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PERFORMANCE METRICS FOR ERASURE CODES IN STORAGE
SYSTEMS

James Lee Hafner, Veera Deenadhayalan, Tapas Kanungo and KK Rao

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

ABSTRACT:
Erasure codes that have good theoretical properties for a communication channel, need

not have good properties for use in storage systems. Choosing the code Hamming distance
to meet a desired reliability goal is only the first step in the erasure code selection process for
a storage system. A storage system designer needs to carefully consider many other metrics
that are specific to storage systems and their specific system configuration. In this article we
first present one model of a storage system and then describe the metrics that are relevant in
that model. We then outline a set of array codes that have been proposed for use in storage
systems and compare and analyze them using our metrics. Our metrics assume a particular
hardware architecture; however, the methodology can be easily adapted to other hardware
models. Consequently, the principles described here can be modified by a storage system
designer to fit his/her specific environment and so provide quantitative tools for array code
comparison and selection criteria.
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1. Introduction

A desirable disk-based storage system should have three fundamental properties. It
should be economical. It should be fast. And it should be reliable. Unfortunately, it is
difficult (if not impossible) to find schemes that satisfy all these properties. Furthermore,
matters are made more complicated because there are many quite independent ways in
which cost, speed, and reliability affect the system user. Cost for a system includes both
the overall purchase cost (disk costs, hardware and software design, etc.) and the cost of
maintaining the system (energy, space, replacing bad disks, etc) – the so-called total cost of
ownership. A high performance storage system has high data throughput (in particular for
user data update) but also recovers quickly from disk failures. A reliable system should not
only preserve data indefinitely, but it should do so with as little maintenance as possible.

Unfortunately, there is an inherent incompatibility between these three desired properties.
For example, increased reliability requires more redundancy which adversely affects update
and recovery times as well as costs for additional components and drives. For this reason,
much work has been done to develop and explore a range of storage system redundancy
schemes, each with their own advantages and drawbacks. The designer of a storage system
must ultimately choose from among the many existing schemes (and any he/she might invent)
the one whose tradeoffs best match the system’s expected use.

In the context of the erasure code used to protect the data, cost is primarily determined
by the efficiency of the code (or the rate of the code). Reliability is primarily determined
by the Hamming distance of the erasure code (how many disk failures it can tolerate), the
probability of errors or failures and the array size (the number of disks in the array). In
general, the array size is determined by customer demand or expectation (and dependent on
the efficiency of the code). Consequently, we view these two metrics of cost and reliability
as rather coarse metrics and only a first step for code selection. The purpose of this paper is
to provide a detailed framework for performance metrics that can then be used to compare
codes within a given cost/reliability range. Our framework includes a variety of scenarios
and a mixture of metrics. These go well beyond the typical metric of disk seeks required for
small writes.

The performance of a complete storage system can be affected by many components of
the system, including host/storage interconnect, host or storage caching, workload character-
istics, internal system buses, disk interfaces, and the disk themselves. As our goal is to focus
only on the effect of the choice of array code with all other components equal, we focus only
on that part of the system that is directly affected by the array code itself. In particular, we
do not consider a cache model or place constraints on bus or interconnect, nor do we consider
performance numbers such as IOPs (IOs per second) or MB/s (megabytes per second on the
host/storage interconnect). We measure those points in the storage system itself where the
array code consumes resources; a designer can then use our metrics to determine where a
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given code might create bottlenecks or otherwise consume too much of the system.
In our examples, we only consider distance three codes (that can tolerate two disk fail-

ures). We selected this because (a) distance two is well-understood (and there aren’t that
many choices), (b) distance three is the next level that many systems must reach to be
reliable given the failure realities of current disk drives, and (c) there are many different
distance three codes that have been proposed, so there is a rich set of examples from which
to choose. As more practical interest is generated and more examples of distance four codes
are defined, the methodologies here could easily be applied to that reliability level as well.

The outline of the paper is as follows. In the next section, we present our work in the
context of the literature. We then give a summary section on notation and vocabulary. In
Section 4 we give a description of our idealized system architecture, models of system costs
and basic metric primitives. Section 5 contains descriptions of the use cases or host IO
scenarios to which we apply the basic metrics. The set of example array codes are described
briefly in Section 6. The remaining sections contain highlights of the significant differences
between the codes under the various metrics and use cases and conclusions one can draw from
these metric results. We conclude with a brief summary. The complete set of raw numbers
(all metrics, all use cases) and some additional information is presented in the appendix.

2. Related Literature

Research on RAID algorithms and architectures has been aggressively pursued in industry
and academia. Early work done at IBM on storage redundancy algorithms was reported
in [22]. Thereafter, a UC Berkeley group published an article [23] (see also [8]) describing
various RAID algorithms and also coined the term RAID. General overview of storage sub-
systems and RAID terminology can be found in [13] and in the RAID Advisory Board (RAB)
book [20].

Coding theory [4, 19, 3] provides the mathematical formalism for designing RAID algo-
rithms. The classic Reed-Solomon code [26] was designed for a communication model. Cod-
ing and reconstruction algebra is performed over some finite field (e.g., GF (2m), see [15, 14]
for details). While this approach has been proposed for use in storage systems [24], the over-
head of finite field arithmetic in software is prohibitive, requiring the use of special purpose
hardware.

Various new erasure codes like Turbo codes [18], Tornado codes [17], LT codes [16]
and Raptor codes [27] have been proposed in the communication literature. However their
probabilistic nature does not make them usable in a RAID storage controller system for
preventing against failures while providing guarantees of reconstruction times.

Low-Density-Parity-Check (LDPC) codes [11, 18] are codes that try to minimize the
number of non-zero entries in the generator and the parity-check matrices. This property is
good for RAID algorithm design because it minimizes the number of IO operations, which
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can dominate the cost in a storage system. In general, the design principles behind RAID
algorithms are most similar to those behind LDPC codes. However the LDPC codes were
designed for communication models and do not necessarily appropriately account for all costs
related to storage systems.

Choosing the code by Hamming distance to meet a desired reliability goal is only the
first step in the erasure code selection process for a storage system. Two erasure codes
with the same distance can exhibit vastly different performance/cost factors. The automatic
selection process described in [1] helps in the choice between different RAID levels but not in
the selection of a code within that level. Extending the ideas in [1] to choose an erasure code
within a RAID level is not practical. Hence, a storage system designer needs to carefully
consider many other metrics that are specific to the storage system and compare metrics by
prioritizing them for that given system configuration.

To improve reliability over that provided by RAID5 (that is, for better tolerance to disk
failures), a number of array codes have been proposed in the literature (see Section 6 for
details about most of the codes mentioned here). The BR99 codes [6], EvenOdd [5] and Row-
Diagonal Parity codes [9] have similar characteristics. They are all extensions of a RAID4
code with an additional strip or disk that contains parity computed by a more complex
algorithm than the RAID4 parity. There are no limits on the arrays sizes for these codes,
though larger array sizes increase the complexity of the parity computations. These codes
all store their parity on separate disks from the data (not accounting for parity rotations as
in RAID5 versus RAID4).

There are other families of codes that store parity on the same disks with the user
data. The X-Code [31] has two rows of parity blocks (more generally “chunks”). The parity
computation algorithms are “diagonal-based”. The ZZS code [32] has only one parity row
but the parity computation algorithm is somewhat more complex. It has the feature that
one disk contains only user data, the others contain both user data and one chunk of parity.
Both of these codes require that the number of disks in the array be a prime number, though
the ZZS code can be “reduced” by assuming that the all user data disk contains zeros (and
so physically need not be present). The methodology in [2] provides a means to construct,
for many values of even array sizes, examples of codes with one row of parity on user data
disks (it does not work for 8 disks, but ad hoc constructions with the same quantitative and
qualitative characteristics for this array size are known). The resulting constructions are
also very similar to the “reduced” ZZS code.

All of the aforementioned codes are MDS (Maximum Distance Separable), that is, have
optimal ratio of parity to user data. The codes proposed in [12] are codes with separate
parity disks that relax this requirement for minimal numbers of parity disks or blocks; the
goal in [12] was better overall reliability. These codes are less efficient and so more costly.

For further discussion of system reliability issues the reader is referred to [28]. For
a discussion on benchmarks on memory-bandwidth utilization under practical workloads
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see [21]; for storage system performance see [29]; for availability see [7]; and for RAID level
selection see [1].

Many of the papers mentioned in this section touch on some issues related to performance
metrics. In particular, new erasure code papers typically discuss the IO seek costs for the
host short write case (minimal update costs). Some (e.g., [5] and others) give a simple model
of parity computation costs under normal operation and perhaps in cases of reconstruction.
As mentioned in the introduction, our goal is to provide an extensive set of metrics under
multiple host IO scenarios and under many failure scenarios in the context of one model of
a realistic system.

.

3. Definitions and Notations

We begin this section with a list of terms, definitions and notations that we use throughout
the paper.

data A chunk of bytes or blocks that hold user data (unmodified host-supplied data).

parity A chunk of bytes or blocks that hold redundancy information generated from user
data (typically by XOR operations).

element A unit or chunk of data or parity; this is the building block of the erasure code.
In coding theory, this is the data that is assigned to a letter in the alphabet (not to
be confused with the symbol). An alternative definition is the maximal unit of data
that can be updated (host write) using the minimal number of disk IO commands,
independent of the LBA. For one-dimensional codes this corresponds to a strip (see
below).

stripe A maximal set of data and parity elements that are dependently related by redun-
dancy (e.g., XOR) relations. This is synonymous with “code instance” in that it is a
complete instantiation of an erasure code and is independent of any other instantiation.
In some circles, this is called a “stride” and in other circles, this term is restricted to
only the data portion (does not include parity, as we do here). (This should be not be
confused with the term “array” defined below.)

strip A maximal set of elements in a stripe that are on one disk. We prefer this term
to “disk” because in a collection of disks, one disk may contain strips from multiple
stripes. In coding theory, this is the data mapped to a symbol of the code. A strip
may contain only data, only parity or some of each.
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array A collection of disks on which one or more stripes are instantiated. Each instance
may (and should for reasons such as load-balancing) have a different logical mapping
of strip to disk. See “stack” definition below.

stack A collection of stripes in an array that are related by a maximal set of permutations
of logical mappings of strip number to disk. Maximal here means that the loss of
any two (or one) physical disks covers all combinations of loss of two (or one) logical
strips. RAID5 parity and data strip rotation (N rotations on N disks) versus the static
assignment of RAID4 is an example of this type of permutation. Thus, our stack is a
set of stripes over which the RAID5 rotation principle has been applied maximally for
the purposes of uniformizing strip failure scenarios under any disk failure case.

For an N drive array, there are N(N − 1)/2 possible combinations of two disk failures.
Over a stack, each such failure accounts for exactly the same number of occurrences
of each of the N(N − 1)/2 possible combinations of two logical strip failures. (So the
number of stripes in a stack in this case must be a multiple of N(N − 1)/2). With
no special symmetry in the code, the stack has N ! (factorial) stripes. As in RAID5,
symmetry can significantly reduce this number.

Normal The mode or state of a stripe in which all strips can be read or written without
error.

Degraded The mode of a stripe in which exactly one strip is lost (cannot be read or written).
(See Note A below.)

Critical The mode of a stripe in which exactly two strips are lost. (See Note A below.)

horizontal code An array code in which parity within a stripe is stored on separate strips
from the data of the stripe. RAID4 is an example of a horizontal code. (See Note B
below.)

vertical code An array code in which parity within a stripe is stored on strips containing
data of the stripe. The X-Code (see Section 6.6) is an example of a vertical code. (See
Note B below.)

distance The minimum number d of strip failures that result in user data/information loss
(losing less than d strips necessarily means no data loss).

efficiency The percent of the stripe that contains data; that is, the number of data elements
divided by the total number of elements in the stripe. This is usually denoted by Eff .
An optimally efficient, distance d code with N strips has efficiency (N − (d − 1))/N .
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data out-degree Denoted by DoutD and a function of a given data element, it is the
number of parity elements into which the data element contributes (or “touches”).

parity in-degree Denoted by PinD and a function of a given parity element, it is the
number of data elements that are needed to compute the parity (or are “touching” the
parity element or are “touched” by the parity element).

dependent data For a given data element and parity elements it touches, the dependent
data are the other data elements touched by this set of parity elements. (In a graph
with nodes assigned to each data and parity element and edges assigned by the “touch”
relation, the dependent data for a given data element is the set of data elements at
distance 2 from the given data element.)

parity compute (PC) An algorithm for updating parity by computing the new parity
values from all the dependent data in the stripe. In this case, no old parity or old data
(data that is to be updated) is read from the disk.

parity increment (PI) An algorithm for updating parity by computing the new parity
values from the old values of parity and data (that is, a read-modify-write of the
parity).

Note A: More precisely, the term Critical should be used when some number of strips
have been lost and loss of any additional strip (or perhaps data element or block) implies
unrecoverability of user data. Degraded should be any intermediate state when the stripe
has lost some strips but has not yet reached Critical state. So, a RAID5 array with one strip
down is technically Critical (and is never Degraded), however, all our examples are distance
three codes, so these definitions suffice for the present discussion.

Note B: The terms horizontal and vertical are used here in a somewhat different way than
in the literature where you will find them used referring to directions in a 2-dimensional array
of disks. So the second dimension has disks on the axis. In our case, the second dimension is
within the disks. We are also using them to refer to the placement of parity, not the direction
in the disk array in which the parity equation is generated.

Figure 1 shows a representation of our notions of element, strip, stripe, stack and array
for a typical horizontal code with two parity strips. The middle graphic shows a set of boxes
in rows. Each box is a strip containing some set of elements, as indicated by the graphic on
the left. Each row is a stripe, a single inter-dependent set of data/parity relations (i.e., a
code instance). The strips in each stripe are logically numbered. The collection of stripes is
a stack; the strips in each stripe are permuted stripe-to-stripe within the stack to produce
uniform distribution of error scenarios when any two disks fail. The array, on the right,
consists of a “pile” of stacks that fill the disks’ physical capacity.

For notational purposes, we use the following symbols:
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Figure 1: Strips are composed of elements aligned sequentially (vertically)
on a disk, stripes are a collection of strips aligned horizontally across disks,
stacks are sets of permuted stripes, an array is a collection of stacks,

• n represents the number of strips in a stripe that contain user data.

• q represents the number of strips in a stripe that contain parity data.

• N represents the strip count or total number of strips in the stripe (this is usually
called the array size).

• r represents the number of elements per strip. A code with r ≥ 2 is called 2-dimensional
code. We assume that r is the same for every strip in the stripe.

• rD represents the number of data elements per strip. For a horizontal code, we consider
only the data strips so that rD = r ; for a vertical code, the quantity (r − rD) is the
number of parity elements on the strip (which we assume is the same for every strip).

• e represents the number of 4KB chunks within an element1. We assume that all
elements are multiples of 4KB in size.

• SA represents the strip size, SD the data substrip size and SP the parity substrip size
(all in number of 4KB chunks). For a horizontal code, SA = SD = SP = e · r ; for a
vertical code SA = e · r , SD = e · rD and SP = e · (r − rD).

