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University of Washington
Abstract

Document Degradation Models and a Methodology for Degradation
Model Validation

by Tapas Kanungo

Chairperson of Supervisory Committee: Professor Robert M. Haralick

Department of Electrical Engineering

Printing, photocopying and scanning processes degrade the image quality of a
document. Although research in document understanding started in the sixties, only
two document degradation models have been proposed thus far. Furthermore, no
attempts have been made to rigorously validate them. In document understanding
research, models for image degradations are crucial in many ways. Models allow us
to (i) conduct controlled experiments to study the break-down points of the systems,
(ii) create large data sets with groundtruth for training classifiers, (iii) design optimal
noise removal algorithms, (iv) choose values for the free parameters of the algorithms,
etc.

In this thesis two document degradation models are described. The first model ac-
counts for local pixel-level degradations that occur while printing, photocopying and
scanning a document. The second model accounts for the perspective and illumina-
tion distortions that occur while photocopying or scanning a thick, bound document.
The local distortion model allows us the create large data sets of synthetically gener-
ated documents, in any language, along with the associated groundtruth information
quite easily. Unlike isolated character databases, our data sets are a much better
representation of the real world since they account for the real-world character and
word occurence probabilities, and character and word bi-gram probabilities naturally.
Moreover, since our methodology puts the text, layout, formatting, resolution, and
font details of the document image under the experimenter’s control, a large variety

of controlled experiments that were not possible earlier are now possible.



Next, an automatic document registration and character groundtruthing proce-
dure is described. This procedure produces very accurate character groundtruth for
scanned documents in any language, which had not been possible until now. The
method essentially registers the ideal image to a scanned version and then transforms
the groundtruth associated with the ideal image through the registration transfor-
mation. This method can be used to generate groundtruth for documents in any
language, and even FAXed documents. A data set having 33 English scanned doc-
ument images with character groundtruth for 62000 symbols was created using this
procedure.

A non-parametric statistical procedure for estimating the parameters of the lo-
cal degradation model from a sample of real degraded documents is then discussed.
The estimation procedure allows researchers to generate large data sets from small
samples of real data. Such procedures for estimating parameters do not exist for
other document degradation models. In fact, our approach can be easily adapted to
estimate the parameters of other models as well.

Finally, a statistical methodology that can be used to validate the local degra-
dation models is described. This method is based on a non-parametric, two-sample
permutation test. A variant of the method allows approximate validation tests in-
stead. Another standard statistical device — the power function — is then used to
choose between algorithm variables such as distance functions. Since the validation
and power function procedures are independent of the model, they can be used to
validate any other degradation model. A method for comparing any two models is
also described. It uses p-values associated with the estimated models to select the

model that is closer to the real world.
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Chapter 1
INTRODUCTION

A few years ago the Defense Advanced Research Projects Agency (DARPA) con-
vened a workshop [DAR92| to identify the problems that were stalling progress in
document understanding research. The workshop had equal participation from the
academia, the industry, and the government. At the conclusion of the meeting, the
consensus was that a major impediment to progress in all subareas of document un-
derstanding research is the lack of performance evaluation methods. The absence of
benchmarks had resulted in algorithm developers reporting accuracy of their Optical
Character Recognition (OCR) systems at near-perfect levels (> 99%). However, since
the OCR systems are evaluated on different data sets, a 98% accuracy level of one
OCR system is different from a 98% accuracy level of another OCR system. Thus it
is difficult for the users to compare different OCR systems on a common quantitative
basis. In addition, since the data sets used for evaluation are not representative sam-
ples of the population of degraded documents we encounter in real life, the reported
accuracies of the OCR system again lose their meaning.

The current method of evaluating OCR algorithms is via confusion matrices.
Row coordinates of confusion matrices represent the true identities of the characters
while the column coordinates represent the identity reported by the OCR algorithm.
The method is straight forward. Isolated, degraded characters are presented to the
OCR system one at a time, and the system reports the hypothesized identity of the
characters. The matrix entry representing the true identity and the corresponding
reported identity is incremented. Once the data set is exhausted, the entries of the
matrix are divided by the total number of characters used, to get the estimated error
probabilities. This method of evaluation has many drawbacks. First, it does not take
into account the context in which the characters appear. Thus degradations due to
joining of characters, which are prevalent in real documents, are not represented by

the data set. Second, a data-entry person has to isolate the characters and hand-



enter the correct identities. This process is expensive, laborious and prone to human
errors. Because of these drawbacks, we do not find databases with a large number of

isolated, real characters.

The issue of context can be resolved by scanning real documents, hand-entering
the corresponding groundtruth ASCII strings representing the document, and com-
paring the groundtruth string against the string reported by the OCR algorithm.
This method is again very expensive, laborious, and prone to errors. Despite these
problems, we have created various document databases with groundtruth. The errors

in the groundtruth were reduced by a process of cross-checking.

A second methodology for evaluation of OCR algorithms is by synthetically de-
grading ideal documents. Here one first uses a wordprocessor to create an ideal
document, in any language and formatted in any style or font. A bitmap version
of these documents is created and then degraded using a computer model of the
real degradation process. This method has many advantages. First, since the ideal
document is created using a wordprocessor, the groundtruth information associated
with each character — location, identity, font type, etc. — is known without error.
Second, the word processor can be used to reformat the documents (two columns,
one column, various font types, sizes, etc.) to study the sensitivity of the OCR algo-
rithm to these variables. Third, since the degradation model is under our control, we
can create documents with varying levels of degradations and study how and where
the OCR algorithm breaks down. Fourth, sample size is not a problem at all — any
number of degraded samples can be created since all that needs to be done is to sim-
ulate another set of characters. Fifth, given the original formatted documents, the
groundtruth information is available free, in contrast to the groundtruth generation
method mentioned earlier. In addition, there is no dearth of formatted documents —
we create such documents daily, and so do academic journal publishers. Sixth, the

model itself can be used for creating noise removal algorithms.

The main drawbacks with the above methodology are that (i) it relies heavily on
the simulation model being correct, that is, it assumes that the simulation model
mimics reality closely, and that (ii) the current document understanding community
is skeptical of using synthetic data. It is thus imperative that we validate the degra-
dation model against real data. Only then the simulations can be used in place of real

data. If the degradation model is not validated, results on the synthetically degraded



documents should be used with caution. They are still useful since they give some
indication about the performance of the OCR algorithm.

A variant of this methodology allows us to gather real groundtruth at no ex-
pense. Instead of degrading the document using a simulation model, we can print
the document and then scan it back. Now we have a real document but the origi-
nal groundtruth position information is incorrect since the document has undergone
a spatial transformation. However, if the spatial transformation can be estimated,
then the groundtruth associated with the real data can be computed by transforming
the groundtruth associated with the ideal document through the estimated spatial
mapping function. The key problem here is to estimate the spatial transform that
registers the ideal document image to the real one. In fact, as we shall see later in
this dissertation, in order to validate the degradation model, we require both real and

ideal groundtruth.

1.1 Contributions

The main contributions that are presented in this thesis are:

1. A model for the local degradations that are introduced while printing, photo-
copying and scanning a document. The model lends itself easily for generating
synthetically degraded documents. It is parameterized and thus allows us to

create documents with varying levels of degradations.

2. A physical model that accounts for the perspective and illumination distortions
that occur while photocopying or scanning a thick, bound book. This model is
also parametrized and allows us to synthetically generate distorted document

images.

3. A methodology for degradation model parameter estimation. Given a sample
of real images, the nonparametric estimation procedure finds the parameter
values that make the simulated samples closest to the real samples. Thus,
from the user point of view, a person having a small sample of real images can
create a large sample by first estimating the parameters of the model and then

synthetically generating a large data set.



4. A methodology for degradation model validation. Given a sample of real doc-
uments, and a sample of synthetic documents, this nonparametric hypothesis
testing procedure tests the null hypothesis whether or not the two populations

come from the same underlying distribution.

5. A methodology based on the power function that allows to optimize the valida-
tion procedure. The validation procedure has variables such as certain distance
functions. This power function procedure allows us to select the distance func-

tion that makes the validation procedure more powerful (in a statistical sense).

