that s0 > Par[0] and sx < Par[x− 1].

We claim that if sl > Par[l] > sl+1 we can solve for Lost[l]’s topmost unknown element.
Define k = Par[l] and j = Lost[l]. Denote i as the row of disk j’s topmost unknown element.
Consider parity element P k

i+jk. The only unknown input to this parity element is Dj
i . The

rest of the inputs are either above the convex hull (and therefore not an unknown element)
or wrap-around and are in the preset region (and therefore a preset with value 0). A simple
parity computation can be used to compute the value of Dj

i .
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1s

s2

s3
4s
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s2 s3

0s

P[0]

P[4]

P[1]

> P[2] >

P[3]

< P[4]

> P[0]

Figure 2: The top surface of the convex hull defined by the topmost
unknown data symbols. Slopes s1 . . . s4 define the convex surface. Our
parities have slopes Par[0] . . . Par[4]. We can solve for the top element of
the third erased disk using an element from the third parity disk, shown
as a dotted line tangent to the convex hull.

Such an l necessarily exists because Par[l] is strictly increasing, si is decreasing, and
s0 > Par[0] but sx < Par[x − 1]. At the first l where Par[l] > sl+1 it is clear that sl >
Par[l] > sl+1. 2

Theorem 1. R5X0(n, r, p) has column distance p + 1.

Proof: Without loss of generality, assume that we lose 0 ≤ x ≤ p data disks and p−x parity
disks. In this case, we have x erased data disks and x remaining parity disks. Lemma 1
proves that the R5X0 scheme allows us to rebuild x erased data disks from any x parity
disks. 2

2.3. The Decoding Algorithm

We give a straight-forward algorithm RECONSTRUCT to reconstruct x erased data disks
Lost[0..x − 1] with x available parity disks Par[0..x − 1]. As in the proof of Lemma 1,
we assume that Lost is given in increasing disk order and Par is given in decreasing slope
order. We use a third array Top[0..x−1] where Top[l] contains the row index of the top-most
unknown symbol from disk Lost[l]. All elements of Top are initialized to 0. Our algorithm
follows.
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RECONSTRUCT(Top, Lost, Par, x, r)
while (

∨x−1
l=0 (Top[l] 6= r)

for l = 0..x− 1
while (SOLVE(Top[l], Lost[l], Par[l], l))

Top[l] + +

SOLVE(i, j, k, l)
i′ ← i + j · k
if (i == r)
return False // column complete

if (
∧

l′=l−1,l+1 Top[l
′] > i′ − Lost[l′] · k)

return False // missing data
if (i ≥ r − j · (p− 1))

Dj
i ← 0 // preset

else

Dj
i ← P k

i′ ⊕
n−1⊕

j′=0,j′ 6=j

i′−j′·k≥0

Dj′

i′−j′·k

return True

The RECONSTRUCT algorithm first checks if we have finished solving for all lost data elements
and if not, it solves for individual lost disks. SOLVE first checks if the reonstruction is
complete, and then determines whether or not we can solve for data element Dj

i . We are
able to solve for Dj

i provided that all other inputs to parity P k
i+j·k are known. Because the

topmost unknown elements are on a convex surface we need only check the inputs from the
adjacent erased disks.

It is clear from these definitions and the proof of Lemma 1 that RECONSTRUCT makes
progress every iteration and therefore successfully solves for all erased data symbols. Each
computed symbol requires at most n−1 XORs. There are at most x ·r erased data symbols.
The number of XORs required to complete RECONSTRUCT is thus less than x · r · (n − 1).
The running time of RECONSTRUCT is O(x2 · r · n).

3. Comparisons

In Section 2.2 we proved that the R5X0(n, r, p) code has a column distance of p + 1.
That is, the R5X0(n, r, p) layout can tolerate the erasure of any p disks. In this section we
explore two other metrics — storage efficiency and update complexity — and see how they
vary as a function of the code parameters n, r, and p. We then compare R5X0 to other
codes with respect to these metrics.