The parameter e needs some explanation. In some of our metrics, we measure memory
bandwidth costs. To use absolute costs (say, in megabytes), we would need to map each of
our codes to stripes of equal size (in MBs). So the total KBs in a stripe (data and parity) is
equal to 4(e · r ·N)KBs. Consequently, this e gives us a uniformizing parameter independent

1We represent chunks in units of 4KB as that is a typical IO unit for small host read/write operations.
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of actual stripe size. When actually comparing the bandwidth costs, one should select e for
each code so that the total stripe sizes are comparable (or equivalently, that the strip sizes
4e · r are comparable).

As an example, for RAID4 with 8 strips, we have N = 8, q = 1, n = 7 and r = 1 and if
we take e = 64 we have strip sizes of 256KB. For other codes with r = 16, say, we might take
e = 4 to have an equivalent strip size. RAID5 is obtained from RAID4 by a stack of rotated
RAID4 stripes. For horizontal codes, N = n + q and for vertical codes N = n = q. Some
horizontal codes are 2-dimensional, but all vertical codes are 2-dimensional (by definition).

All the codes we give as examples (see Section 6) are distance three codes, though the
methodology can be applied to any distance. There is large variation in r between the codes
but for a given code scheme, there is limited flexibility in its choice.

4. Metrics and Models

To define metrics for code comparisons, we need a formal model of the storage system
that will use the code. The model selected here is one of many that can be (and has been) the
basis for real systems (or subsystems). Other models are possible (for example, a different
memory model, redundancy engine, or network model, etc.) and they can affect the final
comparisons dramatically. The methodology presented here should provide a framework for
adapting the metrics to other models.

In our model described below, we include components for the memory bus and the re-
dundancy computation engine (in our case, an XOR engine; Section 4.1) and for the disks
themselves and their utilization (Section 4.2). Our model contains a host interface, but
only as a source/target for data; its characteristics are unrelated to the performance of the
array code itself so is not measured directly. Our model does not contain a CPU, though
we do roughly measure (in XORO ; see Section 4.1) some aspects of CPU utilization. We
assume that the CPU has infinite resources (or is relatively inexpensive compared to the
other resources we model). With each of the key components in our model, we define met-
ric primitives as the basis of our costs (Sections 4.1 and 4.2). In Section 4.3, we describe
in general terms how the cost primitives are used to measure the costs of a specific host
operation.

There are many ways to study a given metric. In our case as a simplifying assumption, we
concentrate on a randomized model under uniform probabilities, both for host IO workload
and for failure scenarios. We study only the expected value or average value of our metrics
(see Section 4.4). Finally, we introduce one additional performance metric called Effective
Capability (see Section 4.5) where we compare the performance of the system under normal
operation (that is, when all components are functioning correctly) versus failure scenarios
(when one or more disks are down). In Section 5, we describe the “workloads” we place on
the system.
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Figure 2: Memory and XOR Engine Model Diagram

4.1. XOR Overhead and Memory Bandwidth Costs

XOR Overhead is a measure of the computational cost of programming an XOR engine
to complete all the XOR operations needed for a given task (e.g., computing all the parity
during host write of the full stripe). Similarly, a given task will consume some amount of
memory bandwidth for subtasks such as moving the data or parity read from disk to memory,
sending user data from memory to the host through the host IO interface, or moving data
or parity into and out of the XOR engine. To quantify these metrics, we need a simplified
model of the system, given in the diagram in Figure 2. Data passing from the disk controller
to the memory typically passes through the Memory Controller and XOR engine unmodified.
However, the XOR-on-the-fly feature described below can alter the data on the way through.

Suppose we want the XOR engine to compute the XOR of some k (same-sized) chunks
of data in memory, and to place the result in some (other) location back in the memory. An
instruction to the engine then takes the form of a list of k+1 memory addresses and a length
(say, in bytes, words or sectors). The first k memory addresses are the source addresses and
the last memory address is the target address. The model assumes that the XOR engine
has internal buffers where it stores intermediate results. So, if the length is no bigger than
the internal buffer size, its operation is to start with an all-zero buffer, and for each source
address (in any order), bring the data chunk in from memory and XOR it with the current
contents of the buffer (for the first address handled, it need only replace the contents, so
there is no assumed cost of zeroing the buffer). When the last source address has been
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processed, the buffer contents are sent back over the memory bus to the memory itself, at
the target address. For lengths exceeding the buffer size, the data is chunked into smaller
pieces. This does not affect either the XOR Overhead as we define next, or our cost function
for Memory Bandwidth utilization. The model does not preclude the possibility that the
target address matches one of the source addresses.

With this model, we define the XOR Overhead for a given single computation of an k-ary
equation as

XORO(k) = k + 1,

the number of addresses in the list2. (The only other input is a length; we consider this
essentially a constant in the overhead.) For a given multi-step controller task, we measure
the XOR Overhead as the sum of the XOR Overheads for all the required XOR computations:

XORO =
∑
xor

XORO(kxor), (4.1)

where an XOR instruction xor has some kxor source operands. As a consumer of resources,
an XOR cost under this model measures computational cost of constructing the list as well
as the cost of the XOR engine to retrieve the list and process it. For example, it can be used
to contribute to a latency measure if the XOR engine takes some fixed amount of time to
move/modify data into its buffer.

The basic model above can be supplemented by a feature called XOR-on-the-fly. Suppose
we want to take a data chunk d0 from the disk, XOR it with some data d1 in memory and
then store the result d2 in some memory and we do not need d0 for any other purpose. With
the above model, we need to read the data d0 into the memory, then instruct the XOR engine
to compute the result and store it back into memory, then throw away the unmodified d0.
This requires the disk data d0 to pass over the memory bus twice, once when coming in from
the disk to memory and a second time from the memory into the XOR engine’s xor-buffer.
The XOR-on-the-fly feature saves these two transfers. For example, the XOR engine can
load its internal buffer with the source data d1 and as data d0 is pulled from the disk, it can
compute the XOR with the buffer contents and then store the final result d2 into memory.
The disk data d0 never reaches the memory unmodified.

Memory bandwidth costs are measured in terms of numbers of bytes transferred into and
out of memory during some controller task (say, a host write). On the other hand, the XOR
overhead is measured in numbers of XOR engine operands, which are sizeless and unitless
in our model.

2Some XOR engines may only be able to handle a 2-ary operation, that is, two source addresses and one
target. This can greatly affect the cost function as applied to various scenarios and codes (the above cost
becomes 3(k − 1) since each XOR has a cost of 3). However, for our purposes, we assume that the XOR
engine can handle any (reasonable) number of source addresses.
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The above XOR model implies that for a given XOR computation, the number of bytes
sent across the memory bus is exactly equal to (k+1) times the length of the XOR operation
when we do not have XOR-on-the-fly. With one use of XOR-on-the-fly, this number is
(k − 1) times the length. That is, for each byte we XOR-on-the-fly, the memory bandwidth
utilizations goes down by 2 bytes.

In the sequel, we normalize bandwidth numbers into 4KB chunks (for reasons that become
clear later). Consequently, we measure total bandwidth consumed for a given task as:

Without XOR-on-the-fly:
MBWC = Number of 4KB chunks transferred to/from host

+ Number of 4KB chunks read from disk into memory

+ Number of 4KB chunks written from memory to disk

+
∑
xor

XORO(kxor) · (lengthxor in 4KB chunks).

With XOR-on-the-fly:
MBWC = Number of 4KB chunks transferred to/from host

+ Number of 4KB chunks read from disk into memory (not xor-ed on-the-fly)

− Number of 4KB chunks read from disk and xor-ed on-the-fly into memory

+ Number of 4KB chunks written from memory to disk

+
∑
xor

XORO(kxor) · (lengthxor in 4KB chunks).

The summation here is, as in (4.1), symbolic of a sum over all the XOR engine instructions,
where an instruction xor has kxor source operands, each of size lengthxor .

Here is a simple example of our model for host write of 4KB on a typical RAID4
stripe. The host data arrives in memory from the host interface through the Memory Con-
troller/XOR engine. The old data and old parity are read from disk into memory. The XOR
engine is instructed to compute the new parity as the ternary XOR of the three 4KB chunks
(oldData + newData + oldParity = newParity). This requires giving the XOR engine four
addresses (and one length), three as source and one as target for the result. Finally the new
parity and new data must be sent to the disk controller. So, we have

XORO = 4

MBWC = 1 (newData from host) + 2 (read oldData and oldParity)

+ 2 (write newData and newParity) + XORO · 1 (XOR computation)

= 9 (4KB units).

With XOR-on-the-fly, we could save 4 units of this data movement. After the host data has
arrived in memory, the XOR engine starts the XOR computation by moving the newData
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into its buffer, then XORs-on-the-fly both the oldData and oldParity as it comes from the
disk, and finally stores the newParity in memory. This has the same number of instructions
to the XOR engine (XORO = 4) but the MBWC changes to

MBWC = 1 (newData from host) − 2 (read/XOR oldData and oldParity)

+ 2 (write newData and newParity) + XORO · 1 (XOR computation)

= 5 (4KB units).

We give the XOR-on-the-fly model here only for completeness and to indicate how the
metric values can change to account for this feature. In general, XOR-on-the-fly does not
significantly alter the relative comparisons of the different array codes, but only affects the
absolute numbers for each code. Consequently, for comparative purposes, we can (and do in
what follows) ignore the XOR-on-the-fly model.

Caveat: Our model assumes that all operands for all XOR computations needed for a
single operation are of the same length. This both overstates and understates the costs with
respect to practical implementations and as such is a reasonable compromise, as we now
explain. With some codes in certain operations such as a host write to a full stripe (see
Section 5.5), one parity computation can be done by a single XOR formula on strip length
units whereas another must be on element length units. This means that our XOR metrics
can overstate the actual value. On the other hand, most real systems tend to deal with
memory chunks in pages of size much smaller than a strip or even an element. In this case,
the XOR operands would have to be fragmented into page sized units anyway, and hence
our metric may in fact underestimate reality. For these reasons, we make this simplifying
assumption that all operands for the XOR computations in a given operation are of the same
length.

4.2. IO Costs

A typical measure of IO costs is number of IO commands to disk. This is roughly equal
to the cost of seeks and typically relates to minimum latency. However, this is too coarse in
those cases where some IO commands request movement of small amounts of data and others
request movement of large amounts of data. The latter consumes resources that factor into
memory bandwidth as well as latency and can even dominate seek latency for very large IO
sizes.

Consequently, we will use two separate measures for IO costs. First is IOC or IO com-
mand count. In the other cost metric, we include the size of data transfer as well. This
metric will be called IOE , for IO Equivalent. We use the following rough model for an IO
of length 4k KB (in multiples k of 4KB):

IOE (k) = 1 +
Time to transfer 4k KB

Average time per 4 KB
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= 1 +
4k KB/1024

Avg. media transfer rate in MB/sec
· Avg. IOs/sec.

The following table gives the result of this formula using typical values for 10K rpm and
15K rpm drives:

10K rpm 15K rpm Units
IOs/sec. 250 333 IOs/sec.
Avg media transfer rate 53.25 62 MB/sec
IOE for k KB 1 + k/55 1 + k/48 IOE

The IOs/sec are based on 8 outstanding commands, quarter-stroke seek range, 18GB capacity
for 15K rpm and 36GB for 10K rpm (or more correctly, drives of this generation)3. These
are idealized numbers to start with and the formula varies only slightly between the different
drive types. Consequently, we shall use the more approximate model:

IOE (k) = 1 + k/50. (4.2)

In the previous two sections, we have described our basic cost primitives. In the next
section, we detail how we apply these cost primitives to define a cost function for particular
scenarios and modes.

4.3. Cost Model for Operations

For a given use case or host IO scenario (e.g., small write), we would like to provide a
general model for computing the cost of a given operation (say, read or write) to a specific
chunk of data. Such a cost must also take into consideration not just the failure state but
also the specific failure instance (what exactly has failed relative to the chunk on which the
operation is acting). Unfortunately, that can be quite difficult in general. In many cases,
there are more than one specific algorithm that can be applied to complete a particular
operation (e.g., for a write, we might use parity compute or parity increment to update
the affected parities). Each algorithm involves different sets of read/write IOs and different
XOR computations. It may be the case that one algorithm has lower cost with respect to one
metric, and another has lower cost with respect to a different metric. In practice, one would
select only one algorithm for each particular combination of operation, chunk and failure
instance. That is, we cannot fairly compare minimum IOE costs for one code under one
algorithm and the MBWC costs under another algorithm, particularly, since the algorithm
choice may depend on the specific operation, chunk and failure instance combination.

3The number of outstanding commands (8) represents a moderately busy, medium-sized storage system
with 15–30 disk drives. The quarter-stroke seek range represents a typical workload characteristic.
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Furthermore, there are many ways to optimize specific implementations of algorithms
to trade one cost against another. For example, if one needs to read (or write) multiple
elements in a single strip, it might be (and generally is) less expensive in IOE costs to
read the entire strip than to read each piece separately. But this increases the MBWC . Of
course, it would be even more efficient to read the smallest portion of the strip that covers
the required chunks, but that level of refinement is too detailed for our purposes.

With these remarks in mind, we define the following precise cost model. The notation
Cost(c, op,f) will refer generically to some cost function Cost for the operation “op” acting
on chunk c during the failure instance f . For example, “(c,op,f)” may be “write (op) of the
first logical strip (c) in a stripe, when the P -parity strip is down (f)”.

Now suppose we have a specific algorithm to implement a given operation, to a given
chunk c under failure scenario f . Each such algorithm breaks down into the following steps
(some of which do not occur in certain cases):

1. a data chunk c comes in from the host;

2. data and/or parity is read from some strips (or parts of strips);

3. XOR operations are performed;

4. data and/or parity is written to some strips (or parts of strips);

5. a data chunk c is returned to the host.

Only one of the first and last steps can occur (the first for writes, the last for reads). The
first/last and fourth steps are essentially independent of the particular algorithm used to
implement the operation (or more precisely, can be optimized independent of the second and
third steps). So, the variability of costs comes in the read and XOR steps.

Now, suppose the algorithm requires reading certain data and/or parity from a set of
strips and writing data and/or parity to a set of strips. Let rd1 be the number of such read
strips where the IOs touch exactly one element within the strip and let rd2 be the number
of such read strips where the IOs touch at least two elements. Similarly, we use the notation
wr 1 and wr 2 for one and at least two write elements per strip. Based on the remarks above,
we assume that for each strip counted in rd1 we read only the minimal size (with one seek).
For those IOs that touch the rd2 strips, we amortize them into a single IOC to the entire
strip (or data or parity substrip if that can be determined). We do the analogous modeling
for wr 1 and wr 2.

With this, we have the following general formulas

XORO(c,op,f) =
∑
xor

XORO(kxor) (4.3)

IOC (c,op,f) = rd1 + rd2 + wr 1 + wr 2 (4.4)
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IOE (c,op,f) = rd1 · IOE (er) + rd2 · IOE (sr)

+ wr 1 · IOE (ew) + wr 2 · IOE (sw) (4.5)

MBWC (c,op,f) = |c| + rd1 · er + rd2 · sr + XORO · min(e, |c|)
+ wr 1 · ew + wr 2 · sw (4.6)

where the sum in (4.3) is as in (4.1), |c| is the length of the host IO, er is the size of
subelement chunks we read, ew the size of subelement chunks we write, sr the size of the
substrips we read, and sw the size of the substrips we write (all in multiples of 4KB). This
assumes that er ≤ e and ew ≤ e. Typically, er = ew and these are either equal to |c|
when |c| ≤ e and equal to e when |c| > e. The XORO term in MBWC is the number of
operands for the XOR computation, assuming each operand is of length either an element e
or a subelement.