6. An automatic groundtruth generation procedure for real documents. Given an
ideal document and the corresponding groundtruth, the algorithm can gener-
ate the groundtruth for any printed, photocopied and scanned version of the
ideal document image. The procedure was used to groundtruth over thirty real
documents having 62000 characters. This method also works for documents in
other languages. The availability of such data set allows the evaluation of OCR

systems at a symbol level. This was was unthinkable until now.

7. All the software and the groundtruth data sets will be made available to re-
searchers on a CD-ROM.

1.2 Overview

In chapter 2 we survey the related literature in the areas of degradation models,
document registration, model validation, and statistical hypothesis testing and discuss
the shortcomings of the current literature.

In chapter 3 we describe first describe a document degradation model for the
local distortions that occur while printing, photocopying and scanning documents.
Then we describe a physical model for the perspective and illumination distortions
that occur while photocopying or scanning a thick bound book. The methodology
described in chapter 3 is independent of the language in which the document is
written.

In chapter 4 we describe a methodology for automatically generating groundtruth
for synthetically generated documents. This methodology is not restricted to English

documents. In fact, the methodology is used for generating groundtruth for Arabic,



Devanagari, and Music documents. We show that the same method can also be used
to generate groundtruth for engineering linedrawings document images.

To generate groundtruth for real data, we must register the ideal document to a
real one generated by printing and subsequently scanning the ideal document. This
registration algorithm is described in chapter 5. We show that the registration does
not amount to simple translation and rotation of the ideal document. Nonlinearities
in the imaging systems have to be overcome before one can achieve a registration of
documents to high accuracy levels.

The validation methodology we have adopted compares degraded characters ob-
tained from the real world by printing and scanning documents, to the synthetically
degraded characters that result from the use of a degradation model. In chapter 6
we use synthetic and real data sets to validate our degradation model. In the same
chapter we also provide methods for estimating the parameters of the model for a
given real data set, and methods of selecting various algorithm parameters such as
distance functions.

In chapter 7 we give experimental results for the validation and estimation exper-

iments, and in chapter 8 we give our conclusions. .



Chapter 2
RELATED LITERATURE

The main areas that our work touches upon are document degradation models,
document registration, groundtruthing, statistical hypothesis testing, and model val-

idation. Here we review the relevant literature in these areas.

2.1 Degradation Models

The earliest work on document degradation models is that of Baird [Bai90, Bai93,
Bai92]. What follows is a summary of his model. The input to the model is an ideal
bilevel image, derived from artwork purchased from typeface manufacturers, and
described at a spatial sampling rate much higher than the typical scanner (output)
sampling rate. When the model is simulated, the parameters take effect in this order:
the input image is rotated, scaled, and translated; then the output resolution and
per—pixel jitter (random distribution of sensor centers) determine the locations of the
centers of the output pixel sensors; for each pixel sensor a blurring kernel is applied,
giving an analog intensity value; per—pixel sensitivity noise is added; finally, each
pixel’s intensity is thresholded. The output image is bilevel, at the output spatial
sampling rate.

Unfortunately, the degradation model is not validated. Furthermore, the paper
advocates the use of isolated, synthetically degraded characters. Thus the degradation
due to merging of neighboring characters is not reflected in their model. Furthermore,
the occurrence probabilities of individual characters in real-world text are not reflected
in when isolated character experiments are conducted.

In contrast, our document degradation model, which is described in Chapter 3,
advocates the use of complete documents for generating synthetically degraded char-
acters. It thus takes into account the degradations arising due to merging of char-
acters, the occurrence probabilities of individual characters, and the variability in
the layout structure of the documents. The pixel degradations themselves are based

on a local morphological model, which models the final spatial characteristics of the



degradation process rather than the underlying physical process.

2.2 Document Registration

Extensive work on document registration has been reported in the literature. How-
ever, most of this literature pertains to the problem where a fixed ideal form has
to be registered to a scanned, hand-filled form. The general idea is to extract the
information filled by a human in the various fields of the form. One procedure is to
introduce special registration marks on the document and then match the ideal reg-
istration marks to the ones detected on the scanned document image. Others extract
features from the scanned forms and match them to the features in the ideal form
[DR93, CF90]. Unfortunately we cannot use this body of work since there are no

universal landmarks that appear in each type of document.

2.3 Statistical Model Validation

In the statistics literature, model validation is called ‘hypothesis testing.” Many text
books that have a good discussion on hypothesis testing procedures, for example
[CB90] and [Arn90] give a good treatment of parametric statistics. In Appendix C
we give an overview of multivariate hypothesis testing for Gaussian data. Although
parametric statistics can answer many questions, in some situations modeling a pop-
ulation via parametric functions is not possible. In such cases one has to use nonpara-
metric tests. Two textbooks that discuss nonparametric techniques in great detail
are [Goo94] and [ET93]|. However, most hypothesis testing methods reported in the
statistical literature assumes that the data is finite dimensional, continuous, and have
a known distribution such as Gaussian. In our validation problem, the data consists
of scanned characters, which are binary matrices of varying dimensions. Thus, all
the standard hypothesis testing techniques cannot be directly used for validating any

degradation model.

2.4 Document Degradation Model Validation

To the best of our knowledge, the only other work on validation of degradation models
is that of Nagy and Lopresti [Nag94, LLT94, LLT96]. They are of the opinion that a

degradation model is valid if the OCR confusion matrices resulting from synthetically



degraded documents are similar to the OCR confusion matrices produced from real
documents. Unfortunately, this methodology validates the model-OCR combination
and not the model itself. Thus, if the OCR system automatically scales documents,
their validation process will not detect any difference between the real documents
and the synthetically degraded documents even if the degradation process scaled the
document. Furthermore, although they treat the OCR as a black box, the OCR
algorithm itself has many parameters that can greatly influence the decision of the
validation procedure. Another drawback of their approach is that their method does
not lend itself naturally to comparison with other validation methods.

Our validation method on the other hand reduces the problem of model validation
to a nonparametric statistical hypothesis testing problem, which is a well studied and
accepted method in statistics. In addition, we do not use big OCR systems for the
validation procedure, but simple distance functions between characters. Although
the validation process now becomes a function of these distance functions, it is much
simpler than OCR black boxes. Finally, we provide a technique for comparing our
validation method with other validation methods. This comparison procedure is
based on ‘power functions,” which again are standard statistical devices for comparing

hypothesis testing procedures.



Chapter 3
DOCUMENT DEGRADATION MODELS

Printing, photocopying and scanning processes degrade the image quality of a
document. In this chapter we describe two document degradation models. First we
describe a degradation model for local distortions that are introduced during the
printing, photocopying and scanning processes. Then we describe a model for the
perspective and illumimination distortions that get introduced when we photocopy

or scan thick bound books.

3.1 A Local Document Degradation Model

In this section we present a model that accounts for (i) pixel inversion (from fore-
ground to background and vice-versa) that occurs independently at each pixel due
to light intensity fluctuations, sensitivity of the sensors, and the thresholding level,
and (ii) blurring that occurs due to the point-spread function of the scanner optical
system.

The degradation model has six parameters: © = (7, aq, @, Bo, 8, k)*. These param-

eters are used to degrade an ideal binary image as follows.

1. Compute the distance d of each pixel from the character boundary.
2. Flip each foreground pixel with a probability

p(0|1ada aoaa) = aoe—ad2 +7.

3. Flip each background pixel with a probability
p(110,d, 6o, ) = Boe™** + .

4. Perform a morphological closing operation with a disk structuring element of

diameter k.
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Thus, we model the pixel-flipping probability of a pixel as a function of its dis-
tance from the nearest boundary pixel. The foreground and background 4-neighbor
distance can be computed using any distance transform algorithm (see [Bor86]). The
parameters ag and [y are the initial values for the exponentials. The decay speed
of the exponentials is controlled by the parameters o and 8. The parameter 7 is the
constant probability of flipping for all pixels. Finally, the last parameter k, which
is the size of the disk used in the morphological closing operation, accounts for the
correlation introduced by the point-spread function of the optical system.