3.1. Efficiency

The storage efficiency E represents the fraction of the storage space that can be used
for independent data. Let D denote the number of independent data symbols and T denote
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the total number of symbol blocks used by the layout. The storage efficiency of a layout is
defined as:

E =
D

T
. (3)

The optimal storage efficiency of a distance p + 1 code with n data disks is given by an
MDS code:

EMDS =
n

n + p
. (4)

The R5X0 code is a near-MDS code in the sense that its storage efficiency can be made
arbitrarily close to EMDS . The number of independent data symbols in the R5X0(n, r, p)
layout is given by the number of data symbols nr in the data matrix minus the number of
presets (p− 1)(n− 1)(n)/2. The total number of blocks used by the R5X0(n, r, p) layout is
just the size of the whole matrix (n + p)r. The storage efficiency of R5X0(n, r, p) is thus:

ER5X0 =
nr − (p− 1)(n− 1)(n)/2

(n + p)r
. (5)

If we write r as kn(p − 1) for rational k ≥ 1 and assume that n is large, after some minor
algebraic manipulation we get:

ER5X0 ≈
(

n

n + p

)
·
(

1− 1
2k

)
. (6)

As k increases, the storage efficiency of R5X0 approaches EMDS . In actuality, it is easy to
obtain much higher storage efficiencies for the R5X0 code. In Section 4 we discusses how
to improve upon the storage efficiency given by (6).

3.2. Update Complexity

The update complexity of a code is the average number of parity symbols affected by
a change in a data symbol [XB99]. In the R5X0(n, r, p) code, every data symbol is an
input to exactly p parity symbols, one from each parity disk. It is easy to see that the best
possible update complexity for a distance p + 1 code is in fact p. Therefore, for codes with
column distance p + 1,

UCOPT = UCR5X0 = p . (7)

Update complexity is particularly important in the storage systems model because sym-
bol reads and symbol writes (IOs) dominate over computation time. For most codes, IOs
is directly related to update complexity:

IOs = 2(UC + 1) . (8)

This IO cost corresponds to the cost of reading the original data symbol and all its affected
parities and then writing the new data symbol and modified parity symbols (i.e., read-
modify-write parity increment). As we shall see in the next section, (8) does not hold for
some types of inefficient codes.
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3.3. R5X0 and Other Codes

In Tables 1-3 we compare a number of codes with the R5X0 code of corresponding
distances. We do not consider Reed-Solomon codes because they are not XOR-based codes
and best suited for special purpose hardware. A number of codes have IO cost better than
what is allowed by (8) (as indicated by ∗ in the table). All of these codes achieve better IO
costs because of their inefficiency allows them to update parity by recompute rather than
read-modify-write as above. The fact that these codes have no more data disks than parity
disks allows them to modify a data symbol without reading the symbol’s old value and its
parities’ old values.

In Table 1 we compare various distance 3 codes. The R51−(a) code has a data disks, a
mirror disks, and one RAID5 parity disk. The R6(a × b) code has ab data disks arranged
logically in a a × b matrix and a + b RAID5 parity disks, one for each matrix row and
column. XC(p) [XB99] has p total disks and p rows per disk, where the last two symbols in
each disk are parity symbols. ZZS(p) [ZZS83] stores a row of parity on the data disks; data
chunks corresponding to a parity unit do not form any obvious pattern. EO(p) [BBBM95],
BR(p, n) [BR99], and RDP (p) [CEG+04] have at most p data disks (p − 1 for RDP) and
two parity disks with p− 1 symbols per disk.

In Table 2 we compare various distance 4 codes. The R51(a) code has a data disks, a
disk with RAID5 parity, and a + 1 mirror disks. The R6+(a × b) code has ab data disks
arranged logically in a a× b matrix and a + b + 1 RAID5 parity disks, one for each matrix
row and column and one for the entire matrix. EO+(p, 3) [BBV96] has p data disks and
three parity disks with p− 1 symbols per disk.

In Table 3 we compare various higher distance codes. EO+(p, d−1) [BBV96] has p data
disks and d − 1 parity disks with p − 1 symbols per disk. For d ≥ 5, some of these codes
only work for certain primes, as indicated in the table.