For example for a single 4KB host read to a good strip, we have |c| = 1, er = 1, rd1 = 1,
and all other parameters are zero. The (best) parity increment algorithm for a single 4KB
host write to a good strip has |c| = er = ew = 1, rd1 = wr 1 = 1+DoutD , and rd2 = wr 2 = 0
(recall the definition of DoutD in Section 3).

To select an algorithm for a Cost(c, op,f) measurement, we always pick that algorithm
that minimizes the read contribution to IOE (the first two terms of (4.5)). This is for
the following reasons. First, by the remarks above, it is only the read/XOR steps that
vary between algorithms (the host-side steps and write steps are constant). Second, this
read term will contribute a large portion of the costs of IOE and MBWC . In fact, IOE
variations will be dominated by this read term. In MBWC , we have two competing terms:
the contribution from IOE and from XORO . In general, the former will dominate the latter
(since the former acts on strip size chunks of data and the latter only on element-sized chunks
(or less)). Finally, IOE reflects typically more expensive system operations (in latency, etc.)
than does MBWC , so we choose the algorithm that minimizes IOE .

There is one additional remark concerning this model. Suppose, for example, that we are
doing a write to a small chunk of the strip, but have to update two or more parity elements
(actually subelements) on the same strip. Our model says that we will update the relevant
parity subelements, then write the entire parity strip. This presupposes that we have already
have in memory the balance of the strip that we do not update. We could increase the read
costs to gather this old parity in order to ensure that it is present in memory or cache, but
instead we simply assume that this is the case. This may not be entirely equitable, but it
simplifies the calculations and is not an unreasonable assumption for a real system.

4.4. Averaging Model

For a given use case or host IO scenario (e.g., small write), we want to compare codes
under uniformly distributed operations on an array (multiple stacks of stripes), under each
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of its stripe modes (Normal, Degraded and Critical). We also assume uniformly distributed
failure cases, but conditional on a given failure mode. The stack notion allows us to do the
measurements by simple counting and averaging on a single stripe. We do this as follows.

Suppose that the operation in question acts on a set of chunks C of the user data substripe
and that such chunks partition the user data. For example, for long writes the chunks are
the data substrips, or for small writes the chunks might be 4KB chunks of user data (aligned
on 4KB boundaries) both of which partition the stripe as well (by our assumptions).

We average the costs for a given operation, “op”, over all failure cases F with the formula:

1

#C#F

∑
c∈C

∑
f∈F

Cost(c, op,f)

where Cost(c, op, f) is the cost of the operation “op” on the chunk c assuming the specific
failure case f as defined in Section 4.3.

When in Normal mode, there are really no “failure” cases, but only one state, so F has
one element (and can be ignored in the sum) to yield the formula:

1

#C

∑
c∈C

Cost(c,op)

where now Cost(c,op) is the cost of that operation on the specific chunk c, when the stripe
is all read/writable.

When Degraded, the set F consists of N elements, where each f corresponds to loss of one
strip. When Critical, the set F consists of N(N − 1)/2 elements, where each f corresponds
to loss of two strips.

Note: There are, of course, other statistics besides average (expected value) that can
be computed and used to compare codes. For example, the maximum value of any cost is
also one that may be relevant to a system designer, as it may predict whether the system
can even handle the code at all. Other distribution information may also be important.
However, we do not consider other statistics here, and stay, for the sake of simplicity with
just the average.

However, we do observe that the averaging process itself can hide some worst-case anoma-
lies. Consider, for example, a host read-type scenario. In normal mode, costs are bare min-
imum (e.g., XORO = 0). In a failure mode, a read to “good” data also has minimal costs,
yet a read to “lost” data will incur additional costs for reconstruction. But there may be
relatively few such “lost” cases or few with excessively high costs, so that the overall average
is within limits. We encourage the designer using these principles and methodologies to
extract the statistics that are most relevant to their system constraints.

Finally, we emphasize that our probability models do not relate to likelihood of failures,
that is, with reliability issues; we deal only with uniform IO distributions and, in a given
failure mode (that is, conditional on a failure mode), uniform distribution of failed strips
within that failure mode.

18



4.5. Effective Capability

We will apply the metrics IOC , IOE ,XORO ,MBWC to a variety of use cases (see Sec-
tion 5) under different stripe states (Normal, Degraded and Critical). The “Normal” state
reflects the performance characteristics of the stripe (or stack or array) under optimal oper-
ating conditions. The Effective Capability metric is designed to predict the performance
variation of an array in the various states relative to the Normal condition as viewed from
the host’s perspective. We apply this to IOE , as “Effective IO Capability”, as that is con-
sidered the dominant factor that limits host IO performance. The normalization can also
be applied to the MBWC for example, if desired. This metric can be applied to any host
driven use case.

The metric is defined for a specific use case as the ratio of the average (or expected value)
of the IOE cost under Normal mode to the average under the Degraded or Critical mode,
expressed as a percentage:

Eff IO Cap = 100% · average IOE Normal mode

average IOE current mode
(4.7)

This metric has two dimensions: mode (Degraded or Critical) and IO scenario or use case.
(For Normal mode, the value is 100% and so is not interesting.) The averages are computed
over a stack, or equivalently, an array fully populated with stacks (see Section 4.4).

As an example, consider the case of Short Reads or Writes (see Sections 5.2-5.1). For
reads in Normal mode, the average IOE = IOE (1). Consequently, the inverse of the average
IOE (times 100%) in Degraded or Critical mode provides the formula for effective read
capability in those modes. For writes in Normal mode, the optimal4 IOE for distance d
is 2d · IOE (1) (this comes from applying the parity increment algorithm that does a read-
modify-write to d− 1 parity and read of old and write of new data). So, the formula in this
case would look like:

Eff Write Cap = 100%
2d · IOE (1)

average IOE current mode

Note that it is possible for this value to be larger than 100%: in a horizontal code with
all parity strips down, the average write IOE = IOE (1) (but this is only one of the many
Critical substates within a stack).

This metric is primarily designed for comparing a given code with itself (under failure
mode versus Normal mode). It may be used for comparative purposes of different codes but
only if the costs under Normal mode are comparable. In Section 7.5 we say more about this
issue as well as provide an alternative definition designed for comparative application.

4This statement about optimal IOE is true only for codes of high efficiency. For example, for the LSI
code (see Section 6.7) of efficiency 1/2 and distance 3, the average IOE = 4IOE (1) in Normal mode.
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5. Use Cases

The primary operations of a storage system are reads and writes of user data. To simplify
the picture dramatically, these IOs come in only a few coarse types: small (typically about
4KB for a random workload), long (about 256KB for sequential IO pattern) and very long
(say, 1–2MB). The long size approximates a value that is a cross-over point for striping of a
typical RAID system. The very long size is typical of a RAID system where a cache sitting
above the RAID layer may accumulate a very large number of blocks of new data before
sending it into the RAID system.

In this section, we examine a set of host IO scenarios or use cases that model these
coarse IO types. For each use case, we explain how each of our metrics are computed. Each
use case has subcases as well. These depend on the state of the stripe: what elements are
read/writable and what have been lost due to disk loss or hard errors in the disks. They
also depend on whether the host IO is targeted to a “good” chunk of data (read/writable)
or “lost” (on a failed strip). For simplicity, we assume only the three failure modes of
Normal, Degraded and Critical (full strip losses) and not the more complex cases of multi-
sector medium errors across the stripe. Appendix A provides some detailed examples of the
calculations for numerous use cases.

5.1. Short Write

The term Short Write is defined as a uniformly random host write to a 4KB chunk
of user data within the stripe (or stack or array). We assume that the IO is 4KB aligned
within the element it touches. So, in our model formulas (4.5) and (4.6), the values |c| =
er = ew = 1 (one 4KB chunk). There are generally two algorithms (parity increment and
parity compute) that one can apply to a host write scenario. In some cases, the choice
between the two is clear, but in others, the selection is more subtle.

Suppose that the affected element E has some 0 ≤ m ≤ DoutD(E) good parity elements
that need to be updated as well (there is strict inequality here if any affected parity strip
is lost). These parity elements may or may not all lie on separate strips. However, we can
assume that they do not lie on the same strip as E. If E is good, then wr 1 includes a term
for writing out the 4KB subelement of E; if E is lost, then wr 1 only contains terms for
parity update. In either case, wr 1 + wr 2 is the number of write strips, partitioned by single
or multi-element writes. Recall that sr and sw are the size of the substrips we need to read
and write, respectively, for multi-element strips. Only parity elements (if at all) will require
multi-element strip writes so sw = SP . We now break down the subcases for short writes to
good and lost elements, and parity increment versus parity compute.

Good: Suppose the affected element E is on a good strip. As observed, the number
(wr 1 − 1) + wr 2 is the number of strips with parity elements that need updating.
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• For a parity increment algorithm and m ≥ 1, we have rd1 = wr 1 and rd2 = wr 2 since
we have to read the equivalent data that we write. We also have sr = SP (only read
parity during multi-element strip reads). If m = 0, clearly wr 1 = 1 and wr 2 = rd2 = 0
and rd1 = 0; we do not need old data in this case as well.

For XOR costs, when m ≥ 1, there are again two subalgorithms. We can compute
each new updated parity by

oldData + newData + oldParityj = newParityj (5.1)

or we can compute oldData + newData = dataDelta and then

dataDelta + oldParityj = newParityj. (5.2)

The former has costs XORO = 4m and the latter XORO = 3 + 3m; the former is less
expensive if m < 3 which includes the case m = 0.

• For the parity compute algorithm, we need to read all the dependent data for all the
good parity subelements touched by this element and write all the parity subelements
touched by the element. So rd1 and rd2 now account only for data strips and sr = SD.
Note that wr 1 includes writing the new data.

In addition,

XORO =
m∑

j=1

(PinD j + 1) = T + m, (5.3)

where PinD j is the parity in-degree of newParityj and T =
∑m

j=1 PinD j.

Of course, it is assumed here that all the dependent data in the parity formulas are on
good strips (as in the case when the stripe state is Normal). If not, then parity formulas
must be generalized to remove their dependency on these lost elements (effectively
finding reconstruction formulas for these elements). In our metrics, we assume that
these costs will necessarily exceed the costs of parity increment, so we do not try to
pursue this analysis.

Lost: Now suppose the affected element is on a lost strip. It must be the case, then, that
m ≥ 1 (or else we have unrecoverable user data). We again consider the parity increment
versus the parity compute algorithms.

• For parity increment, we need to, in effect, reconstruct the lost old data before applying
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the increment algorithm. Assume that there is some L-ary XOR formula5 that can be
used to reconstruct the lost data from some known data and known parity elements.
If m ≥ 2, the formula

L∑
j=1

depDataParityj + newData = dataDelta

(of XORO = L+2) together with the the computations in (5.2), yield a total XORO =
L + 2 + 3m. If m = 1, then we might use the formula

L∑
j=1

depDataParityj + oldParity1 + newData = newParity1.

However, in this case, there must be at least one parity term in the initial sum equal
to the oldParityj term. This means that the oldParityj term cancels for a total cost
XORO = L + 1. Note that such a formula may contain parity elements that are not
directly touched by the new data, but are needed for reconstructing the old data.

In these cases, sr = SA (the full strip, since we expect to read both data and parity
subelements, if applicable, from any of the rd2 strip).

• For parity compute, we apply the standard parity compute algorithm for an XORO
cost as in (5.3). However, in this case, we only need to read data, so sr = SD.

To compute these costs for a given code under the failure cases, we need to first determine
the state of the element we affect, then the set of good parity elements it touches. Next,
we need to determine the number of multi-element reads that are required for the parity
increment and parity compute algorithms (if they both apply). We then select the algorithm
with lowest derived read IOE . Finally, we use the special subformulas above to compute the
full IOE and MBWC costs for that selected algorithm according to (4.5) and (4.6).

We summarize these subcases in Table 1. See Appendix A.1 for examples.

5 We do not describe precisely how the L-ary XOR formula for reconstruction is derived. For Degraded
mode, typically, a standard RAID4 algorithm is sufficient. In Critical mode, most codes have some recursive
approach for reconstructing lost elements (see also Sections 5.3, 5.4, 5.8). One approach for generating the
necessary formula in this Short Write use case (and Short Read below) may be derived from the recursion by
combining all the intermediate equations and removing dependence on data or parity elements that appear
an even number of times in the formulas. For example, suppose c and e are lost elements, a, b, d are known
and the recursive relations are a + b = c and c + d = e. Then a + b + d = e combines these two formulas into
a single formula depending only on known elements (by removing the dependence on c).
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Element # Good Parity Algorithm sr XORO

good

m = 0

m ≥ 1

1 ≤ m ≤ 2

m ≥ 3

n/a

PC

PI

PI

n/a

SD

SP

SP

0

T + m

4m

3m + 3

lost

m ≥ 1

m = 1

m ≥ 2

PC

PI

PI

SD

SD

SA

T + m

L + 1

3m + L + 2
Table 1: Summary of Short Write costs, where m is the number of good
parity elements affected by the updating element, L is the in-degree of the
minimal XOR formula to recompute the lost element, T =

∑m
j=1 PinD j

over all the good parity elements and PinD j is the parity in-degree for the
jth parity, and sr , SA, SD and SP are as above.

5.2. Short Read

A Short Read is a uniformly random host read to a 4KB chunk fully aligned within an
element. This case is significantly simpler than the previous case, but much of the notation
and notions of the previous section apply.

Since no strip is changed for a host read operation, we always have wr 1 = wr 2 = 0 and
the parameter sw is not relevant. The term |c| in our base formulas (4.5) and (4.6) is |c| = 1.

Good: If the affected element is good, then there is only one reasonable algorithm,
namely, read the element and return to the host. So XORO = 0, rd1 = 1, rd2 = 0 and the
other parameters are not relevant. We find that MBWC = 2 and IOE = IOE (1).

Lost: For a lost element, we have to reconstruct that element. This means that (as for
the parity increment algorithm for Short Write) we must find the best L-ary XOR formula
of data and parity elements that can be used to reconstruct the lost data. This means that,
in some cases, rd2 > 0 and that sr = SA when it is relevant.

The XORO costs are given by the reconstruction formula and so XORO = L + 1. Note
that the total number of good parity elements is not relevant; only the parity subelements
required for the reconstruction formula are needed.

See Appendix A.2 for examples.

5.3. Strip Write

A Strip Write is a uniformly random host write to a complete aligned strip (or data
substrip in the case of vertical code) in a stripe. As above, we need to consider the cases of
a good strip or a lost strip and the subcases that depend on state of the stripe.
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Suppose the affected strip S has 0 ≤ m ≤ ∑
E∈S DoutD(E) total good parity elements

touched by all the elements in S. These all must be updated as well. As before, we can
assume that parity elements all lie on strips other than S. Because S is a strip, wr 1 contains
terms only for writing single parity elements. If S is good, then wr 2 contains a term for
writing out the full strip S of size SD and terms for writing out multiple parity elements
on the same strip of size SP . This means that sw may not be constant (e.g., for a vertical
code). If S is lost, then wr 2 contains terms only for writing parity strips of size SP .

In all cases, the XOR operations contribute to MBWC a term equal to XORO · e, since
each XOR is on data chunks of size equal to an element.