Software for simulating noisy documents using the above degradation model is
available from University of Washington English Document Database I and the model
itself has appeared in the literature [KHP94, KHP93]. The application of the various

steps of our model is shown in figure 3.1.

3.1.1 Implementation

The noise-free documents are typeset using the BTEX formatting system [Lam86,
Knu88]. The ASCII files containing the text and the IATRX typesetting information
are then converted into a device independent format (DVI) using BTgX. A software
program called DVI2TIFF — which is a modified version of a DVI file previewer called
XDVTI [V*90] — is run to produce one bit/pixel binary images in TIFF format from
the DVI files. Besides producing the binary images of the documents, DVI2TIFF
also produces the groundtruth information regarding each character on the document
image. Examples of the groundtruth information are given in the next chapter.

The local document degradation model itself is another software program called
DDM. This program takes as input an ideal binary document image in TIFF format,
and a file containing the degradation model parameter values, and produces the
binary degraded images in TIFF format.

Both programs — DVI2TIFF and DDM - are implemented in the C language and
have been tested on SUN and IBM machines running the UNIX operating system.
The software is available on the UW CD-ROM-1 [HP™].

3.1.2 Degrading Complete Pages

Since the input to the degradation software can be any IATRX formatted ASCII file,

the same text can be formatted in various styles (single column, multiple column,
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(b)

(d)

(a)
(c)

(e)

Figure 3.1: Local document degradation model: (a) Ideal noise-free character; (b)

Distance transform of the foreground; (c) Distance transform of the background; (d)
Result of the random pixel-flipping process. The probability of a pixel flipping is:
P(0|d,B, f) = P(1]d, e, b) = cpe™®® herea=8=2, ag = B = 1; (e) morphological

closing of result in (d) by a 2 x 2 binary structuring element.
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report, book, etc.), font types (Roman, Helvetica, etc), and font sizes (9pt, 10pt,
12pt, etc.). Thus the performance of any character recognition system can be studied
by providing as input the same (or different) text formatted in various styles with
varied but controlled degradation.

We now show examples where we degrade complete document pages using our
degradation model. In figure 3.2, we show an ideal document formatted in IATRX
using the ITEEE Transaction journal’s typesetting style. In figure 3.3 we show a
degraded version of the document in figure 3.2.

In the next section we describe a model for the distortions that occur while pho-
tocopying a think, bound book. The model accounts for the physical deformation of
the document page, the perspective distortion that occurs because of the bending,
the nonlinear intensity variations due to change in the surface-normal direction, and

the nonlinear optical point-spread function.

3.2 A Global Page Degradation Model

In this section we model the perspective distortion that occurs while photocopying or
scanning thick, bound documents. Perspective distortion is modeled by studying the
underlying perspective geometry of the optical system of photocopiers and scanners.
An illumination model is proposed to account for the nonlinear intensity change

occurring across a page in a perspective-distorted document.

3.2.1 The Optical Setup

A typical setup for scanners and photocopiers is shown in the figure 3.4. In the figure
we have shown a book that is to be photocopied. The page to be photocopied is not
flat on the document glass since the book is tightly bound and the ‘spine’ of the book

is thick. We model four sources of degradation in the following sections.

3.2.2 Deformation Model for the Physical Page Bending Process

First the page itself undergoes a physical deformation where the document page goes
through a ‘bending’ process near the ‘spine’ of a thick, bound document. The page is
no longer a flat surface on the document glass but a curved surface bending away from

the glass near the spine of the book. We model this curved portion of the document
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I. INTRODUCTION

SINCE the early 1940s a large number of artificial neural
systems have been proposed by neural scientists. The dy-
namical behavior of these systems may be mathematically
described by sets of coupled equations like differential e-
quations for formal neurons with graded response. The
investigation of essential features of neural systems such as
stability and adaptation depends strongly upon the state
of the mathematical theory to be applied and on a con-
crete and eflicient analysis of dynamical equations. Unlike
abstract theoretical research in which the mathematical
objects adopted are frequently assumed to be of certain
canonical form, the neurodynamics is usually complicat-
ed due to various biological facts which should be taken
account of to a degree as large as possible. Consequently,
this makes the analysis and derivation very complex, some-
times to an extent which is beyond human capacity, and
the traditional methods and tools of mathematics are not
always sufficient. It is therefore proposed in [19] to use and
extend the methods and software systems of symbolic com-
putation for handling, analyzing and constructing neuro-
dynamics and its related objects. The present paper is the
continuation of our work in this direction. The attempt is
to demonstrate how symbolic computation can be applied
to aid the analysis and derivation of neural systems.
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setting style.

In contrast to the approximative character of numerical
calculations, symbolic computation treats objects with se-
mantics like functions, formulae and programs. A variety
of software systems for performing symbolic computation
have been developed for research and applications in nat-
ural and technical sciences. However, the existing systems
cannot be directly used for the analysis and derivation of
neural systems as the operations on the occurring objects,
particularly those involving an unspecified number of argu-
ments like indefinite summations, have not yet been taken
into account. To achieve our goal, some rules for differen-
tiating and integrating indefinite summations with respect
to indexed variables were proposed [20]. A toolkit has been
designed and implemented in MACSYMA for manipulat-
ing these objects occurring in the analysis and derivation
of neural systems [21].

In the next section, we introduce the general method
and techniques for the stability analysis of artificial neural
systems. The role of symbolic computation for representing
and manipulating the objects concerning neural systems is
discussed in Section III. In Section IV we present some
strategies for using computer algebra (CA) systems and
their extension to analyse the stability of neural systems
and to derive novel stable systems. A brief description
of a toolkit developed in MACSYMA is also provided. A
concrete example is given in Section V to illustrate the
derivation of a hybrid model by our toolkit. Section VI
contains a discussion on future developments. The paper
is closed with a brief summary.

II. STABILITY ANALYSIS OF NEURAL SYSTEMS

Consider artificial neural systems which are described by
coupled systems of differential equations of the form

b= Flo,w, K) W
and

w= G(z,w, K) (2)
where z = (21(t),...,zn(t)) is the activation state vec-

tor, w = (wy;(t)) is the weight matrix of dimension n x
n, n is the number of nodes and K is an external time-
independent pattern vector. Such systems of differential
equations which describe the neural model will occasional-
ly be named neurodynamics.

Once a neural model is proposed, its main features are
represented by its dynamic behavior. The adaptability of
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Figure 3.2: Ideal document page typeset using IATgX and IEEE Transaction’s type-
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Figure 3.4: The setup while photocopying a thick, bound document. The center of

perspectivity is at O, which is also the origin of the coordinate frame.
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page as a circular arc segment along the z axis and assume that there is no such
deformation along the y axis. The global rotation and translation can be modeled in
another stage. Figure 3.5 illustrates this deformation phenomenon.

Let A = (2a,%a,f), B = (@b,Ys, f)'. Furthermore, let p be the radius of the
deformation circle and let the bent segment subtend an angle 6 at the center of the
circle D. Let the point A map to the point A’ = (241, Yar, 24) after deformation.
Then the coordinates of A’ are given by

Lo = T+ p(0—sind) (3.1)
Yoo = Ya (3.2)
zar = [+ p(l—cosb) (3.3)

Let the point P = (z,,yp, f)', be such that z, < z, < zp. and let P map to the point
P’ = (zp,Ypr, 2p) after deformation. Let the angle subtended by the arc P’C at the
center D be ¢ where

¢:m:9_(%—%). (3.4)
p p

Now the coordinates of P’ can be calculated as given below

Ty = Tp+ p(P—sing) (3.5)
Y = Up (3.6)
s = £+ o1 cos) (37)

Note that for points P in the original document with z, > z;, we have no deformation

and hence P’ = P.