Table 1: Distance three codes.
d = 3 Avg. IOs Efficiency Array Constraints

R51−(2) 4∗ 40% r × 5 for any r

R51−(a) 5∗ a/(2a + 1) r × (2a + 1) for any r, a

R6(2× 2) 5∗ 50% r × 8 for any r

R6(a× b) 6 ab/(ab + a + b) r × (ab + a + b) for any r, a, b

XC(p) 6 (p− 2)/p p× p for prime p

ZZS(p) 6 (p− 2)/p (p− 1)/2× p for prime p

R5X0(n, r,2) 6 n/(n + 2)− εr r × (n + 2) for any n, r ≥ n

EO(p) > 6 p/(p + 2) (p− 1)× (p + 2) for prime p

BR(p, n) > 6 n/(n + 2) see [BR99]
RDP (p) > 6 (p− 1)/(p + 1) (p− 1)× (p + 1) for prime p
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Table 2: Distance four codes.
d = 4 Avg. IOs Efficiency Array Constraints

R51(2) 5∗ ≈ 33% r × 6 for any r

R51(a) 6∗ a/(2a + 2) r × (2a + 1) for any a, r

R6+(2× 2) 7∗ ≈ 44% r × 9 for any r

R6+(a× b) 8 ab/(a + 1)(b + 1) r × (a + 1)(b + 1) for any a, b, r

R5X0(n, r,3) 8 n/(n + 3)− εr r × (n + 3) for any n, r ≥ 2n

EO+(p, 3) > 8 n/(n + 3) (p− 1)× (p + 3) for some primes p

Table 3: Distance d ≥ 5 codes.

d ≥ 5 Avg. IOs Efficiency Array Constraints
R5X0(n, r,d− 1) 2d n/(n + d− 1)− εr r × (n + d− 1) for any n, r ≥ (d− 2)n
EO+(p, d− 1) > 2d n/(n + d− 1) (p− 1)× (p + d− 1) for some primes p

Conventional high-distance RAID codes like R51 and R6 are simple and have very good
IO, but are impractical when storage efficiency is important. The Blaum-Roth and Even-
Odd codes achieve optimal storage efficiency but do so at the expense of update complexity.
In particular, the modification of certain data elements in the EvenOdd code requires an
expensive update to almost all of the parity values. ZZS and the X-Code achieve both
optimal storage efficiency and update complexity, but they do not generalize to higher dis-
tances. R5X0 codes achieve near-optimal storage efficiency and optimal update complexity
and generalize to arbitrary distances with relatively few array constraints.

4. Optimizations

There are two ways we can improve the storage efficiency of the R5X0 layout described
in Section 2.1. First, we can reduce the number of presets. Second, we can store non-zero
symbols from another R5X0 instance in the disk blocks designated for the presets of the
first code instance. However, when we try to store data from one code instance in the
disk blocks designated for presets, not all preset locations are utilized, and thus results in
“wasted” disk blocks (see Figure 5).

Let Z be the number of preset blocks and W be the number of wasted disk blocks in a
specific layout. Also, let N = nr be the number of data symbols and let T = (n + p)r be
the total number of symbols. The storage efficiency of the R5X0 layout is:
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ER5X0 =
N − Z

T − (Z −W )
(9)

=
(

N

T

)(
1− Z

N

1− Z−W
T

)
(10)

≈ EMDS

(
1− Z

N

)(
1 +

Z −W

T

)
. (11)

Recall from (4) that N/T = EMDS . The approximation in (11) relies on the fact that
Z −W is much smaller than T .

The storage efficiency given in (6) is for a layout in which Z = (p−1)(n−1)(n)/2 presets
and W = Z. The enhanced R5X0 layout shown in Figure 3 requires only (p−1)bn/2cdn/2e
presets. The improved storage efficiency is given by (12) (recall that r = kn(p − 1)). The
proofs of Lemma 1 and Theorem 1 are unaffected by this change because it is still the case
that no parity element has independent inputs that wrap around from row 0 to row r − 1.