Good: Suppose the strip S is good. For the parity increment algorithm, we need to
read the old data on strip S (so a term in rd2 of size SD), plus read all the m affected old
parity. As for Short Write, there are different algorithms for updating the parity. Note that
it is possible that multiple updating elements touch the same parity element, so this must
be accounted for as well.

Suppose there are tj updating data elements that touch the jth parity element affected.
One algorithm precomputes all the dataDelta for the rD elements in S (at a total cost of
3rD) and then updates the parity element as

tj∑
i=1

dataDeltai + oldParityj = newParityj.

The total XORO cost is then

m∑
j=1

(tj + 2) + 3rD = TI + 2m + 3rD, (5.4)

where TI is the subtotal, restricted to the data elements being updated, of the total parity
in-degree of all the affected parity. Alternatively, compute each new parity element using
both old and new data elements (and old parity) together for a total cost of

m∑
j=1

(2tj + 2) = 2TI + 2m. (5.5)

The latter is less expense if TI < 3rD and we always select the one of minimum cost.
For a parity compute algorithm, we have to find all the dependent data elements, find

which strips they lie one (singly or multiply with affected parity), determine from this the
costs rd1 and rd2, then compute the total parity in-degree TC for all the affected parity,
for an XORO = TC + m, as for Short Write (now accumulated over a larger set of parity,
typically). If in fact, any dependent data elements are lost, we assume that parity compute
will necessarily be too expensive and abandon this algorithm.
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Lost: When the strip S is lost, our work for parity compute is quite similar to the above
case, with the exception that we do not have to write out the new data, only the new parity.

For parity increment, we need to find formulas for reconstructing the lost data. In some
cases, this is quite simple (e.g., in Degraded mode, this is typically not much more complex
than RAID4 algorithm). However, in Critical mode, there is no obvious and general approach
to this since other lost data may implicitly be needed.

Consequently, we perform the following algorithm to find the reconstruction formulas6.

1. Let R represent the list of reconstruction formulas for the elements of S that have been
implicitly reconstructed; initialize R to the empty set.

2. While all elements of S have not been implicitly reconstructed (i.e., while #R < #S):

(a) Find an element in S and not represented in R that has a reconstruction for-
mula that depends only on known data and parity elements and the elements
reconstructed by the formulas in R.

(b) Implicitly reconstruct this element and append its formula to the set R.

3. Output the set of reconstruction formulas R.

The output formulas represent reconstruction formulas for all lost elements of S using
only known data and parity elements and (iteratively) elements of S. These formulas can
be inserted into the formulas for computing dataDeltas or newParitys (as replacements for
oldData). The set of known data and parity elements in these formulas together with the
affected list of parity elements (those that need updating) determine the read costs for this
parity increment algorithm.

The XOR costs are determined by the algorithm that computes the dataDelta for each
element, the total cost of which is 2rD plus the total weight of all the output formulas in R
plus 2m + TI as we now show. Suppose the ith formula in R has weight `i; then the cost of
computing dataDelta for this element is `i + 2 (that is, `i plus one for newData plus one for
output dataDelta). So the total cost of computing all dataDeltas is

rD∑
i=1

(`i + 2) = L + 2rD. (5.6)

6This is a general description of reconstruction methodologies for some codes. E.g., the X-Code (see
Section 6.6) in Critical mode always has at least one element on a lost strip one of whose diagonal does not
touch the other lost strip. We recover that, then use it to bootstrap recovering an element on the other strip,
then back to the first strip. Our algorithm here logically leaves out explicit reconstruction of the element on
the other strip.
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From these, the total cost of the Strip Write XORO is

TI + 2m + L + 2rD (5.7)

where the term TI +2m is the cost of computing the new parity element from the dataDeltas
as in (5.4).

The formulas in R together with the parity increment formulas easily tell us the read
numbers rd1 and rd2; in addition, we have sr = SA, since we generally need both data and
parity elements from multi-element strips.

We summarize these subcases in Table 2. See Appendix A.3 for examples.

Strip Algorithm XORO

good
PI

PC

min(TI + 2m + 3rD, 2TI + 2m)

TC + m

lost
PI

PC

TI + 2m + L + 2rD

TC + m

Table 2: Summary of Strip Write costs, where m is the number of good
parity elements affected by the updating element, L =

∑rD
i=1 `i, the sum

over all updating elements of the in-degrees of the minimal (recursive)
XOR reconstruction formulas, TI =

∑m
j=1 tj, the sum over all updating

parity elements of the in-degree of each limited to the updating data ele-
ments, and TC =

∑m
j=1 PinD j, the sum over all updating parity elements

of the parity in-degree.

5.4. Strip Read

A Strip Read is a uniformly random host read to a complete aligned strip (or data
substrip in the case of vertical codes). As for Short Read, this largely depends on state of
the stripe, and, if Degraded or Critical, which strips are lost.

Good: In any mode, either Normal, Degraded or Critical, if the requested strip is not
lost, then IOC = 1, IOE = IOE (SD), XORO = 0 and MBWC = 2SD.

Lost: When the read strip is lost, then the data on that strip needs to be reconstructed.
For Degraded mode, the reconstruction is typically as in RAID4 and involves one parity
element per lost data element, though possibly more than one known data element per strip.
For Critical mode, we need to reconstruct lost data elements as efficiently as possible via the
algorithm given in the previous section. So, we find that XORO = L+ rD (we only need old
data). We will have sr = SA just as for Strip Write. The other costs can be easily derived
from XORO and the read pattern of known data and parity.

As for Strip Write, the XOR contribution to MBWC is XORO · e.
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From these remarks, we see that the greatest variation in costs between the different
codes will come from XORO (as the major contributor to MBWC ). A slight variance will
occur in IOE and IOC in some cases.

The costs for Strip Read can be used to directly determine costs in Degraded mode for
rebuilding data strips (but not for any lost parity); this is described in Section 5.7.

See Appendix A.4 for examples.

5.5. Full Stripe Write

A Full Stripe Write is a host write to the complete data substripe of a uniformly
random stripe within the array (or stack). The costs here again depend on state of the
stripe (Normal, Degraded or Critical) and what strips are down. Since this involves no read
IOs (all the data is new), there are three metrics to consider.

The XORO is the cost of a parity compute (for any parity element on a writable strip).
This is the sum of the XORO for each parity computation, over all the good parity:

XORO =
∑
j

(PinD j + 1) = T + m.

This sum may in fact be empty (e.g., a horizontal code with two parity strips lost).
The IOE is the cost of writing the full stripe (the writable portion, anyway) so we have

IOE = (N − x)IOE (SA),

where x = 0, 1, 2 is the number of lost strips.
Finally, the MBWC is given by

MBWC = n · SD + XORO · e + (N − x) · SA

since we pay n · SD in moving the stripe’s user data from the host interface into memory,
then XORO · e in bandwidth costs computing the parity, and finally (N − x)SA in writing
all the data and parity elements to the “good” strips in the stripe.

As with Critical Rebuild (Section 5.8), the MBWC have significant variation between
codes almost solely because of the XORO term (assuming each stripe’s user data size, as
well as their strip size, are comparable).

5.6. Full Stripe Read

In Normal mode, the costs are reading the data portion of the stripe and sending it to
the host interface. In Degraded mode, we have to read essentially all of the stripe (perhaps
excluding some of the parity), compute a lost data strip (if any), then send the full stripe of
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data to the host. For Critical, we have to read the entire stripe (good elements), reconstruct
any lost data strips, and send the full stripe data to the host. Consequently, the differences
between codes here will be entirely reflected in the cost of rebuilding lost strips, and these
costs are covered below. Hence, we give no metrics for this case.

5.7. Degraded Rebuild

The term Degraded Rebuild refers to reconstruction of all lost data (and any lost
parity) on a lost strip when one strip is lost. This is essentially equivalent to (or derivable
from) the Degraded Strip Read costs when the strip contains data. The only differences are
(a) reconstructed data flows to a new disk instead of to the host and (b) any lost parity
elements must be reconstructed and stored to disk. In horizontal codes, difference (b) only
applies when the lost disk contains only parity and this is not covered in the Strip Read case,
however, a simple parity compute algorithm can be applied in this case. In vertical codes,
(b) applies only to typically one (sometimes two) parity elements on the lost disk, so these
costs are easily determined from the parity compute formulas.

5.8. Critical Rebuild

The term Critical Rebuild refers to reconstruction of all lost data and/or parity when
two strips are lost. The associated metrics can be used to derive total rebuild costs, including
time (assuming a time cost model for the system), but we do not do that here.

It should be clear that in this scenario, our read costs generally (but not always) include
the entire stripe (good portion) so equals (N − 2)IOE (SA) and our write costs are for two
full strips 2IOE (SA). Consequently, total IO cost is

IOE = N · IOE (SA).

Recall that the absolute strip size equals 4SAKB. Consequently, for codes with comparable
strip sizes, the IO costs are essentially equal.

Also, MBWC includes a term N · SA for reading and writing data to disk plus the
contribution to bandwidth costs from the XOR computations of XORO · e. As a result, the
dominant metric here is XORO . There is no simple formula for XORO as it is very code
dependent and there is large variation between codes.

The above formulas and remarks apply generally to MDS codes (or highly efficient ones).
The LSI code (see Section 6.7) has different characteristics which are quantified in the tables
in Appendix B.

As for the case of Strip Write or Read in Degraded mode, we need to find formulas to
reconstruct any lost data elements. As before, these can be determined by an algorithm
similar to that in Section 5.3, with the modification that the expression S represents all the
lost data elements (from both strips).
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6. Codes

In this section we describe the various array codes that we compare with our metrics.
We give only distance three versions of these codes. Our descriptions will be somewhat terse
and provide only a simple example in each case, typically done graphically by showing data
layout on strips within a stripe together with some parity equations, where such equations
are needed to complete the description. The reader is referred to the original sources for
more complete descriptions.

We also introduce a notion of the “ideal” code (Section 6.1), an imaginary code that
provides the optimal characteristics in all dimensions, but primarily efficiency and IOE for
short write. This is provided as a theoretical benchmark and a means for normalization of
metrics under a uniform model.

Our list of codes is by no means exhaustive. The point here is to give a fairly rich subset
of codes which we can use to illustrate our metrics.

We add some loose terminology here to help distinguish between the general characteris-
tics of these codes. We call a code “geometrical” if the parity computations can be visualized
by geometric patterns overlaid on the data layout in the stripe. This should be contrasted
with “combinatorial” codes, where the parity is computed by combinations of elements in
the stripe for which there is no obvious visual pattern.

In addition, we need to specify the strip size SA for each code (since we assume some
divisibility conditions on element size by 4KB and strip size by number of elements). The
values we choose provide approximately equal strip sizes (in KBs) for all considered codes
and are reasonably realistic for the system model defined in this paper. There are clearly
other choices for strip size and the metric values can change under different assumptions,
but again, our focus is on the methodology, so that system designers have the tools needed
to compare and select codes in the context of their particular constraints.

We have chosen strip counts per stripe of N = 8 and N = 16, as well as strip sizes
approximately 240KB (for N = 8) and 256KB (for N = 16). The strip counts are typical for
real systems in use today. The strip size was chosen as a reasonable value for large sequential
disk IO.

6.1. The Ideal Code

The “ideal” code is an imaginary code that, for a given distance, provides the optimal
characteristics and metrics in all dimensions simultaneously and is first and foremost an
optimally efficient code for a given strip count and distance.

For distance d, the ideal code is a one-row horizontal code, with q = d − 1 parity strips,
n = N − q data strips and has the following characteristics:

1. Parity in-degree is n for all parity.
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2. Data out-degree for any chunk of data in a strip is d − 1, and furthermore the size of
the parity chunks touched matches that of the data chunk.

3. Any n chunks of identically aligned and sized chunks of data or parity (a horizontal
slice through the stripe) can be used to reconstruct the remaining d− 1 aligned/sized
chunks of data or parity.

We consider here only the case where d = 3.
The third assumption means that any lost chunk of data or parity can be reconstructed

from any n equal sized and aligned chunks of good data and/or parity. That is, all recon-
struction formulas (and parity compute formulas by the first assumption) have n summands.
Another way to view this is that data and parity are interchangeable from a computational
point of view. Unfortunately, such a code based on XOR is not known (and may not exist,
see [6]). But as mentioned, it can provide a theoretical benchmark as well as a means for
normalization of the different classes of metrics into a uniform model.

There are (at least) two ways to conceptualize this code. First, imagine a RAID4 code
with two mirrored parity strips. This has the ideal costs in all the metrics (except that it
is not distance three!). For example, a Short Write 4KB of data touches only that much
of the data strip and exactly 4KB of parity on each parity strip. That is, all reads and
writes to any strip are of the size of the host request (so that the parameters er, ew, sr, sw

in equations (4.5)-(4.6) all equal |c| and rd2 = wr 2 = 0). As another example, a Full Stripe
Write would send each of the data strips into the ideal XOR engine once for each parity that
needs updating (so XOR cost in this case is exactly q(n + 1)).

The other conceptualization is as a Reed-Solomon code. This has the ideal properties in
many respects, but the parity computations are not XOR-based. In some sense, the ideal
code could be realized with a Reed-Solomon code and an ideal XOR engine that can compute
finite field arithmetic as easily as XOR.

We will give numbers for the ideal code with 〈n, SA〉 = 〈6, 60〉, 〈14, 64〉 for strip counts
N = 8, 16 and strip sizes 240, 256KB, respectively.

6.2. Blaum-Roth Code

The Blaum-Roth (or BR) codes [6] are a family of LDPC codes theoretically optimal
in that regard for binary (XOR) codes. These codes are combinatorial in nature and are
horizontal codes with two parity strips. They are defined by two parameters p, a prime, and
n, the number of data strips in the stripe with the requirement that n ≤ p. These codes are
best described by their systematic generator matrices; they have the form (this notation is
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somewhat different from that in the citation):
Ip−1 0p−1 · · · 0p−1 Ip−1 Ip−1

0p−1 Ip−1 · · · 0p−1 Ip−1 Q
(1)
p−1

...
...

. . .
...

...
...

0p−1 0p−1 · · · Ip−1 Ip−1 Q
(n−1)
p−1


where, Ip−1 is a (p − 1)-dimensional identity matrix, 0p−1 is a (p − 1) dimensional all-zero

matrix and for 1 ≤ j ≤ n − 1, we define Q
(k)
p−1 =

(
a

(k)
i,j

)
0≤i,j≤p−2

with

a
(k)
i,j =


1 if j 6= p − 1 − k and i − j = k (mod p)
1 if j = p − 1 − k and either i = k − 1 or 2i = k − 2 (mod p)
0 otherwise.

For example, with p = 3, the generator matrix is

1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0


We will give the metrics for the cases where 〈p, n, SA〉 = 〈7, 6, 60〉 and 〈17, 14, 64〉 to cover

cases of strip counts N = 8, 16 and strip sizes 240, 256KB, respectively.

6.3. EvenOdd Code

The EvenOdd (or EO) code was described in [5] (among other places). It is a 2-
dimensional horizontal and geometrical code with one parity strip computed by standard
RAID4 computation (laterally across the stripe) and the other along diagonals through the
stripe.

The code has defining parameters p, a prime, and a number n ≤ p. The number of rows
is r = p− 1 and the number of data strips is n. The strip count is N = n + 2. The following
layout example for p = 3, n = 3 shows the basic construction.