3.2.8 Perspective Distortion Model

The bending deformation is followed by a perspective distortion where the point P’ on
the document maps to the point P” on the image. See figure 3.6. Let the focal length
of the optical system be f and let the center of perspectivity, O, be at the origin.
Assume that the image plane is at the focal plane at —f. Let P"” = (zpn, Ypr, 2pn)' be

the perspective projection of the point P’ on the document page. The coordinates of
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Figure 3.5: The bending deformation of the document pages. The side view of figure
1 while looking in the positive y direction is shown. The points A’,B’, and C' on the
document page would have been at the points A, B, and C on the document glass if
the page had not been curved. The curve A'P'C is modeled as a circular arc segment
that subtends an angle 6 at the center, D, of the circle, which has a radius p. Here
h = p(1 —cosf) and zp = z, + p(¢ — sin ¢) where ¢ = 6 — (z, — z,)/p. Rest of the
page from C to B along the z axis is not deformed. It is assumed that the page does

not undergo any deformation in the y direction either.
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P" are given by the following equations [HS92, Hor86|

(f + p(lxzi cos ¢)> (3.8)

IIJpH

() o

A f(f+p 1 —cos¢)) (3.10)
) (f‘|‘,01—cos¢)> (3.11)
A (3.12)

Note that for points P in the original document with z, > 3, we have no bending or

perspective deformation and hence —P"” = P' = P.

3.2.4 Nonlinear Illumination Model

Since the document page is no longer flat but a curved surface, the illumination on
the document is not constant. The illumination at a point P’ on the document pages
is inversely proportional to the distance of point P’ from the light source L. The light
source L moves below the document glass from one end to the other. Let the distance
between the document glass and the light source L be ly. See figure 3.6. At the places
where the page is curved the distance between the light source and the document
pages is [ = lo + p(1 — cos @) where ¢ is the angle arc P'B subtends at B. Note ¢ is
also the angle between the normal at P’ and the negative z direction. We model the
illumination as a diffuse lighting model. Thus the intensity of light is proportional to
the cosine of the angle ¢. Furthermore, after reflection, the diffuse model assumes the
intensity of light is the same in all directions [HS92, Hor86|. Let I be the intensity
at a point where the document is not curved, i.e., the distance between the light and

the point under consideration is ly. Thus

1
s
Next, the intensity at I, a point on the curved part is proportional to cos ¢ and

inversely proportional to (o + p(1 — cos #)?. Thus

cos ¢

(lo + p(1 — cos ¢))?

I (3.14)
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Figure 3.6: Perspective distortion. The point P’ on the bent document page projects
to the point P” on the image plane. The coordinates of P" are given as zp,» =
—f2p/(f+h), Yyp» = —f -y /(f + k), and z,» = —f, where h = p(1 — cos ¢) and
¢ =0—(zp — za)/p-
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Thus taking a ratio of the above two equations we have

Iy = I ( b )>2 (3.15)

Under the assumption of diffuse lighting we have Iy = L

3.2.5 Nonlinear Optical Point Spread Function

Let us assume that a point P is on the focal plane, Then, if the image plane is not at
the focus, the image P’ of the point P will be blurred. In fact, the image of a point
geometrically is a disk if the image plane is not in focus [SG88, Pen88, Hor86, HS92].
See figure 3.7. If A is the diameter of the lens, and & is the distance of the image
plane from the focal plane, then the diameter of the disk is given by

i=A <%> | (3.16)

But due to optical irregularities, in reality we do not get a disk as the image but
blurred version of a disk. In fact this blurred disk can be modeled as a Gaussian with
a standard deviation o = k - d, where k is a camera constant.

Notice that in our case, the distance of a point on the document page is in focus
only if the document page is in on the document glass (the focal plane). The curved
region, in particular is not in focus since the points in that region are different dis-
tances from the focal plane. Thus the amount of blurring that a point goes through
is different for the points on the curved segment.

Algorithmically, after performing the bending transformation, perspective dis-
tortion, and nonlinear illumination, another stage is necessary where the image is
convolved with a space-varying Gaussian kernel. The kernel has a standard deviation
o given by

o=k-p(l—cosd) . (3.17)

in the curved regions and constant og. else where.

3.2.6 Simulation of the Perspective Distortion Model

In this section we show some simulation results of the model discussed thus far. The

original nondistorted image is shown in figure 3.8. The dimensions of the image are
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f f h
Figure 3.7: This figure illustrates the fact that if the image plane is not at focus then
a point P maps to a disk of radius d. If the diameter of the lens is A and the focal

length is f, the disk has a diameter d = A - (h/f). Note in the real world the disk

becomes blurred and can be approximated by a Gaussian. See text for more details.
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201x201. The convolution kernel size used was 5x5. Two perspective deformations are
shown in figures 3.9 and 3.10. The parameters, in units of pixels, used for generating

figure 3.9 are:

p = 152.87 (3.18)
9 = 30° (3.19)
f = 80 (3.20)
A = 20 (3.21)
ko= 8 (3.22)
lh = 10 (3.23)

The parameters used for generating figure 3.10 are:

p = 95.54 (3.24)
6 = 30° (3.25)
fo= 50 (3.26)
A = 50 (3.27)
ko= 1 (3.28)
lo = 20 (3.29)

3.3 Summary

We described a model for local distortions that occur during the printing, photo-
copying and scanning processes. The distortions are modeled in terms of distance
transforms and the morphological closing operation. Under the model, the probabil-
ity of a pixel flipping decreases exponentially as its distance from the boundary of
a character increases. Furthermore, the flipping probability of a pixel is dependent
on the pixels in a local neighborhood, which is modeled using via the morphological
closing operation.

The implementation of the model allows us to degrade entire document pages
and not just isolated characters. Since text in any language can be typeset using

formatters like IATRX, exisiting journals articles, book chapters, memos and letters can
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Figure 3.8: This is the original binary image before undergoing perspective distortion.
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Figure 3.9: This image is produced after a document undergoes perspective distortion.
Notice that the bend is very gradual and the intensity of light decreases as you go
along the curved region. Furthermore, the text is no longer horizontal but curved
inward. In addition, the blurring gets progressively worse toward the left edge of the

image.
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Figure 3.10: This image is produced after undergoing a perspective distortion that
is sharper than the perspective distortion shown in 3.9. Furthermore, the intensity

variation is not as pronounced as in the previous example.
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be degraded synthetically and used for evaluating OCR algorithms — new documents
need not be manually printed, photocopied and scanned specifically for evaluating
algorithms. This reduces lot of manual overhead. In addition, since the model is
parametric, degradations of varying levels and types can be introduced by simply
changing the parameter values. Furthermore, the probability of occurrence of each
characters is automatically set correctly if the same types of documents are used
for training and testing. In addition, the use of entire document pages allows us
to introduce degradations due to touching characters; and the joint probabilites of
characters occuring in a particular sequence are represented correctly.

We also described a model for the perspective distortion occurring during the
photocopying and scanning process. This model accounts for the physical deforma-
tion of the document page, perspective distortion, nonlinear intensity variations, and
nonlinear optical point-spread function. We gave simulation results that showed that
perspective model can account for the degradations.

Two related problems — parameter estimation and model validation — are ad-

dressed in chapter 6.



Chapter 4
SYNTHETIC GROUNDTRUTH

In the previous chapter we described a document degradation model that allowed
us to generate synthetically degraded documents in any quantity and at various degra-
dation levels. The system, in fact, gives us more than just degraded documents. It
allows us to generate groundtruth corresponding to these degraded documents. In
this chapter we describe the groundtruth information provided by our methodology
for synthetically degraded documents. In the next chapter we show how this can be

generated for real scanned document images as well.

4.1 Groundtruth for Synthetic Data

Groundtruth information is essential for evaluating any system that senses a real
environment, not just document understanding systems. By groundtruth we mean
the correct information about the scene that the vision system is trying to sense and
interpret. For instance, in 3D-CAD vision, the groundtruth is the actual identity,
position, and orientation of the CAD objects in the scene. In the case of document
understanding, groundtruth means the correct location, size, font, and bounding box
of the individual symbols on the document image. This information, of course, needs
to be 100 percent accurate, otherwise the systems being evaluated will be penalized
incorrectly.