ER5X0 ≈
(

n

n + p

)
·
(

1− 1
4k

)
. (12)

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Parity 0 Parity 1
D0

0 ← 0 D1
0 ← 0 D2

0 D3
0 D4

0 P0
0 P 1

0

D0
1 ← 0 D1

1 D2
1 D3

1 D4
1 P 0

1 P 1
1

D0
2 D1

2 D2
2 D3

2 D4
2 P 0

2 P 1
2

D0
3 D1

3 D2
3 D3

3 D4
3 P 0

3 P 1
3

D0
4 D1

4 D2
4 D3

4 D4
4 ← 0 P 0

4 P 1
4

D0
5 D1

5 D2
5 D3

5 ← 0 D4
5 ← 0 P 0

5 P 1
5

Figure 3: Data and parity layout for R5X0(5, 6, 2). The presets for this
layout are those elements above the inputs to either P 0

0 or P p−1
(p−1)bn/2c but

not above the inputs to both P 0
0 and P p−1

(p−1)bn/2c. The presets form two
triangles with widths b(n−1)/2c and d(n−1)/2e and heights (p−1)b(n−
1)/2c and (p−1)d(n−1)/2e and therefore there are (p−1)b(n/2)cd(n/2)e
presets (proof: we can combine these triangles together into rectangle of
dimension (p− 1)n/2× n/2 or (p− 1)(n− 1)/2× (n + 1)/2).

In both (6) and (12) we have assumed that W = Z: all preset symbol blocks are
wasted space. In practice, however, there is no reason to waste disk blocks because they
are allocated to presets. Instead, we can store unrelated data in these blocks, like data
from another R5X0 code instance. In the remainder of this section we describe methods
to reduce W without the introduction of an unwieldy mapping from algorithmic space to
physical space.
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For the standard R5X0 layout we can achieve W = (p+1)(p)(p−1)/2 by using a mirrored
layout and nesting it into the original layout as shown in Figure 4. For convenience, we have
placed the parity disks to the left of the data disks. We access elements from the mirrored
layout by mapping Dj

i to Dr−j−1
n+p−i−1, a very simple transformation. The storage efficiency

of the resulting layout can be derived from (11) and is given in (13).

ER5X0 ≈
(

n

n + p

)
·
(

1− p

2kn
− 1

4k2

)
. (13)

Figure 4: Two copies of R5X0(5, 6, 2) on the same seven disks, arranged
so that each copy uses some of the others preset disk blocks to store data
and parity symbols. The empty disk blocks form two triangles of width
(p− 1) and height (p− 1)2. W = (p + 1)(p)(p− 1)/2 (proof: combine the
two triangles into a (p− 1)p× (p + 1) rectangle.)

We can do a similar thing for the enhanced R5X0 layout Figure 3 achieving storage
efficiency:

ER5X0 ≈
(

n

n + p

)
·
(

1− p

4kn
− 1

16k2

)
, (14)

when n+p is even. The storage efficiency is slightly worse for odd n+p because the layouts
do not nest tightly. Our transformation is as follows:

Dj
i =


Dj

i if j < bn/2c
Dj+p

r−i−1 if bn/2c ≤ j < n

D
j−dn/2e
i if j ≥ n

In words, we move the p parity disks to the middle of the matrix and vertically invert
the data in the right dn/2e data disks. After performing this transformation, we vertically
invert a copy of this layout and shift it by b(n+p)/2c. The two copies are then nested on top
of each other. The complete transformation is illustrated in Figure 5. If the total number
of disks n + p is even, we achieve a nice fit with only (p− 1)bp/2cdp/2e wasted disk blocks
per layout. Our fit is off by a disk if n + p is odd, and there are (p− 1)(b(n + p)/2c+ 〈p〉2)
extra wasted symbols split between the two layouts.
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Figure 5: The storage efficiency saving transformation for the enhanced
layout.

5. Conclusions

We have presented the R5X0 code, a high distance generalization of RAID5 with optimal
update complexity and near-optimal storage efficiency. The key insight behind R5X0 is the
use of presets, data cells with known values that initialize the reconstruction process. We
have shown how to pack multiple copies of the R5X0 layout onto the same disks to minimize
the effect of presets on storage efficiency without destroying the code’s clean geometric
construction. R5X0 has efficient XOR-based encoding, recovery, and updating algorithms
for arbitrarily large distances, making it an ideal candidate when storage-efficient reliable
codes are required.
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