S0 S1 S2 P Q
d0,0 d0,1 d0,2 P0 Q0

d1,0 d1,1 d1,2 P1 Q1

(6.1)
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This stripe logically has an additional p−1st row (3rd in the example) that is all zero. Here,
the parity is computed by the formulas: for 0 ≤ i ≤ p − 2,

Pi =
p−1⊕
j=0

di,j

and

S =
p−1⊕
j=0

dp−1−j,j

Qi = S ⊕
p−1⊕
j=0

di−j,j

where the first subscript is taken modulo p and we assume that dp−1,j is zero for all j. That
is, each P-parity is computed as a row parity; each Q-parity is computed as an UP-diagonal
parity, with the “main diagonal” S that starts in row p − 1 (with a logically zero data
element) embedded in each of the other Q-parity elements.

When n < p, simply assume that the last p− n data strips are logically zero. The result
is that the upper index in each sum is replaced with n − 1.

Our results will include the cases of 〈p, n, SA〉 = 〈7, 6, 60〉, 〈17, 14, 64〉 of strip counts
N = 8, 16 and strip sizes 240, 256KB, respectively. (This is just as for Blaum-Roth).

6.4. Row-Diagonal Parity Code

This code from Network Appliance, Inc., called the Row-Diagonal Parity code (or RDP),
is described in [9] and in US Patent publication [10]. It claims to improve on the EvenOdd
code described above in Section 6.3. This is also geometrical, but the pattern is slightly
different from EvenOdd. As for EvenOdd, the parameters are p, a prime, and n the number
of data strips. For this code, n ≤ p − 1 (not p as for EvenOdd). The data/parity layout is
exactly as in (6.1) but we logically assume that the last data strip (Sp−1) is all zero; that is,
di,p−1 = 0 for all i. Also, the formula for Qi are different:

Qi = Pi+1 ⊕
p−1⊕
j=0

di−j,j.

In effect, this formula replaces the data element di−(p−1),p−1 = di+1,p−1 = 0 (logically zero)
from strip Sp−1 with the P-parity element Pi+1 from that row and furthermore removes the
term S.

Geometrically, this is the same UP-diagonals as in EvenOdd, but instead of computing the
“main diagonal” S and storing it embedded in all the other diagonals, each diagonal includes
the P-parity column in its computation. That is, Q-parity is computed on the combined strips
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of data and P-parity (not just on the data portion). As such, it is a concatentation parity
code (UP-diagonals) computed on top of another parity code (the row P-parity).

The restrictions, compared to EvenOdd, allow only for one fewer data strip in the stripe
for a given p. As before, to get a configuration for n < p − 1, assume more data strips are
logically zero.

Here, we use the cases where 〈p, n, SA〉 = 〈7, 6, 60〉, 〈17, 14, 64〉 and strip sizes 240, 256KB,
respectively. (These match the parameters sets considered for EvenOdd and Blaum-Roth.)

6.5. BCP Codes

The BCP codes, described in US Patent [2], are not so much codes as a methodology for
constructing vertical codes. We give one example below for strip count N = 16. Curiously,
the methodology does not apply directly to N = 8 strips, so in that case we give an alternate
construction. The codes generated by the methodology in the patent have both geometric
and combinatorial characteristics. They have some rotational symmetry, which allows for
some visualization, though the basic rotated pattern is rather random looking (and so more
combinatorial).

Besides the strip size, the codes have only one defining parameter, an even number N ,
corresponding to both the strip count and the data strip count (so n = N). The number
of rows is always r = N/2. We give two examples with 〈N, SA〉 = 〈8, 60〉, 〈16, 64〉 and strip
sizes 240, 256KB, respectively.

Here is a construction for N = 8 (we place the parity elements in the last row, though
most examples we have seen in the literature have it in the first row). Each data element
touches DoutD = 2 parity elements in the last row. On the left picture, we show the mapping
from each data element into its first parity element by labeling the data element by the lower
case letter of its parity element label; in the right picture, we do the same for the second
parity element:

S0 S1 S2 S3 S4 S5 S6 S7

x w v x v t u u
v v t t u s w t
t s s s t u s s

S T U V W X Y Z

S0 S1 S2 S3 S4 S5 S6 S7

y y y z x v x w
w z w y y w z x
u x z u z z v y

S T U V W X Y Z

When the BCP code is defined with rotational symmetry, there is an alternative (and
shorter) description of the pattern (this is the case for all N 6= 8). For the parity element
P0 in strip S0, we specify a list, ordered by strip number, of the row indices for elements
that are touched by this parity element. We use an ∗ to indicate a skipped strip. All other
parities are computed by rotational symmetry (e.g., rotate the list to the right for P1 on S1).
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The N = 16 construction is given for P0 by the pattern

P0 = [∗, 0, ∗, 3, 5, 5, 0, 6, 1, 4, 3, 6, 4, 2, 1, 2]

and other parities are computed by rotational symmetry. So this indicates that the elements
in strip1-row0, strip3-row3, etc., touch parity element P0.

The ZZS codes [32] provide an alternative code construction very similar to a BCP
construction in essentially all metrics, but only in the case where N = p − 1 for an odd
prime p (for example, N = 12, 16). The ZZS code typically has strip count N = p, but
they have an all-data strip that can be logically assumed to be zero to give strip count
N = p − 1. Similarly, the BCP codes can have an additional all-data strip appended to get
a code metrically similar to the ZZS code.) As a result, we do not give any ZZS examples
(the curious reader is welcome to apply the metrics in this paper to ZZS).

6.6. X-Code

The X-Code [31] is another vertical code, though it differs from ZZS and BCP in that
this code has two rows of parity elements whereas the others have only one row. Both rows
of parity elements are computed from diagonals (one up, one down) through the stripe, and
so this family of codes is geometrical.

These codes depend on a parameter p, an odd prime. The number of data strips is exactly
p and the number of rows r = p as well. Of these rows, two are parity rows and p − 2 are
data rows.

An example for p = 5 is given here. The left picture shows the pattern of computing the
first row of parity elements and the second shows the pattern for the second row of parity
elements. Each parity element is indicated by an upper case letter; such a parity element is
computed as the XOR of the set of data elements labeled by the corresponding lower case
letter.

S0 S1 S2 S3 S4

v w x y z
w x y z v
x y z v w

Y Z V W X
∗ ∗ ∗ ∗ ∗

S0 S1 S2 S3 S4

v w x y z
z v w x y
y z v w x

∗ ∗ ∗ ∗ ∗
X Y Z V W

Since this code always has an odd number of strips, we will give the results for 〈N, SA〉 =
〈p, SA〉 = 〈7, 68〉, 〈17, 70〉, the nearest values to our basic strip counts of N = 8, 16 and strip
sizes 280, 272KB, respectively. Because each strip contains parity, it is not possible to change
the stripe size by logically zeroing a data strip.
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6.7. LSI Code

LSI Logic Corp. presents a code in US Patent [30]; we call this the LSI code for conve-
nience. It is a simple, one-dimensional geometrical pairing code, with distance three, and
efficiency equal to mirroring (RAID1).

The basic layout is the following (on 8 strips):

S0 P0 S1 P1 S2 P2 S3 P3

d0 d0 ⊕ d1 d1 d1 ⊕ d2 d2 d2 ⊕ d3 d3 d3 ⊕ d0

The strips alternate data and parity, each parity strip contains the XOR of the data on each
side, the stripe logically wraps around on itself. This code works with any even number N
of strips with N ≥ 6.

This is the only code in our set of examples that can survive loss of some but not all
combinations of more than two strips (for N large enough), but it is also the only one that is
not optimally efficient. We give metrics for the cases of 〈N, SA〉 = 〈8, 60〉, 〈16, 64〉 and strip
sizes 240, 256KB, respectively.

7. Comparisons

We are now in a position to present the comparative results for our metrics and codes.
We concentrate here on the key differences between the codes; Appendix B provides

a complete listing of all the raw values (for both N = 8 and N = 16 strip counts) and
Appendix C contains some distribution data on frequencies of good/lost element counts for
simple element reconstruction (e.g., for Short Read). In the next subsection, we go over
the highlights from the raw data; in the following subsections, we give more comprehensive
summaries organized by use cases.

7.1. Cost Comparisons Highlights

In this section we will present the highlights from those tables in Appendix B that show
significant or noticeable differences between the codes. As can be seen from these tables,
there are very few differences between the codes for host read operations (either Short Read
or Strip Read) in both Normal and Degraded modes. The lack of difference in the Normal
mode case occurs since there are no errors and data is just read from the strips without any
additional costs. For Degraded mode, the codes generally function as if they were each a
simple RAID4 code on N−1 strips; the extra parity is not required for simple reconstruction.

For Short and Strip Reads or Writes, there is noticeable variation in the costs for all
four metrics (IOC , IOE ,XORO ,MBWC ). However, we believe IOE is a more informative
metric (as it more accurately reflects system performance) than IOC . Recall that MBWC
are computed primarily from disk IO-induced costs (indirectly reflected in IOE ) and by
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XORO costs. By examining the raw data, it is clear that for some large host operations
(e.g., Strip Read/Write and Full Stripe Write) there are huge discrepancies in XORO though
significantly smaller discrepancies in MBWC . This is because, in general, there is a trade-off
between many XORO operations on small (element size) data chunks versus a small number
of XORO operations on relatively large (strip size) data chunks. So the total contribution to
MBWC can balance out. For example, for N = 16 and a Strip Write in Critical mode, the
Blaum-Roth code requires XORO = 170.23 and MBWC = 1176.40 on average whereas the
Ideal code requires only XORO = 8.70 but MBWC = 1052.27. Since we feel that MBWC
more accurately models consumption of limited system resources (at least more so than
XORO), we will not present summary data for XORO . However, the large discrepancies in
this metric do provide some separation between the codes, so we encourage the reader to
review the raw XORO data.

In addition, for Full Stripe Write and Rebuild, there is essentially no difference between
the codes in Normal or Degraded mode (with the exception of XORO as noted above). In
Critical mode, as one might expect, the IOE costs are essentially identical between the codes.
So, in these use cases, we summarize only the MBWC .

In almost all cases, the LSI code does exceptionally well, even better than the Ideal
code in many instances. For example, for a Short Write in Normal mode (and N = 16),
LSI’s IOE = 5.10 and MBWC = 12.00 whereas for the Ideal code these values are 6.12
and 15.00, respectively. This is for three related reasons: (a) PinD = 2 for all the parity
elements, so reconstruction formulas, data/parity requirements, etc., are all reduced, (b)
PinD = 2 also implies that the parity compute algorithm is more efficient than parity
increment in almost all write use cases, saving typically one IOC , (c) the one-row or one-
dimensional nature of the code allows the LSI code to avoid any multi-element read/writes
(more precisely, the alignment property of the Ideal code holds for the LSI code). However,
all of these performance gains come at the cost of efficiency (50% vs 87.5%). This highlights
and quantifies one aspect of the efficiency performance trade-off (as one also sees with RAID1
versus RAID4). As these remarks apply to most use cases, we refrain from repeating them
in what follows, with exceptions noted below.

In the next subsections, we give summary charts of the key metrics, organized according
to these remarks. For brevity, we only concern ourselves with the N = 16 case, though
similar remarks apply to other strip counts.

7.2. Short and Strip Write Costs Comparisons

Figures 3 to 6 show the relative costs for IOE and MBWC for all codes we tested on
N = 16 strips for the Short Write and Strip Write use cases. We discuss the highlights of
each table in turn.
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Short Write: We observe in Figures 3 and 4 that generally all the codes are comparable
for Short Write operations with the following exceptions:
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Figure 3: Short Write IOE comparison, all modes.
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Figure 4: Short Write MBWC comparison, all modes.

• The Row-Diagonal Parity code has significantly more IOE (around 8.3–10.6 versus
6.1–9.0) than the other codes in all modes. Similarly, for MBWC , the Row-Diagonal
Parity code is much more expensive, by a factors of 675%, 560% and 175% in Nor-
mal, Degraded and Critical modes, respectively. This is because there are more data
elements that touch three parity elements (versus the optimal two parity elements)
and that these extra parity elements are on the same strip. That is, a Short Write
almost always invokes a full strip parity read/write. For EvenOdd and Blaum-Roth,
this happens significantly less often. For the vertical codes and the Ideal code, it never
happens.

• In Critical Mode, all codes are substantially more expensive than the Ideal code. This

37



is for similar reasons to the previous observation, namely, these codes trigger full strip
read costs for reconstruction formulas. The Ideal code does not suffer from this burden
by design (see item 3 in Section 6.1).

Strip Write: In a Strip Write a large number of parity elements need to be updated.
For the vertical codes, these parity elements are on many different strips and thereby induce
significant IOC costs (the dominant term in IOE for small lengths) — see Table B.9. For
the horizontal codes these parity elements are all on two strips allowing their read/writes to
be amortized into fewer IOC s. As a result, we see in Figure 5 that the vertical codes are
more expensive in IOE in all modes (by factors of 2.5–3.0). Furthermore, even in Degraded
mode for vertical codes, a write to a lost strip will typically require a read of most of the
entire strip.
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Figure 5: Strip Write IOE comparison, all modes.
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Figure 6: Strip Write Normalized MBWC comparison (normalized by user
data strip size), all modes.
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For MBWC in Figure 6, we observe that the codes are generally quite comparable, though
the EvenOdd and Row-Diagonal Parity codes have somewhat larger values. This difference
results from the fact that these codes are not LDPC (have too many ones in the generator
matrix). This inflates XORO costs (see Table B.9), which in turn contributes to MBWC ,
though the effect is not excessive. We see this also in the case of Full Stripe Write and
Rebuild (see Section 7.4).

Finally, it should be noted that the XORO (Table B.9) for BCP code is about 1/3− 1/2
that of the other codes, though the MBWC are more comparable. That is because in the
BCP codes the elements are twice the size (half as many rows) as the other codes: fewer but
larger chunks moved through the XOR Engine.

7.3. Short and Strip Read Costs Comparisons

In Figures 7 and 8, we show the relative costs for MBWC for all efficient codes we tested
in Critical mode (on N = 16 strips). As we noted above, for Normal and Degraded modes,
all the codes are very similar. Similarly, only MBWC shows significant differences; IOE is
essentially the same in all cases.
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Figure 7: Short Read MBWC comparison, Critical mode.

Short Read: In this use case, the IOE costs (in Critical mode, see Table B.8) for all
codes are very comparable (in the range of 4.59− 4.70) with the exception of the Ideal code
with value 2.68 and LSI with value 1.15. This suggests that codes with multiple rows are
in general more costly because even a small host read can trigger costly multi-element strip
reads.

For MBWC , we observe from Figure 7 that generally all the codes are comparable for
Short Read operations (with the very notable exception of the Ideal code and the LSI code).
The BCP code does a bit better because it is LDPC; the X-Code, though LDPC, is somewhat
larger because it is on N = 17 disks and has longer strip sizes.
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Figure 8: Strip Read Normalized MBWC Comparison (normalized by user
data strip size), Critical mode.

Strip Read: For Strip Read (see Table B.10), the IOE costs are essentially equal for
all efficient codes (about 5.85–6.11) because in this case, one typically needs to read all the
available data and parity. (Note these numbers are less than N −2 = 14 because the average
also includes the cases of reading from “good” elements where the IOC = 1.)