Such groundtruth information is invaluable for performance evaluation of OCR

algorithms:

Layout: We can keep the actual text of the document the same but change the
layout. For example, we can switch from a single column format to a two
column format. That will allow us to test whether or not the accuracy depends
on the layout. Similarly, we can have tables and figures either inserted in the
text, or have them on separate pages. By making such changes we can study if

the OCR system can identify the figure and caption regions properly.
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Style: Page numbers can be printed on top or bottom; the document may or may
not have a runninghead; various indentation lengths can be varied; the columns
can be justified or ragged. Thus by changing these variables, we can study how
robust the OCR system is with respect to these style parameters.

Font: OCR systems can be very sensitive to the fonts used. Thus we can study
the performance of the OCR algorithm by changing the various fonts (Hel-
vetica, Times Roman, etc.) used in the documents, while keeping the text
unchanged. Furthermore, OCR algorithms usually have a subsystem that iden-
tifies the font in a particular zone. Performance of such systems can be done if

the groundtruth information about the fonts is available.

Size: Just as some OCR systems have subsystems that identify the font types, other
OCR systems have subsystems that identify character size, which then is used
by the recognition engine. Having the bounding box, location and identity,
information associated with each symbol on the page will allow us to evaluate

the performance of these subsystems.

Location and Identity: Finally, since the groundtruth contains the location and
identity (e.g., which character, or math symbol) of each symbol on the page,

we can use this information to evaluate the performance of the OCR system.

In Figure 4.1(a) we have a document formatted in a single column format. Part
of the groundtruth corresponding to the document shown in Figure 4.1 is shown in
Figure 4.2. Each row contains information regarding one symbol on a page. For
instance, the first line provides us the information that a symbol is present at the
location (469,570) in the document image, which has height of 46 pixels, a width of 28
pixels, is of 10 point Computer Modern Roman Bold font, and is the numeral ‘1.” In
Figure 4.3 we have used the groundtruth file to find the location of all the letter ‘e’s
of 12 point size in the document and have overlaid the information on the degraded

document image.



29

\n have surtaces that ar

nis problem was largely
‘awings were represente
> orthographic projectio
coordinates of the verti
was further assumed t!

e missing, and no extr:

hmq IATATA T'\11]"\]';Q1‘19{:I [‘A}

(a)
w1 have surtaces tliat ar

his problem was largely
-awings were represente
> orthographic projectio
coordinates of the verti
wasg further assumed t!

e missing, and no extr:
}ﬁmq uwrAaTs ﬂ1!}'\];ﬂ}1ﬂf‘ m}
(b)

Figure 4.1: (a) An ideal document image typeset using ATgX. The document is in
one column format, the font used is Computer Modern Roman and the font size is
12 point. A synthetically degraded version of the document is shown in (a). The

degradation model parameter values used are a9 = By = 1.0, @ = § = 2.5, and k£ = 5.
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Bounding box information for:

Dvi file: survey.dvi ; page 3 of total 25

Formats for Fonts, Rectangles, Lines and Points:

Line: x1 y1 x2 y2
Point: x y
Rect: x y width height

Font: x y width height font-name decimal-code ascii

The origin is at top-left of the image
The x axis corresponds to the columns and increases from left to right

The y axis corresponds to the rows and increases from top to bottom.

\ /
+y

Font: 469 570 28 46 cmbx10 49 1
Font: 589 567 26 49 cmbx10 73 I
Font: 621 584 41 32 cmbx10 110 n
Font: 664 570 24 46 cmbx10 116 t
Font: 696 584 29 32 cmbx10 114 r

Figure 4.2: Groundtruth corresponding to the document shown in Figure 4.1.
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Figure 4.3: The groundtruth file corresponding to Figure 4.1 was used to find the
location of all the letter ‘e’s of 12 point size in the document, and then the information

was overlaid on the degraded image shown in Figure 4.1(a).

4.2 Other Languages

The degradation model and the groundtruth generation methodology are not re-
stricted to the Roman script. Since the model can be applied to any binary image,
text written in any language can be synthetically degraded. Furthermore, since most
languages can be typeset using IATRX, the corresponding groundtruth can be au-
tomatically created using our groundtruth generation software. We now show some
examples where we synthetically degrade Devanagari and Arabic scripts, and produce
the corresponding groundtruth. In Figure 4.4(a) we show an ideal image of a Hindi
document written in Devanagari script. The corresponding degraded image is shown
in Figure 4.4(b). Finally, in Figure 4.5 we show the groundtruth corresponding to
the Hindi document. Similarly, in Figure 4.6(a) we show and ideal Arabic document.
We degrade this ideal bitmap using our model and the resulting image is shown in

Figure 4.6(b). The corresponding groundtruth is shown in Figure 4.7.



qrET T a9 9

ag g7 o femrdr adr oafa faw ot & & a&dr O )| R O favare e & fau &8
sroAT FvAT 3t fRar | Frdes, a8 fag ot & o og ar @7 g3 gar ot fF ag 3 femr
T B & FET TEdT &, 9T 39 dYg A9S Iq9 He & ST, Tg AET =T 9| ST 39
A a@HT ¥T g3 fauare T87 g1 9 a8 @it 9 & Fooq AT A9t & a9 39 G -7
T § Bl g0 | 99 98 faodt & Fr6d BIeST ATIr 9T, ar ani F 394 a1 § T -FT
TET Fq=T o9T!

T TG & STHET & ITH GgI6C & 4T | (7 90 STheT & 18T @S0 TeedTee T
T Feg a1d & TET 4T | T § a8 U& 97 o7 or | 99 & & 9¢ T 9 59 a9 F oo
TREHATEET &l 99418 &l 8% a8 9 & a0h g7 | 7 § JTCH 394 g+ 954 74T | T
ATTHT & AFE A AT A & {0 ITST FAFTHAT 7T, TC T T84 & IR
JEIT GIT AT Ioaryg T fEer war )

(a)

meET Ty fag o

ag 77 ¥ fawrdr 2 sl fow o £ gr s=dt off | e o favare a0 3 foo &
arqaT ST drF faar ) frwry, g faw o & oft ) o ar &~ g% var ar fw oag 3w faar
Foof H AT wET AT ¥, 9T ¥ avg aNIAw I9d e g Ay, gy g @Nr our ) e 3
T ZEE o qu favary T4 gerT fr ag eurdY w1 & e o mt & fiw 3w gre-w
e F AT gnft | v gy far & D gewT T ofr, ar qnTF T 39 Ay § ®{r-Ev
FET GrT 9!

T TET & IIHATT F I GEIHC o T4 i O iy F a7 /¥ AT
¥ 3 d &C AT 1 g7 F 3% uw O for ot W & ' 9T 7 9 fae o & faw
TRREATRT &7 9491% &4t g 7% a9 A a0 371 ot ¥ 3a7&T 398 o7 989 T4 0
ATEHT F ;FTAEH AT HT AT & o9 ard OI¥T =wST AT, WO W XIS £ ITHT

%mwaﬂrméﬁaWWI A
(b)

32

Figure 4.4: Degradation of Devanagari documents. (a) An ideal Devanagari doc-

ument; (b) A degraded version of the Devanagari document shown in (a).
degradation model parameter values used were a9 = By = 1.0, = 8 = 2.5,

k = 5.

The
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Figure 4.5: Groundtruth corresponding to the Devanagari document shown in Fig-

ure 4.4.
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Figure 4.6: Degradation of Arabic documents. (a) An ideal Arabic document; (b)
A degraded version of the Arabic document shown in (a). The degradation model

parameter values used were ag = By = 1.0, a = 8 = 2.5, and k = 5.
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Figure 4.7: Groundtruth corresponding to the Arabic document shown in Figure 4.6.
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4.3 Music Symbols

Music scores can also be formatted using IATgX, and many packages are available for
typesetting music. Thus, the same groundtruth generation methodology can be used
for automatically creating groundtruth for synthetically degraded music documents.
In Figure 4.8(a) we have a subimage of an ideal music document. In Figure 4.8(b)
we have a synthetically degraded version of the document in Figure 4.8(a). The

corresponding groundtruth is shown in Figure 4.9.

4.4 Line Drawings

Another subarea of document understanding research is that of linedrawing under-
standing. Here semantic information has to be extracted from scanned documents
containing graphical symbols and other geometric entities that appear on the docu-
ment page according to some accepted 2D syntax such as the ISO or ANSI standard
[Ame82|. The goal of these linedrawing understanding systems is to convert all the
paper drawings into CAD format so that the storage, manipulation, and extraction
of information is easier and inexpensive. Various types of linedrawings are of interest:
mechanical CAD drawings, wiring diagrams, electronic circuit diagrams, architectural
drawings, etc.

Such drawings cannot be created using IATgX. But many CAD modelers such
as AutoCAD allow us to create various types of linedrawings. These drawings can
then be stored symbolically using the IGES file format [SW86], which is an accepted
industry-standard, or as a binary image. Thus, once again we can apply our method-
ology for generating degraded linedrawings and the corresponding groundtruth: de-
grade the linedrawing image using the degradation model and then use the informa-
tion in the corresponding IGES file to create the groundtruth. Figure 4.10(a) shows
a subimage of an ideal linedrawing document. Figure 4.10(b) shows a synthetically

degraded version of the document in Figure 4.10(a).

4.5 Summary

In this chapter we saw that for various types of synthetically degraded documents

we can automatically create the groundtruth information — information regarding
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Figure 4.8: Degradation of music documents.(a) An ideal music document; (b) A
degraded version of the music document shown in (a). The degradation model pa-

rameter values used were ag = Gp = 1.0, « = 8 = 2.5, and k£ = 5.
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Figure 4.10: Degradation of linedrawings. (a)An ideal linedrawing produced by Au-
toCAD; (b) A degraded version of linedrawing shown in (a).
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the location, identity, size and font type — that is 100% accurate. This is possible
since the typesetting languages and stystems store such information in order to create
these documents. Thus, for synthetically degraded documents, one know the correct
result that any OCR system should produce. No manual groundtruthing is required
— the groundtruth inforation is produced at no cost and instantaneously. Thus the
methodology described in this chapter and the last allow us to create large databases
of synthetically degraded documents with 100% accurate groundtruth. This method-
ology thus paves way for conducting large controlled experiments on OCR systems
that were earlier not possible.

Another important advantage of using our methodology is that we can generate
synthetically degraded documents and the corresponding groundtruth for aeny lan-
guage. We showed examples where we generated degraded Devanagri and Arabic
texts with groundtruh. And for doing so, one did not have to know the language.
In contrast, manual groundtruth collection would have required the knowledge of the
language in which the text being groundtruh is written. The same method can be also
used to generate synthetically degraded music documents and engineering drawings

and the corresponding groudtruth in IGES format.



Chapter 5
DOCUMENT REGISTRATION

Collecting accurate groundtruth for characters in a real document is a difficult
task that is not possible manually because (i) accuracy in delineating groundtruth
character bounding boxes is not high enough, (ii) it is extremely laborious and time
consuming and (iii) the manual labor required for this task is prohibitively expensive.
Furthermore, in many cases of badly degraded documents, such as FAX document,
it 1s not even possible to read the words, let alone groundtruth them.

In the previous chapter we described a method for generating 100% accurate
groundtruth for synthetic documents. Unfortunately, all the information becomes
useless once the document is printed and scanned, which makes the scanned document
undergo a geometric transformation (translation, rotation, scale, etc.). However, if
there is a way of estimating the transformation that the ideal document undergoes
when it is printed and scanned, groundtruth for the real data can be easily computed
by transforming the ideal groundtruth using the same geometric transformation.

In this chapter we show how we generate the character groundtruth for real docu-
ments. First we to generate the groundtruth for the ideal documents and then find a
2D-2D transformation that registers the ideal documents to the real documents. The
estimated mapping that registers the ideal document image to the real document im-
age 1s then used to transform the ideal groundtruth to get the groundtruth for the real
documents. The groundtruth generated by this method, besides being directly useful
for evaluating the performance of OCR systems, is crucial for validating document

degradation models.

5.1 The groundtruth generation methodology: a closed loop approach

First, the documents are typeset using JATEX. Next these documents are converted
into binary bitmap images, which are our ideal noise-free documents. When the ideal
bitmap is generated from the DVI files, the corresponding groundtruth (location,

bounding box, font type and size, and identity of each character) is also generated.
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The ideal document image is then printed and scanned. At this point, although
the groundtruth for the ideal image is known, the groundtruth for the real scanned
image is unknown. However, if the exact transformation that registers the ideal and
degraded images were known, we could compute the groundtruth for the real image
simply by transforming the bounding box coordinates of the ideal groundtruth by the
same transformation.

Thus the groundtruth creation problem now reduces to finding an appropriate
transformation that models the geometric distortions the document image under-
goes when it is printed and then scanned. Whatever the functional form of the
transformation, to estimate the parameters of the transformation we require corre-
sponding feature points from the ideal and real images. Thus, a rough outline of the

groundtruth generation method is:

1. Generate ideal document images and the associated character groundtruth.
2. Print the ideal documents and scan it back.

3. Find feature points py,...,p, and qq, ..., ¢, in the corresponding ideal and real

document images.
4. Establish the correspondence between the points p; and g¢;.
5. Estimate the parameters of the transformation 7' that maps p; to g;.

6. Transform the ideal groundtruth information using the estimated transforma-

tion 7.

The transformation 7" mentioned in the procedure above is a 2D to 2D mapping.
That is T : R*> — R?. Thus, if (z,y) = T(u,v), where (u,v) is the ideal point and
(z,y) is the scanned point, z in general may be a function of both u and v; and same
is true regarding y.

Generation of the ideal document image and the corresponding groundtruth is
achieved by our synthetic groundtruth generation software DVI2TIFF, which we
described in Chapter 3. Given a transformation 7, transforming the groundtruth
information is trivial — all that needs to be done is transform the bounding box co-

ordinates of the ideal groundtruth using the transformation 7. Thus, there are two
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main problems: finding corresponding feature points in two document images, and

finding the transformation 7.

5.2 QGeometric Transformations

Suppose we are given the coordinates of feature points p; on an ideal document page,
and the coordinates of the corresponding feature points ¢; on the real document page.
(How these feature points are extracted and matched is described in the next section.)
The problem is to hypothesize a functional form for the transformation 7', that maps
the ideal feature points coordinates to the real point coordinates, and a corresponding
noise model. To ensure that the transformation T is the same throughout the area
of the document page, we choose the points p; from all over the document page.
The possible candidates for the geometric transformation and pixel perturbation

are similarity, affine, and projective transformations:

Similarity Transformation: This transformation is defined by the equation:

z; a b U; tr M
(yi) (_b“)(“i) (ty) (¢) &0
where (u;,v;) is the ideal point and (z;,y;) is the transformed point.

In the above parameterization of the similarity transformation, a represents
the product of a nonnegative isotropic scale and cosine of the rotation angle; b
represents the product of the nonnegative scale and sine of the rotation angle;
tr and t, represent the translation in z and y directions. This parametrization
is linear and unconstrained in the parameters, unlike the parametrization in

terms of scale, cosine and sine of rotation angle, and translation.

Affine Transformation: In this case we assume that the real image is an affine
transformation of the ideal image. The affine transformation allows for rotation,
translation, anisotropic scale, and shear. The functional form that maps the

ideal point (u;,v;) onto the real point (z;,y;) is

BN e
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Projective Transformation: Here the assumption is that the real image is a per-
spective projection of an image on a plane onto another nonparallel plane. The
functional form that maps the ideal point (u;,v;) onto the real point (z;,y;) is

given below.

z; 1 a1u; + biv; + :
. A ) (5.3)
Ys asu; + bav; + 1 asu; + byv; + ¢ s

After inspection it can be seen that the equations are linear and unconstrained

in the eight parameters aq, by, ¢1, as, bs, o, az, b3. Discussion on the estimation
of these parameters can be found in subsection 5.3. This parameterization

accounts for rotation, translation and the center of perspectivity parameters.

The natural choice for noise is a Gaussian. That is, (7,%)* ~ N(0,0%I). Furthermore,
o can be assumed to be known and a function of the image processing algorithm that

is used to detect the feature points.

Each of these models can be used to fit the data. Nevertheless, the question is
which model, if any, models the transformations correctly, and how does one go about

proving the hypothesis quantitatively?