In Critical mode as seen in Figure 8, the EvenOdd code has noticeably more MBWC
in Strip Read than the other codes. This is primarily because of the extra XORO costs of
reconstructing multiple chunks of lost data (see Table B.10). For the other codes (exclud-
ing the Ideal and LSI codes), the reconstruction formulas seem to have better “recursive”
properties. Recall that the methodology for strip reconstruction is to recover one element
at a time, using the recovered elements to help defray the reconstruction costs of the subse-
quent elements. For the EvenOdd code, it appears that there is less of an advantage in this
defraying of costs.

7.4. Full Stripe Write and Rebuild Costs Comparisons

Figures 9 and 10 show the relative costs for MBWC for all efficient codes we tested in
Critical mode (on N = 16 strips).

We make the following observations about this data:

• In Full Stripe Write, the EvenOdd and Row-Diagonal Parity codes have higher MBWC
costs. This is because these codes are rather far from LDPC; that is, the total weight
of all the parity computations is rather high, particularly compared to Blaum-Roth
and the vertical codes. Curiously, this weight is the same for both EvenOdd and Row-
Diagonal Parity, though they distribute that extra weight in different ways (EvenOdd
overloads some data elements in lots of parity elements, while Row-Diagonal Parity
overloads lots of data elements into relatively few parity elements each).
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Figure 9: Full Stripe Write Normalized MBWC comparison (normalized
to user data stripe size), Critical mode.
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Figure 10: Rebuild Normalized MBWC comparison (normalized to strip
size), Critical mode.

• Also in Full Stripe Write, The LSI code has much higher normalized MBWC because
it writes approximately the same amount of total data, but the efficiency means that a
significantly smaller portion (about 50% versus 87.5% for the other codes) is user data
– that is, a lot of work for less net gain. This is the only metric where the LSI code
does not excel.

• In Rebuild, the BCP code has the same MBWC as the Ideal code. This is because
it has the same IOE costs (as all codes do, see Table B.11) but optimum memory
bandwidth consumption for XORO costs. These are fragmented versus the Ideal code,
but the total data movement is the same. That is because the BCP code has the
optimal data out-degree (this is the counter-point to the observation above). The X-
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code also has this property but has 17 strips, which explains the relative difference
with the BCP code.

• Also in Rebuild, the EvenOdd code’s normalized MBWC stands out (approximately
33 versus 25 for both Row-Diagonal Parity and Blaum-Roth). This is seen from its
inflated XORO costs (about 50% more than these two codes, see Table B.12). This
again suggests, as remarked above for Strip Read, that “recursive” reconstruction
process for EvenOdd is less efficient than for the other two codes.

7.5. Effective IO Capability

The Effective IO Capability metric is useful to determine the change in performance of
an array from the Normal mode (with all disks functioning correctly) to a failure mode (with
one or two disks failed).

When applied to use cases where all the codes have generally comparable IOE under
Normal mode (in particular, Short Read and Strip Read), the Effective IO Capability can
provide a comparative measure between codes. From the raw data (see last column of
Tables B.8 and B.10), we see that only the LSI and Ideal codes stand out (and the latter
only for Short Reads in Critical mode). The data does show that one should expect only
55% and 22% throughput in Degraded and Critical mode for Short Reads for all the codes
except the Ideal code and the LSI code. For the Ideal code, this is 55% and 38%, respectively.
In particular, this shows a significant drop off in Critical mode from the Ideal code for the
Short Read use case. For the LSI code, these numbers are 94% and 89%, quantifying the
performance/efficiency trade-off.
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Figure 11: Short Write Idealized Effective IO Capability.

For use cases where the codes are significantly different under Normal mode (e.g., Short
Write where Row-Diagonal Parity and LSI codes stand out on opposite sides of the norm,
and Strip Write), using the raw Effective IO Capability is somewhat of an unfair comparison.
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Figure 12: Strip Write Idealized Effective IO Capability.

For example, in Short Write and Critical mode (see Table B.7), the Row-Diagonal Parity’s
value is 78% where the other horizontal codes are 70%. For Strip Write, the BCP code and
X-code exhibit even more change with value 107% in Critical (versus the norm of 89%).
These are due primarily to the relatively large value of IOE for these codes in Normal mode.
Consequently, care must be taken when comparing these values for different codes.

To mitigate this effect, we define a revised version of the Effective IO Capability, called
“Idealized”. In this definition, we renormalize the formula in (4.7) by replacing the numerator
with the term for the Ideal code as follows:

Idealized Eff IO Cap = 100% · average IOE Normal mode Ideal code

average IOE current mode
(7.1)

For Read operations, formulas (4.7) and (7.1) agree. In Figures 11 and 12 we show the
Idealized Effective IO Capability for Short Writes and Strip Writes. Note that in these
tables large values indicate better performance.

We see in the case of Short Write from Figure 11 that all codes do somewhat poorly
with respect to the Ideal code with a larger relative drop in Critical mode versus Degraded
mode; the Row-Diagonal Parity code falls even farther below all other codes. In Strip Write
(Figure 12), the horizontal codes are comparable to the Ideal code, but the two vertical codes
fall significantly below this norm.

We observe from Table B.11 that all codes have generally equivalent Effective IO Ca-
pability for the Full Stripe Write case with values 107% (Degraded) and 114% (Critical),
showing that the codes should actually improve performance with failure. This is expected
because failures typically mean there is less to write (fewer strips on line).

As always, the LSI code does very well because it has very good Normal mode numbers
and better numbers in Degraded or Critical mode. Note that the Short and Strip Write
cases are analogous because the code has only one row.
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8. Discussion

In this section, we give some broad-stroke conclusions from the observations and remarks
of the previous section.

• Vertical codes should not generally perform well in scenarios where Strip Writes are
common, because of the dispersion of the parity elements across many disks. Their
XORO costs are generally better because of the LDPC property.

• Of the horizontal codes, the Row-Diagonal Parity code is not well-suited to Short
Write scenarios because of the over-abundance of data elements that touch more than
minimum number of parity elements. The EvenOdd code has expensive Rebuild. Of
the three, the Blaum-Roth code is (overall) better than either of these – this is certainly
because of its LDPC property.

• The Ideal code stands out only in Short Read and Writes. This is certainly a con-
sequence of the parity alignment assumption we make for the Ideal code (item 3 in
Section 6.1). In all other cases, these summary charts show it is relatively similar (with
the possible exception of Strip Read in Critical). But these all hide the XORO costs
which are significantly less expensive (and this relative difference explains to a large
part the exception for Strip Read).

• All efficient codes have less than “Ideal” performance in Short Reads and Writes in
Critical mode. This cost is borne by the excess IOE to account for multi-element strip
accesses.

• Though we do not give the numbers here, our measurements show that codes with
many rows are predicted to perform on average worse than similar codes on fewer
rows. For example, one could try EO〈17, 6〉 for a code on N = 8 drives, but the results
would be worse than for EO〈7, 6〉. This is primarily because of the XORO costs, but
is also reflected in excess parity element touches, and effects similar to those we have
observed above.

• As the LSI code exemplifies, there is clearly a design trade-off possible between per-
formance and efficiency. These metrics provide some quantitative measures that can
be used in such design choices.

As we noted in Section 6, our measurements were done assuming moderate sized strips
(about 240–256KB) as a reasonable value for large sequential IOs. Our host logical block
addressing model was within a strip, then strip-to-strip, then stripe-to-stripe.

The high costs of IOE (strip) for these codes suggest that alternative layouts of a code
on disk may be desirable. Given that 4KB is a typical minimum IO size, perhaps one should
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explore implementations where elements are each 4KB. In yet another option, as is the
recommended implementation of Row-Diagonal Parity [9], strips of size 4KB may be used
(this assumes that the number of rows is a power of 2). In this latter case, the host Short
IOs become Strip IOs where all the codes are more comparable.

These alternative layouts do have some trade-offs. To map codes to smaller element or
strip sizes, one either has to map logical host IO addresses across strips at shorter boundaries
or map them across stripes in order to service large host IOs from/to one disk (assuming
that is a requirement). The following graphic shows this distinction. The numbers in the
cells represent logical host addressing in multiples of 64KB. The “P” and “Q” represent the
two parity strips (as if for a horizontal code). The chart on the left shows logical addressing
that stays within stripes first (as we did in our computations). In this version, the largest
sequential write to a single disk would be at most 64KB and a 256KB host write to logical
addresses 0–3 would cover one stripe as a Full Stripe Write scenario. The chart on the right
shows logical addressing across stripes. Here, a host write of 256KB (say, to addresses 0–3)
spans one disk only for the user data, but it crosses the four stripes, incurring the update
costs, particularly XORO , on four independent strip writes.

Stripe0 0 1 2 3 P0 Q0
Stripe1 4 5 6 7 P1 Q1
Stripe2 8 9 10 11 P2 Q2
Stripe3 12 13 14 15 P3 Q3

Host Addressing Within Stripes

Stripe0 0 4 8 12 P0 Q0
Stripe1 1 5 9 13 P1 Q1
Stripe2 2 6 10 14 P2 Q2
Stripe3 3 7 11 15 P3 Q3

Host Addressing Across Stripes

Expanding this picture so that each chunk was 4KB with 64 stripes, we see a combi-
natorial expansion in costs proportional to the number of stripes. Admittedly, this can
be ameliorated by some clever programming, but there would still remain a high level of
fragmentation.

In short, when selecting a code and comparing codes by metrics similar to those defined
in this paper, one must first look at the host IO use case model, and then perhaps examine
a variety of mappings of host addressing to stripes to find the code and mapping that best
fits the expected use cases.

9. Summary

In this paper, we have defined a set of performance metrics (IOC , IOE ,XORO ,MBWC
and Effective Capability) for storage system array codes as a basis for quantitative compar-
isons. The IO metrics are based on a realistic model of drive performance (with parameters
that can be modified for other generations of drives). The XORO and MBWC metrics are
based on a model of a processor with a separate XOR engine as part of the memory control
unit. This is typical of many hardware based RAID5 systems. The Effective Capability
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metric measures the performance variation from Normal to failure state for a given erasure
code. It can also be normalized (using the theoretical Ideal code) for comparisons. We did
not include in our model any costs for dual-headed failover scenarios as these design points
are orthogonal to the actual array/erasure code issues.

We explained how these metrics are computed for a variety of use case scenarios, under
reasonable assumptions about code layout in strips and stripes on disks in an array. We
computed these metrics for a variety of known array codes with differing qualitative and
quantitative characteristics (e.g., both horizontal and vertical, efficient and non-efficient)
and including a notion of the Ideal code for normalization. We summarized the results of
the computations, describing where certain codes standout (either for better or for worse) and
what contributed to these exceptions. We drew some general conclusions about qualitative
characteristics of codes that can be used as guidelines for code design and selection, under
the metrics and layouts we defined.

Our broader goal for this paper was to provide a methodology or framework for a system
designer to define the type of fine-grained metrics exemplified here, but in a manner more
suitable to his/her specific system. We encourage designers to adapt the IO, memory, and
XOR engine models, etc., as well as the mapping of host logical addressing and other vari-
ables, to better reflect their system and usage model. As an example, suppose the designer’s
system has no XOR engine external to the processor, but has, say, an MMX-type engine
within the processor. Now assume that all the data for the XOR engine is in the processor’s
cache and need not traverse the memory bus multiple times. In this case, the XOR contri-
bution to memory bandwidth costs might be modified significantly. Looking farther ahead,
alternatives to disk drives such as MRAM, when they become practical, will alter basic sys-
tem architectures dramatically. Such alternative models will make significant changes to the
conclusions one might draw about what codes are “good” and “bad” for a particular system.
Along these lines, we hope in the near future to apply this methodology to the analysis and
comparisons of erasure codes in the context of network-based redundancy.
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A. Metric Computation Examples

In this section, we give examples of how some of the metrics are computed from infor-
mation contained in the generator matrix of a code.

We do this in the context of the EvenOdd code with parameters 〈p, n, SA〉 = 〈5, 4, 64〉
(so N = 6 and strip size is 256KB). This is simple enough to work out by hand, but complex
enough to show some of the subtleties in the computations.

We consider only example costs for given scenarios, and not the full averaging (as that
would take too much space).

Here is the generator matrix G for EO〈5, 4〉:

S0 S1 S2 S3 S4 S5

0 1 2 3 4 5 6 7 8 9 A B C D E F P0 P1 P2 P3 Q0 Q1 Q2 Q3

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
A 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1
B 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
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There are N = 6 strips with n = 4 as data strips and q = 2 as parity strips. Each
strip contains r = 4 elements. Each row of G corresponds to a user data element. The
block structure indicates the partitioning into strips (with 4 elements per strip indicated
by the 4 columns per block). Each column with exactly one 1 shows the placement of the
corresponding user data element into its strip. Since there are exactly 16 rows, we label
the rows by the hex character between 0 − F. Each column with more than one 1 maps to
a parity element; such a parity element is computed by the XOR of all the data elements
corresponding to rows with a 1.

The data/parity element layout is shown here:

S0 S1 S2 S3 S4 S5

0 4 8 C P0 Q0

1 5 9 D P1 Q1

2 6 A E P2 Q2

3 7 B F P3 Q3

Note that S4 represents the P -parity strip and S5 represents the Q-parity strip.
The generator matrix tells us, for example, that parity element Q1 is computed as

Q1 = 1 ⊕ 4 ⊕ 7 ⊕ A ⊕ D ⊕ F.

For our examples, we assume we are in Critical mode and that S0 and S2 are lost.

A.1. Short Write Cases

We consider two examples of a short write, first to the first 4KB chunk in element 7 on
strip S1 and then to the first 4KB chunk of element B on strip S2. (Note that which 4KB
chunk is irrelevant, only the element affected and the size matters.)

A.1.1. Short Write to “good” element Since element 7 is “good”, we first study the
generator matrix to see what parity elements (on good strips) we need to update. These are
P3, Q0, Q1, Q2 and Q3 (as indicated by the 1s in row 7 of the matrix). This means that
we must update four parity elements on strip S5 and one on strip S4. Because element 7 is
good, we must also update the element on strip S1. That is, wr 1 = 2 and wr 2 = 1. For the
multi-element strips, we write (and read) the full strip of size 64 (in 4KB units).

We next examine the two algorithms (parity increment and parity compute) for updating
parity elements.

For parity increment, we have rd1 = wr 1 and rd2 = wr 2 because the element 7 is
good. Since there are m = 5 parity elements that need updating, the XOR overhead costs
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is XORO = 4 · m = 20 if we use equation (5.1) or XORO = 3 · m + 3 = 18 if we use
equation (5.2). We select the latter for lower costs.

In short, we have for parity increment (by equations (4.4), (4.5) and (4.6) with er =
ew = 1, sr = sw = 64, and |c| = 1):

IOC = rd1 + rd2 + wr 1 + wr 2 = 2 + 1 + 2 + 1 = 6

IOE = 2 · IOE (1) + 1 · IOE (64) + 2 · IOE (1) + 1 · IOE (64) = 8.64

XORO = 18

MBWC = 1 + 2 · 1 + 1 · 64 + 18 · 1 + 2 · 1 + 1 · 64 = 151.

Note that this computation is the same independent of the state of the strips S0 and S2

(because we do not touch them in this algorithm).
For parity compute, we require reading all the first 4KB chunks of each of the elements

needed to compute all the parity (the first 4KB chunk of the parity elements). This includes
for parity element P3 the elements 3,B and F , but elements 3 and B are on lost strips, so we
cannot use parity compute with these strips down. [However, we do observe that if the stripe
were in Normal mode, we would need to read (for all the parity elements), multiple elements
from each of strips S0, S2 and S3, so rd2 = 3 and this will clearly exceed the IOE costs of
parity increment above. That is, even in Normal mode, this element should be updated by
parity increment to minimize IOE costs.]

So, the costs in the above equations reflect the costs of a Short Write to any 4KB chunk
of the “good” element 7.

A.1.2. Short Write to “lost” element Now suppose that the host issues a Short Write
to the first 4KB chunk of element B. This only touches m = 2 parity elements P3 and Q0.
Since this element B is lost, we have wr 1 = 2 and wr 2 = 0 (there is no write to update
the lost element). For parity increment, since element B is lost, we need the reconstruction
formula for this element when strips S0 and S2 are lost. The methodology in [5] explains
how to find such a formula in this case. Find the formula for S, use it to find A, then 2,8,0,
then B via the sequence

S = P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3

A = 7 ⊕ D ⊕ S

2 = 6 ⊕ A ⊕ E ⊕ P2 (A.1)

8 = 2 ⊕ 5 ⊕ Q2 ⊕ S

0 = 4 ⊕ 8 ⊕ C ⊕ P0

B = 0 ⊕ E ⊕ Q0 ⊕ S.
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The underlined terms are not explicitly computed; we combine these equations, collapse
terms and yield the shorter formula:

B = 4 ⊕ 5 ⊕ 6 ⊕ 7 ⊕ C ⊕ D ⊕ P1 ⊕ P3 ⊕ Q1 ⊕ Q3, (A.2)

which has L = 10 input or source terms for the XOR computation. Note that we need parity
elements for reconstruction that are not being updated and that Q0 that is being updated is
not used in this formula. So, we need to read every element (or part of) that is represented
in this formula as well as Q0. Hence, rd1 = 0 and rd2 = 4 (to read all the other elements)
for the parity increment algorithm.

As above, by equations (4.4), (4.5) and (4.6) with er = ew = 1, sr = sw = 64, and
|c| = 1, we find the costs of parity increment is:

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 4 + 2 + 0 = 6

IOE = 0 · IOE (1) + 4 · IOE (64) + 2 · IOE (1) + 0 · IOE (64) = 11.16

XORO = 10 + 2 + 3 · 2 = 18

MBWC = 1 + 0 · 1 + 4 · 64 + 18 · 1 + 2 · 1 + 0 · 64 = 277.

As for element 7, the parity compute algorithm requires reading data from lost strips
(e.g., from element 3 on strip S0 to update parity element P3). Consequently, we choose not
to use parity increment in this case.

A.2. Short Read Cases

Suppose, as before, that strips S0 and S2 are lost and we get a host read for the first 4KB
chunk in elements 7 and B.

A.2.1. Short Read from “good” element For the read from element 7, because it is
good, we have simply to read the 4KB chunk itself; there are no XOR or write costs:

IOC = rd1 + rd2 + wr 1 + wr 2 = 1 + 0 + 0 + 0 = 1

IOE = 1 · IOE (1) + 0 · IOE (64) + 0 · IOE (1) + 0 · IOE (64) = 1.02

XORO = 0

MBWC = 1 + 1 · 1 + 0 · 64 + 0 · 1 + 0 · 1 + 0 · 64 = 2.

A.2.2. Short Read from “lost” element When the host requests a read from element
B, we need to reconstruct B using the formula in (A.2). This also implies that we need to
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read from multiple elements from four strips (rd2 = 4). So, we find

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 4 + 0 + 0 = 4

IOE = 0 · IOE (1) + 4 · IOE (64) + 0 · IOE (1) + 0 · IOE (64) = 9.12

XORO = L + 1 = 11

MBWC = 1 + 0 · 1 + 4 · 64 + 11 · 1 + 0 · 1 + 0 · 64 = 268.

A.3. Strip Write Cases

In this section, we describe the computations for two Strip Write cases, first to strip S1

which is “good” and then to strip S2 which (along with S0) is assumed lost.

A.3.1. Strip Write to “good” strip We see from the generator matrix that the four
elements (4–7) on strip S1 touch all the parity elements on strips S4 and S5, for a total of
m = 8 parity elements that need updating. Also, we have wr 1 = 0 and wr 2 = 3 to update
the two full parity strips as well as the strip S1. For the parity increment algorithm, we also
need to read these same strips so rd1 = 0 and rd2 = 3. For the XOR overhead costs, we
see that each of the parity elements Pi (for i = 0, . . . , 3) is touched by exactly one of the
updating elements, so tj = 1 for each of these parity elements. For the parity element Q0,
we have tj = 1 and for the other Q-parity, tj = 2. Consequently, we have TI = 11 for a total
XOR overhead cost of

XORO = TI + 2 · 8 + 3 · 4 = 11 + 16 + 12 = 39,

according to the formula in (5.4) with rD = 4. The alternative formula (5.5) gives a total of

XORO = 2TI + 2 · 8 = 22 + 16 = 38,

so we select the computation algorithm from which this formula is derived for our parity
increment.

We always read/write full elements so er = ew = 64/4 = 16 (that is, each element is 16
units of 4KB each because we have r = 4). We also are receiving |c| = 64 units from the
host. In summary, we have the following costs to update strip S1:

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 3 + 0 + 3 = 6

IOE = 0 · IOE (16) + 3 · IOE (64) + 0 · IOE (16) + 3 · IOE (64) = 13.68

XORO = 38

MBWC = 64 + 0 · 16 + 3 · 64 + 38 · 16 + 0 · 16 + 3 · 64 = 1056.

As for Short Write, the parity compute algorithm will require reading data from lost
strips, so we skip this algorithm in this case.

53



A.3.2. Strip Write to “lost” strip The strip S2 has elements that together touch all
the parity elements so m = 8 in this case. Since this strip is lost, we have wr 1 = 0 and
wr 2 = 2 (only update the two parity strips).

Next we need to find reconstruction formulas for the old data in strip S1. Following the
steps in (A.1) according to the method in [5] and adding the next two steps for reconstructing
the last element 9, we have the new sequence of collapsed equations:

S = P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3

A = 7 ⊕ D ⊕ S

8 = 6 ⊕ A ⊕ E ⊕ P2 ⊕ 5 ⊕ Q2 ⊕ S

B = 4 ⊕ 8 ⊕ C ⊕ P0 ⊕ E ⊕ Q0 ⊕ S

9 = 6 ⊕ 7 ⊕ B ⊕ C ⊕ F ⊕ P3 ⊕ Q3 ⊕ S.

Note that this methodology saves an intermediate result (namely S). Summing, we find
the total XOR overhead cost of using these formulas to compute the dataDeltas according
to (5.6) is

L + 1 + 2 · 4 = (8 + 3 + 7 + 7 + 8) + 1 + 8 = 42

(the extra +1 is for the XOR output used in saving the intermediate computation of S).
However, the algorithm in Section 5.3 rearranges the equations in a different order. In

particular, it finds that element 8 can be constructed with 7 inputs, whereas each of the other
elements requires 10 inputs (e.g., A can be generated by the composition of the first two
formulas above). So this algorithm computes element 8 first. Continuing this approach, we
generate the following sequence that also regenerates the required elements but at a slightly
lower cost:

8 = 5 ⊕ 6 ⊕ 7 ⊕ D ⊕ E ⊕ P2 ⊕ Q2

9 = 4 ⊕ 6 ⊕ 7 ⊕ 8 ⊕ E ⊕ F ⊕ P0 ⊕ P3 ⊕ Q0 ⊕ Q3

A = 4 ⊕ 5 ⊕ 7 ⊕ 9 ⊕ F ⊕ P1 ⊕ Q1

B = 6 ⊕ 9 ⊕ A ⊕ C ⊕ D ⊕ F ⊕ P3 ⊕ Q3.

Here, the dataDelta overhead is

L + 2 · 4 = (7 + 10 + 7 + 8) + 8 = 40,

for a total cost as in (5.7) of

TI + 2 · 8 + L + 2 · 4 = 11 + 16 + 40 = 67.

(We have TI = 11 again because five of the eight parity elements are touched by only one
updating element and the other three are touched by only two.)
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We see from the reconstruction formulas that we need to read at least two elements from
all the good data strips as well as the old parity elements, so we have rd1 = 0 and rd2 = 4.

In summary, our costs for parity increment are:

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 4 + 0 + 2 = 6

IOE = 0 · IOE (16) + 4 · IOE (64) + 0 · IOE (16) + 2 · IOE (64) = 13.68

XORO = 67

MBWC = 64 + 0 · 16 + 4 · 64 + 0 · 16 + 67 · 16 + 2 · 64 = 1520.

Again, the parity compute algorithm depends on data from the lost strip S0, so we must
use the parity increment algorithm with the costs given above.

A.4. Strip Read Cases

In this section, we describe the computations for two Strip Read cases paralleling the
Strip Write cases of the previous section.

A.4.1. Strip Read from “good” strip This case is analogous to the Short Read good
example, with the exceptions that |c| = 64 (as for the Strip Write case, but now sent back
to the host):

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 1 + 0 + 0 = 1

IOE = 0 · IOE (16) + 1 · IOE (64) + 0 · IOE (16) + 0 · IOE (64) = 2.28

XORO = 0

MBWC = 64 + 0 · 16 + 1 · 64 + 0 · 1 + 0 · 16 + 0 · 64 = 128.

A.4.2. Strip Read from “lost” strip From Section 5.4, we have for a lost strip XOR
overhead computed from the recursive reconstruction formulas (as we did in the section
above for lost Strip Write) but is simply L + rD = 32 + 4 = 36. We only need to read data
so wr 1 = wr 2 = 0, but we need to read the same set of data and parity elements (excluding
parity elements we do not need for reconstruction). We see from the from above that rd1 = 0
and rd2 = 4. Thus, our lost Strip Read costs are:

IOC = rd1 + rd2 + wr 1 + wr 2 = 0 + 4 + 0 + 0 = 4

IOE = 0 · IOE (16) + 4 · IOE (64) + 0 · IOE (16) + 0 · IOE (64) = 9.12

XORO = 32

MBWC = 64 + 0 · 16 + 4 · 64 + 0 · 16 + 36 · 16 + 0 · 64 = 896.
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B. Metrics For All Usecases

In this section, in Tables B.1 to B.12, we present the raw numbers for all metrics and all
codes at the two selected array sizes: N = 8, strip size 240KB and N = 16, strip size 256KB
(with the appropriate caveats for the X-Code).

B.1. Strip Count N = 8

Table B.1: Short Write, N = 8
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈8〉 6.00 6.12 8.00 15.00
BR〈7, 6〉 6.00 6.45 8.56 31.94
EO〈7, 6〉 6.00 6.45 10.22 33.61

Normal RDP〈7, 6〉 6.00 7.76 10.78 99.72 100.00
BCP〈8〉 6.00 6.12 8.00 15.00
X〈7〉 6.00 6.12 8.00 15.00
LSI〈4〉 5.00 5.10 6.00 12.00

IDEAL〈8〉 5.62 5.74 7.75 14.38 106.67
BR〈7, 6〉 5.88 6.28 8.22 29.43 102.68
EO〈7, 6〉 5.88 6.28 9.69 30.91 102.68

Degr. RDP〈7, 6〉 5.88 7.43 10.09 88.67 104.48
BCP〈8〉 5.77 6.01 7.75 20.97 101.83
X〈7〉 5.60 5.87 7.57 22.06 104.26
LSI〈4〉 4.62 4.72 5.75 11.38 108.11

IDEAL〈8〉 5.46 5.57 7.29 13.75 109.80
BR〈7, 6〉 5.47 7.06 10.20 90.43 91.34
EO〈7, 6〉 5.49 7.14 11.33 94.79 90.26

Crit. RDP〈7, 6〉 5.50 7.99 11.65 137.49 97.05
BCP〈8〉 5.52 6.82 8.71 74.58 89.72
X〈7〉 5.17 6.59 8.23 80.11 92.88
LSI〈4〉 4.14 4.23 5.36 10.50 120.69

56



Table B.2: Short Read, N = 8
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈8〉 1.00 1.02 0.00 2.00
BR〈7, 6〉 1.00 1.02 0.00 2.00
EO〈7, 6〉 1.00 1.02 0.00 2.00

Normal RDP〈7, 6〉 1.00 1.02 0.00 2.00 100.00
BCP〈8〉 1.00 1.02 0.00 2.00
X〈7〉 1.00 1.02 0.00 2.00
LSI〈4〉 1.00 1.02 0.00 2.00

IDEAL〈8〉 1.62 1.66 0.88 3.50 61.54
BR〈7, 6〉 1.62 1.66 0.88 3.50 61.54
EO〈7, 6〉 1.62 1.66 0.88 3.50 61.54

Degr. RDP〈7, 6〉 1.62 1.66 0.88 3.50 61.54
BCP〈8〉 1.62 1.66 0.88 3.50 61.54
X〈7〉 1.57 1.60 0.86 3.43 63.64
LSI〈4〉 1.12 1.15 0.38 2.50 88.89

IDEAL〈8〉 2.25 2.30 1.75 5.00 44.44
BR〈7, 6〉 2.25 3.52 4.26 68.79 28.97
EO〈7, 6〉 2.25 3.57 4.11 70.99 28.59

Crit. RDP〈7, 6〉 2.25 3.53 4.08 69.08 28.89
BCP〈8〉 2.25 3.38 3.17 60.85 30.14
X〈7〉 2.14 3.34 3.09 64.06 30.52
LSI〈4〉 1.25 1.27 0.75 3.00 80.00

Table B.3: Strip Write, N = 8
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈8〉 6.00 13.20 8.00 900.00
BR〈7, 6〉 6.00 13.20 49.67 916.67
EO〈7, 6〉 6.00 13.20 56.33 983.33

Normal RDP〈7, 6〉 6.00 13.20 56.33 983.33 100.00
BCP〈8〉 14.00 19.40 24.00 675.00
X〈7〉 14.00 20.00 40.00 750.00
LSI〈4〉 5.00 11.00 6.00 720.00

IDEAL〈8〉 5.62 12.38 7.75 862.50 106.67
BR〈7, 6〉 5.62 12.38 48.38 881.25 106.67
EO〈7, 6〉 5.62 12.38 55.88 956.25 106.67

Degr. RDP〈7, 6〉 5.62 12.38 55.88 956.25 106.67
BCP〈8〉 12.38 17.66 23.25 658.12 109.84
X〈7〉 12.00 17.71 37.14 707.14 112.90
LSI〈4〉 4.62 10.18 5.75 682.50 108.11

IDEAL〈8〉 5.46 12.02 7.29 825.00 109.80
BR〈7, 6〉 5.46 12.02 51.68 904.70 109.80
EO〈7, 6〉 5.46 12.02 58.51 972.92 109.80

Crit. RDP〈7, 6〉 5.46 12.02 54.43 932.14 109.80
BCP〈8〉 10.71 16.18 25.39 699.11 119.91
X〈7〉 10.00 15.81 40.00 740.48 126.51
LSI〈4〉 4.14 9.11 5.36 630.00 120.69
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Table B.4: Strip Read, N = 8
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈8〉 1.00 2.20 0.00 120.00
BR〈7, 6〉 1.00 2.20 0.00 120.00
EO〈7, 6〉 1.00 2.20 0.00 120.00

Normal RDP〈7, 6〉 1.00 2.20 0.00 120.00 100.00
BCP〈8〉 1.00 1.90 0.00 90.00
X〈7〉 1.00 2.00 0.00 100.00
LSI〈4〉 1.00 2.20 0.00 120.00