In the next section, we show how to estimate the parameters of the three models.

In the section that follows we show how to statistically validate/invalidate the models.

5.3 Estimation of geometric transformation parameters

Note that all the three models are linear in the parameters. Each corresponding
point provides two linear constraints on the parameters. Thus we need at least two
corresponding points for estimating the similarity parameters, three corresponding
points for affine, and four for projective. If we have more corresponding points than
the minimum required, we can solve for the parameters of the transformation in a
least squares sense, which also happens to be the maximum likelihood estimate of

the parameters under the Gaussian noise model.
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5.8.1 Similarity transformation

The similarity equations given in equation (5.1) can be rearranged into the following

form:
12
T _ U v . Yy 4 Ui 7 (54)
Yi 01 v —wu a ¥i
b

where (u;,v;) is the ideal point and (z;,y;) is the transformed point. If there are n

corresponding points, the above equation can be written as:

1 1 0 w9 w»m m
T2 ]_ 0 Ua P 7']2
2
Tn 1 0 u, v, t n
- S (5.5)
Y1 01 vi —ug a (21
Yo 0 1 vy —uy b [
Yn 01 v, —u, Un

The above equation can be written in a compact matrix form as follows:
b=Ap+n (5.6)

where b is the 2n x 1 vector of z and y, A is the 2n x 4 form matrix, p is the 4 x 1
vector of unknown parameters, and n is the 2n x 1 vector of noise values. If the
number of corresponding points n is two, we have four equations in four unknowns,

and thus can solve for p uniquely by solving the system of equations:
b = Ap. (5.7)

However, if we have more correspondences, we can solve for p in a least squares

s€nse.

f):a,rgrri%nHAp—bH. (5.8)
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The least squares solution is obtained by solving the following linear system of equa-

tions:

A'b = A'Ap.

(5.9)

The proof of the fact that the solutions of the two equations (5.8) and (5.9) is the

same can be found in standard linear algebra texts such as [Str88]. Incidentally,

the least squares solution is also the maximum likelihood estimate of p under the

assumption that n is Gaussian distributed as N(0, o21).

5.8.2 Affine transformation

The affine equations given in equation (5.2) can be rearranged into the following form:

z;
Yi

Us;

Vs

0

0

U;

10
01

) |

Q. 0O o 92

o

S

o

it
¥i

) |

(5.10)

where (u;,v;) is the ideal point, and (z;,y;) is the transformed point. If there are n

corresponding points, the above equation can be written as:

Z1

T2

Al
Y2

Yn

The above equation can be written in a compact matrix form as follows:
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0
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0
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(5.11)

(5.12)
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where b is the 2n x 1 vector of z and y, A is the 2n X 6 form matrix, p is the 6 x 1
vector of unknown parameters, and n is the 2n x 1 vector of unknown noise values. If
the number of corresponding points n is three, we have six equations in six unknowns,

and thus can solve for p uniquely by solving the system of equations

b = Ap. (5.13)

However, if we have more correspondences, we can solve for p in a least squares

S€nse:

f):arganHAp—bH. (5.14)

The least squares solution, which is also the maximum likelihood solution in this case,

is obtained by solving the following linear system of equations:

A'b = A’Ap. (5.15)

5.8.8 Projective transformation

The projective transformation equations given in equation (5.3) can be rearranged in

the following form.

a

by

&1

(:z:z):(uZ v, 1 0 0 0 —uz, —vimi). as _I_(m)’ (5.16)
Yi 0 0 0 w v 1 —uy -—wvy by P

C2

as
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where (u;,v;) is the ideal point and (z;,y;) is the transformed point. If there are n

corresponding points, the above equation can be written as:

z1 u; v 1 0 0 —wzy —vi2g aq M
T up va 1 0 0 —uzy —v32y by N2
(4]
Ty U, Vo 1 0 0 0 —upz, —UnZn a n
_ 24| (5.17)
Y1 0 0 0 up v1 1 —wyr —wmy by (4
Yo 0 0 0 wy vy 1 —upys —v2y2 C2 (Z
as
Yn 0 0 0 up vy 1 —UnYn —UnlYn by ¢"

The above equation can be written in a compact matrix form as follows.
b=Ap+n (5.18)

where b is the 2n x 1 vector of z and y, A is the 2n x 8 form matrix, p is the 8 x 1
vector of unknown parameters, and n is the 2n x 1 vector of noise values. If the
number of corresponding points 7 is four, we have eight equations in eight unknowns,

and thus can solve for p uniquely by solving the following system of equations:
b = Ap. (5.19)

However, if we have more correspondences, we can solve for for p in a least squares
sense.

f):arganHAp—bH. (5.20)

The least squares solution, which is also the maximum likelihood solution in this case,

is obtained by solving the following linear system of equations:
A'b = A'Ap. (5.21)
5.4 Validating geometric transformations

Since the estimated parameters of the models are functions of real point coordinates,

which are random variables, the estimated parameters are random variables. The
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distribution of estimated parameters can be derived in terms of the assumed dis-
tribution of the noise in the real point coordinates. To confirm that the geometric
transformation model and the noise model are valid, we can test whether or not the
theoretically derived distribution of the estimated parameter vector is the same as
that computed empirically. If either the geometric transformation model or the noise
model is incorrect, the test for equality of the empirically computed distribution and
the theoretically derived distribution will not pass. Furthermore, instead of test-
ing the distribution of the estimated parameters, we can test the distribution of the

residual error, which in turn has a known distribution.

5.5 Dealing with nonlinearities

As we show in a later chapter on experimental results, none of the three geometric
transformations model the transformation very accurately. That is, the real points
are displaced from ideal transformed points in some nonlinear fashion. The mismatch
seems to arise from nonlinearities in the optical system. Although we had first as-
sumed that the nonlinearities are due to mechanical variations from scan to scan, it
turned out that for our scanner this was not true. We proved this fact as follows. We
scanned the same document multiple number of times without displacing the original.
When the images were exclusive ORed, not much difference was found.

As in photogrammetry literature, we resorted to computing two interpolating
functions in two variables that modeled the nonlinearities in the printer-scanner com-
bination. In the next section we describe the details of the piecewise bilinear inter-

polation functions. A good discussion on image warping can be found in [Wol90].

5.5.1 Piecewise bilinear interpolation functions

Let the function f : R? — R? be an image-to-image nonlinear function. We are
given the ideal calibration points pq,...,p,, and the corresponding observed points
q1,---,4n. That is, ¢; = f(p:) + 7. The problem is to construct a piecewise bilinear

function that approximates f in the sense that

> o = £(o0) (5.22)

1s minimized.
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The piecewise bilinear function is represented as follows. First, a grid of points
9ij, withs =1,...,l and j = 1,...,m on the first image are identified. The grid
points are such that the y-coordinates of the points along a row of grid points are the
same and the z-coordinates of points along a column of grid points is the same. That
is, y(9i;) = y(gig) for j = 1,...,m, k = 1,...,l. Furthermore, there is a natural
ordering of the grid point coordinates: z(g;;) < z(git+1,;) and y(g:;) < y(gsj+1). Note
that the number of grid points is much less than the number of calibration points:
[ xm< n.

We represent the nonlinear function f by representing the transformation on the
grid of points g; ;. Let g; ; + Ag,; be the grid point after the function f transforms
the grid point g; ;. Let the point p lie within a grid cell whose four corner grid points
are: @ = g;,b = Gi+1,5,¢ = Gi+1,4+1,d = Gij+1. Lhe transformation of the point p is

then approximated as follows. Let

Then the point ¢ = f(p) + n after transformation is given by
g=p+ (1 —t)(1—3s)Aa+t(l —s)Ab+tsAc+ (1 —t)sAd+n, (5.25)

where Aa = Ag, ;; and Ab, Ac, and Ad are defined similarly.