IDEAL〈8〉 1.62 3.58 0.88 210.00 61.54
BR〈7, 6〉 1.62 3.57 5.25 210.00 61.54
EO〈7, 6〉 1.62 3.57 5.25 210.00 61.54

Degr. RDP〈7, 6〉 1.62 3.57 5.25 210.00 61.54
BCP〈8〉 1.75 3.55 2.62 174.14 53.59
X〈7〉 1.71 3.77 4.29 195.71 53.03
LSI〈4〉 1.12 2.47 0.38 150.00 88.89

IDEAL〈8〉 2.25 4.95 1.75 300.00 44.44
BR〈7, 6〉 2.25 4.95 17.43 369.29 44.44
EO〈7, 6〉 2.25 4.95 20.08 395.83 44.44

Crit. RDP〈7, 6〉 2.25 4.95 16.01 355.06 44.44
BCP〈8〉 2.25 4.73 7.93 287.68 40.21
X〈7〉 2.14 4.86 12.38 309.52 41.18
LSI〈4〉 1.25 2.75 0.75 180.00 80.00

Table B.5: Full Stripe Write, N = 8
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈8〉 8.00 17.60 14.00 1680.00
BR〈7, 6〉 8.00 17.60 89.00 1730.00
EO〈7, 6〉 8.00 17.60 109.00 1930.00

Normal RDP〈7, 6〉 8.00 17.60 109.00 1930.00 100.00
BCP〈8〉 8.00 17.60 56.00 1680.00
X〈7〉 7.00 16.80 84.00 1680.00
LSI〈4〉 8.00 17.60 12.00 1440.00

IDEAL〈8〉 7.00 15.40 12.25 1515.00 114.29
BR〈7, 6〉 7.00 15.40 77.88 1558.75 114.29
EO〈7, 6〉 7.00 15.40 95.38 1733.75 114.29

Degr. RDP〈7, 6〉 7.00 15.40 95.38 1733.75 114.29
BCP〈8〉 7.00 15.40 49.00 1515.00 114.29
X〈7〉 6.00 14.40 72.00 1490.00 116.67
LSI〈4〉 7.00 15.40 10.50 1290.00 114.29

IDEAL〈8〉 6.00 13.20 10.50 1350.00 133.33
BR〈7, 6〉 6.00 13.20 66.75 1387.50 133.33
EO〈7, 6〉 6.00 13.20 81.75 1537.50 133.33

Crit. RDP〈7, 6〉 6.00 13.20 81.75 1537.50 133.33
BCP〈8〉 6.00 13.20 42.00 1350.00 133.33
X〈7〉 5.00 12.00 60.00 1300.00 140.00
LSI〈4〉 6.00 13.20 9.00 1140.00 133.33
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Table B.6: Rebuild, N = 8
Stripe
State Code IOC IOE XORO MBWC

IDEAL〈8〉 7.00 15.40 7.00 840.00
BR〈7, 6〉 7.00 15.40 42.62 846.25
EO〈7, 6〉 7.00 15.40 45.12 871.25

Degr. RDP〈7, 6〉 7.00 15.40 45.12 871.25
BCP〈8〉 8.00 17.60 28.00 900.00
X〈7〉 7.00 16.80 42.00 910.00
LSI〈4〉 3.00 6.60 3.00 360.00

IDEAL〈8〉 8.00 17.60 14.00 1320.00
BR〈7, 6〉 8.00 17.60 93.75 1417.50
EO〈7, 6〉 8.00 17.60 114.89 1628.93

Crit. RDP〈7, 6〉 8.00 17.60 95.61 1436.07
BCP〈8〉 8.00 17.60 56.00 1320.00
X〈7〉 7.00 16.80 84.00 1330.00
LSI〈4〉 5.29 11.63 6.00 677.14

B.2. Strip Count N = 16

Table B.7: Short Write, N = 16
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈16〉 6.00 6.12 8.00 15.00
BR〈17, 14〉 6.00 6.27 8.23 22.54
EO〈17, 14〉 6.00 6.27 10.67 24.98

Normal RDP〈17, 14〉 6.00 8.34 11.52 129.33 100.00
BCP〈16〉 6.00 6.12 8.00 15.00
X〈17〉 6.00 6.12 8.00 15.00
LSI〈8〉 5.00 5.10 6.00 12.00

IDEAL〈16〉 6.31 6.44 8.88 16.19 95.05
BR〈17, 14〉 6.44 6.70 8.59 22.88 93.48
EO〈17, 14〉 6.44 6.70 10.88 25.17 93.48

Degr. RDP〈17, 14〉 6.44 8.64 11.62 122.94 96.44
BCP〈16〉 6.38 6.58 8.38 19.20 93.02
X〈17〉 6.42 6.62 8.41 19.51 92.48
LSI〈8〉 4.81 4.91 5.88 11.69 103.90

IDEAL〈16〉 6.74 6.88 8.70 16.44 89.00
BR〈17, 14〉 6.74 8.91 18.90 128.17 70.34
EO〈17, 14〉 6.75 8.95 19.49 130.50 70.02

Crit. RDP〈17, 14〉 6.75 10.64 20.13 215.70 78.34
BCP〈16〉 6.76 8.71 12.76 111.49 70.26
X〈17〉 6.83 8.99 14.93 123.92 68.07
LSI〈8〉 4.60 4.69 5.72 11.32 108.69
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Table B.8: Short Read, N = 16
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈16〉 1.00 1.02 0.00 2.00
BR〈17, 14〉 1.00 1.02 0.00 2.00
EO〈17, 14〉 1.00 1.02 0.00 2.00

Normal RDP〈17, 14〉 1.00 1.02 0.00 2.00 100.00
BCP〈16〉 1.00 1.02 0.00 2.00
X〈17〉 1.00 1.02 0.00 2.00
LSI〈8〉 1.00 1.02 0.00 2.00

IDEAL〈16〉 1.81 1.85 0.94 3.75 55.17
BR〈17, 14〉 1.81 1.85 0.94 3.75 55.17
EO〈17, 14〉 1.81 1.85 0.94 3.75 55.17

Degr. RDP〈17, 14〉 1.81 1.85 0.94 3.75 55.17
BCP〈16〉 1.81 1.85 0.94 3.75 55.17
X〈17〉 1.82 1.86 0.94 3.76 54.84
LSI〈8〉 1.06 1.08 0.19 2.25 94.12

IDEAL〈16〉 2.62 2.68 1.88 5.50 38.10
BR〈17, 14〉 2.62 4.59 11.88 110.84 22.24
EO〈17, 14〉 2.62 4.61 10.33 110.70 22.11

Crit. RDP〈17, 14〉 2.62 4.60 10.30 110.00 22.17
BCP〈16〉 2.62 4.46 5.93 98.73 22.87
X〈17〉 2.65 4.70 8.03 111.46 21.72
LSI〈8〉 1.12 1.15 0.38 2.50 88.89

Table B.9: Strip Write, N = 16
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈16〉 6.00 13.68 8.00 960.00
BR〈17, 14〉 6.00 13.68 129.86 967.43
EO〈17, 14〉 6.00 13.68 155.86 1071.43

Normal RDP〈17, 14〉 6.00 13.68 156.14 1072.57 100.00
BCP〈16〉 30.00 36.72 56.00 840.00
X〈17〉 34.00 41.20 120.00 900.00
LSI〈8〉 5.00 11.40 6.00 768.00

IDEAL〈16〉 6.31 14.39 8.88 1036.00 95.05
BR〈17, 14〉 6.31 14.39 144.44 1045.75 95.05
EO〈17, 14〉 6.31 14.39 178.56 1182.25 95.05

Degr. RDP〈17, 14〉 6.31 14.39 178.94 1183.75 95.05
BCP〈16〉 28.19 35.40 62.12 913.50 103.74
X〈17〉 32.00 39.76 134.12 984.71 103.61
LSI〈8〉 4.81 10.97 5.88 748.00 103.90

IDEAL〈16〉 6.74 15.37 8.70 1052.27 89.00
BR〈17, 14〉 6.74 15.37 169.81 1174.72 89.00
EO〈17, 14〉 6.74 15.37 206.13 1320.00 89.00

Crit. RDP〈17, 14〉 6.74 15.37 185.15 1236.07 89.00
BCP〈16〉 26.37 34.22 71.22 1018.73 107.29
X〈17〉 30.00 38.49 154.19 1101.18 107.05
LSI〈8〉 4.60 10.49 5.72 724.27 108.70
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Table B.10: Strip Read, N = 16
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈16〉 1.00 2.28 0.00 128.00
BR〈17, 14〉 1.00 2.28 0.00 128.00
EO〈17, 14〉 1.00 2.28 0.00 128.00

Normal RDP〈17, 14〉 1.00 2.28 0.00 128.00 100.00
BCP〈16〉 1.00 2.12 0.00 112.00
X〈17〉 1.00 2.20 0.00 120.00
LSI〈8〉 1.00 2.28 0.00 128.00

IDEAL〈16〉 1.81 4.13 0.94 240.00 55.17
BR〈17, 14〉 1.81 4.13 15.00 240.00 55.17
EO〈17, 14〉 1.81 4.13 15.00 240.00 55.17

Degr. RDP〈17, 14〉 1.81 4.13 15.00 240.00 55.17
BCP〈16〉 1.88 4.12 6.56 221.00 51.39
X〈17〉 1.88 4.29 14.12 236.94 51.26
LSI〈8〉 1.06 2.42 0.19 144.00 94.12

IDEAL〈16〉 2.62 5.99 1.88 352.00 38.10
BR〈17, 14〉 2.62 5.98 59.10 468.42 38.10
EO〈17, 14〉 2.62 5.98 74.30 529.20 38.10

Crit. RDP〈17, 14〉 2.62 5.98 53.08 444.34 38.10
BCP〈16〉 2.62 5.85 22.98 400.87 36.27
X〈17〉 2.65 6.11 49.85 432.35 36.03
LSI〈8〉 1.12 2.57 0.38 160.00 88.89

Table B.11: Full Stripe Write, N = 16
Stripe Eff.
State Code IOC IOE XORO MBWC IO Cap.

IDEAL〈16〉 16.00 36.48 30.00 3840.00
BR〈17, 14〉 16.00 36.48 493.00 3892.00
EO〈17, 14〉 16.00 36.48 675.00 4620.00

Normal RDP〈17, 14〉 16.00 36.48 677.00 4628.00 100.00
BCP〈16〉 16.00 36.48 240.00 3840.00
X〈17〉 17.00 40.12 544.00 4352.00
LSI〈8〉 16.00 36.48 24.00 3072.00

IDEAL〈16〉 15.00 34.20 28.12 3656.00 106.67
BR〈17, 14〉 15.00 34.20 462.19 3704.75 106.67
EO〈17, 14〉 15.00 34.20 632.81 4387.25 106.67

Degr. RDP〈17, 14〉 15.00 34.20 634.69 4394.75 106.67
BCP〈16〉 15.00 34.20 225.00 3656.00 106.67
X〈17〉 16.00 37.76 512.00 4156.00 106.25
LSI〈8〉 15.00 34.20 22.50 2912.00 106.67

IDEAL〈16〉 14.00 31.92 26.25 3472.00 114.29
BR〈17, 14〉 14.00 31.92 431.38 3517.50 114.28
EO〈17, 14〉 14.00 31.92 590.62 4154.50 114.28

Crit. RDP〈17, 14〉 14.00 31.92 592.38 4161.50 114.28
BCP〈16〉 14.00 31.92 210.00 3472.00 114.28
X〈17〉 15.00 35.40 480.00 3960.00 113.33
LSI〈8〉 14.00 31.92 21.00 2752.00 114.28
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Table B.12: Rebuild, N = 16
Stripe
State Code IOC IOE XORO MBWC

IDEAL〈16〉 15.00 34.20 15.00 1920.00
BR〈17, 14〉 15.00 34.20 240.81 1923.25
EO〈17, 14〉 15.00 34.20 252.19 1968.75

Degr. RDP〈17, 14〉 15.00 34.20 252.31 1969.25
BCP〈16〉 16.00 36.48 120.00 1984.00
X〈17〉 17.00 40.12 272.00 2244.00
LSI〈8〉 3.00 6.84 3.00 384.00

IDEAL〈16〉 16.00 36.48 30.00 2944.00
BR〈17, 14〉 16.00 36.48 542.96 3195.83
EO〈17, 14〉 16.00 36.48 747.09 4012.37

Crit. RDP〈17, 14〉 16.00 36.48 529.12 3140.50
BCP〈16〉 16.00 36.48 240.00 2944.00
X〈17〉 17.00 40.12 544.00 3332.00
LSI〈8〉 5.67 12.92 6.00 746.67

62



C. Average Numbers of Elements of Each Type

In the tables of Appendix B, we provided the average costs over all random operations to
a stripe. As noted in Section 4.4, more detailed distributional views of the metrics can also
be studied. In this section, we give the distribution of good and lost elements for each of
the codes in each of the failure modes. The lost elements are divided into subclasses, labeled
lost[rd2], depending on the number rd2 of multi-element strip reads required for simple
reconstruction (as if for a Short Read use case, see Section 5.2). This sort of distribution
provides a closer look at where the costs, in particular IOE costs, are derived and can be
used for other analysis such as worst-case costs, etc..

Table C.13 has the average number of elements of each type for strip counts N = 8 (with
the exception that for the X-Code, we use only a N = 7). Table C.14 gives the same values
for N = 16 (and N = 17 for the X-Code). The averages are computed over the failure cases
within each failure mode.

Table C.13: Element Type Counts (avg), N = 8
Stripe Element
State Type IDEAL[8] BR[7,6] EO[7,6] RDP[7,6] BCP[8] X[7] LSI[4]

Normal good 6 36 36 36 24 35 4

Degr. good 5.25 31.5 31.5 31.5 21 30 3.5
lost[0] 0.75 4.5 4.5 4.5 3 5 0.5

good 4.50 27 27 27 18 25 3
lost[0] 1.50 1.50 1.29 2.39 1.71 3.33 1
lost[1] 0 0.89 0 0.18 0 0 0

Crit. lost[2] 0 0.18 1.07 0 0 0 0
lost[3] 0 0 0 0 0.11 0 0
lost[4] 0 0.71 0.68 0 0 4.00 0
lost[5] 0 1.00 1.82 1.07 3.25 2.67 0
lost[6] 0 4.71 4.14 5.36 0.93 0 0

Table C.14: Element Type Counts (avg), N = 16
Stripe Element
State Type IDEAL[16] BR[17,14] EO[17,14] RDP[17,14] BCP[16] X[17] LSI[8]

Normal good 14 224 224 224 112 255 8

Degr. good 13.12 210 210 210 105 240 7.5
lost[0] 0.88 14 14 14 7 15 0.5

good 12.25 196 196 196 98 225 7
lost[0] 1.75 2.22 1.87 3.39 1.87 3.75 1
lost[1] 0 1.41 0 0.11 0 0 0
lost[2] 0 0.11 1.52 0 0 0 0

Crit. lost[3-11] 0 0 0 0 0 0 0
lost[12] 0 0.48 0.42 0 0 0 0
lost[13] 0 1.42 2.84 1.52 11.33 0 0
lost[14] 0 22.37 21.36 22.98 0.80 14.00 0
lost[15] 0 0 0 0 0 12.25 0
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