Let ag, b, cx, dr, be the corner points of the grid cell within which the point pg
lies, and let tx and sx be constants calculated using equations (5.23) and (5.24).
Equation (5.22) can be stated as: Find Aag, Abg, Ack, Ady to minimize

E ||qk — [pk + (1 — tk)(l — sk)Aa,k + tk(l — Sk)Abk + tkSkACk + (1 — tk)SkAdk]H .

k=1
(5.26)
In the above equation, out of the n x 4 elements Aay, Aby, Acg, Adg, k =1,...,n,
only [ x m elements are unique. For example, Acg and Adyg both might represent
the same grid point variation, Agss : Acg = Adyg = Agss. We can now give unique
labels to the grid differences, setup a system of linear equations, and solve for the

unique elements in a least squares sense.
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5.6 Finding corresponding points

Corresponding points are required in two scenarios. The first scenario is where we
are calibrating the scanner to find the geometric transformation model and the non-
linearity model. In this case we create ideal binary images with patterns appropriate
for calibration. In the second scenario, we have documents with text, figures and
mathematics, and we need to identify features in the ideal image and the correspond-
ing features in the real image. Both these situations are considered in the following

two subsections.

5.6.1 Correspondence in documents with text

In a document image with text, figures and mathematics, there are no universal
feature points in the interior of the document that are guaranteed to appear in each
type of document. However, most documents have a rectangular text layout, whether
they are in one-column format or in two-column format. We use the upper-left (UL),
upper-right (UR), lower-right (LR), and lower-left (LL), corners of the text area as
feature points.

The four feature points, py,..., ps, are detected on the ideal image as follows.

1. Compute the connected components in the image.

2. Compute the upper-left (a;), upper-right (b;), lower-right (c;), and lower-left

(d;) corners of the bounding box of each connected component.

3. Find the four feature points using the following equations:

P o= argmm( (a;) +y(ai)),
Py = argmax( (b:) — y(b:)),
py = argmax( (i) +y(a)),
pe = argmin(z(d;) - y(d)).

The above equations compute the upper-left (g;), upper-right (g2), lower-right
(g3), and lower-left (ga).
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The above algorithm is also used to compute the corresponding four feature points
q1,---,q4 on the real image. Since sometimes noise blobs can appear in a real image,
we check to see that the bounding box sizes of the components are within a speci-
fied tolerance. A transformation 7' can be estimated using the corresponding points

P1,---,p4 and qy,...,qs by the methods described in section 5.3.

5.6.2 Correspondence in calibration documents

The geometric transformation 7' is independent of the content of the document im-
age, and is a property of the printer-scanner combination, and the way the document
is placed on the scanner bed. For the purposes of calibrating the printer-scanner
combination we can eliminate the problems of feature extraction and finding the cor-
respondences by simply using an ideal image, specially created for calibration, with
features that can be accurately detected and matched. The ideal calibration page
is made up of crosses whose dimensions and locations on the page are known. The
intersection points of the vertical and horizontal lines of the crosses are the feature
points. Detection of the intersection points in the real document image and in the
ideal image is easily and reliably achieved using binary morphological image process-
ing. Once the intersection points are detected, the bounding boxes of these feature
points are computed by connected component analysis. An initial transformation is
then computed using only four corresponding points that are detected and matched
using the algorithm described in the previous subsection.

Given an estimated transform 7, the points p; are then transformed using this
transformation. Next, for each transformed point T'(p;) we find the real point g; that
is closest. This is done by a brute-force O(n?) algorithm. Since n is of the order of
1000, the computation required is of the order 108, which takes approximately three

seconds on a Sparc 2.

5.7 Summary

In this chapter we presented a closed-loop method for producing character groundtruth
for real document images. The method starts by generating ideal noise-free document
images using a document typesetting software like IATRX. These binary document im-

ages are printed, photocopied, and then scanned. Feature points are extracted from
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the ideal and the scanned document images, and their correspondences established.
We showed that the similarity, affine and projective transformations alone cannot be
used to represent the transformation between the ideal and the scanned documents.
This fact was confirmed by using test images specially designed for calibration, and
verifying that the statistical distribution of the registration error is not what the the-
ory predicts. The local nonlinearities that exist can be accounted for by performing
a local template match using the ideal character as the template, and searching a
small neighborhood in the real image for the best match. The size of the local search
neighborhood is decided by the calibration experiment. The calibration experiment
gives us the maximum deviations that can occur between the ideal feature points
after they have been transformed using the estimated transformation and the feature

points on the scanned image.



Chapter 6

MODEL VALIDATION AND PARAMETER
ESTIMATION

6.1 Statistical Problem Definition

In this section we formulate the degradation model parameter estimation problem
and the model validation problem as statistical problems. Although degradation of
the document is over the entire page, the degradation process itself is local. That
is, degradation in one region does not influence the degradation process in another
sufficiently far away region. More precisely, the degradation at a pixel is influenced
only by pixels within a local neighborhood. Thus, one way to characterize the degra-
dation process is to study the degradation of local patterns. Since the most common
patterns that occur on a document page are characters, we statistically characterize
the degradation of individual characters on the page and use this characterization to

estimate the parameters of a degradation model that produces similar degradations.

Assume that a scanned character is represented by a 30 x 30 matrix with zeros or
ones. This matrix can be represented as 1000 x 1 vector z. (30 x 30 ~ 1000.) Let B
be the space of D = 1000 dimensional binary vectors, that is, B = {0,1}?. Now, let
Z1,Ta,...,zNy € B be independent and identically distributed D-dimensional vectors
representing instances of degraded characters produced from the same class w. That
is, each z; is a degraded character that is produced from the same ideal pattern w
(say the ideal character ‘e’) and the same degradation process. In our case D is large,
91000

typically on the order of 1000, Thus, the number of possible z;’s is , which is

03% — a dauntingly large number. The available sample size,

approximately equal to 1
N, is typically on the order of 1000. Thus, the sample z; occupy the space B extremely
sparsely, which implies that the density function cannot be estimated reliably from
the sample. This fact prohibits us from performing any standard statistical test based

on density estimates.

The two problems we need to address are:
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Model Validation: Suppose we are given a set of real degraded instances z4,...,zn
€ B of the pattern w and another set of synthetic degraded instances yy,...,ynm
€ B of the pattern w. Test the null hypothesis that yq,...,ya and z4,...,2zn,
are samples from the same underlying population, to a specified significance

level e.

Parameter Estimation: Suppose we are given a set of degraded instances z1,...,zxN
€ B of the pattern w. Estimate the degradation model parameter © that can be
used to generate degraded instances y;,...,yn € B from the ideal pattern w,

such that yq,...,yn are close to zy,...,zx under a specified distance function.

6.2 Model Validation

In this section we describe a nonparametric validation procedure that can be used
to statistically validate any document degradation model. Suppose we are given a
sequence of real degraded characters X = {zi,z,,...,zn}, and another sequence of
artificially degraded characters Y = {y1,9a,...,ynm} that were created by perturbing
an ideal character with a document degradation model. We can assume that the
characters z; and y; are binary matrices of size (approximately) 30 x 30. The question
that needs to be addressed is whether or not the z;’s and the y;’s come from the same
underlying population. At this point it does not matter where the z;’s and the y;’s
came from. The z;’s and the y;’s could both be synthetically generated, or both be
real instances, or one of them could be synthetic and the other real. A statistical
hypothesis test can be performed to test the null hypothesis that the underlying
population distributions of z;’s and y;’s are the same.

Standard parametric hypothesis testing procedures (x? test etc.) are not appli-
cable for many reasons: (i) the dimensions of z; and y; are not fixed, (ii) the vectors
are binary and in particular not Gaussian, and (iii) the size of the space to which
they belong is very large (approximately 2°%° if we assume each character to be of
dimension 30 x 30). Instead, we now describe a nonparametric permutation test (see
[Goo94, ET93]) that performs this hypothesis test.

1. Given (i) the real data X = {z1,2,,...,zn}, (ii) the synthetic data ¥ =
{y1,y2,...,ym}, (ili) a distance function, p(X,Y), on sets, (iv) a distance func-
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tion, é(z,y), on characters, and (v) the size € of the test (i.e. misdetection rate

= €).
2. Compute dy = p(X,Y).

3. Create a new sample Z = {z1,...,ZN,¥1, - --,Ym}- Thus Z has N+ M elements
labeled z;,2=1,...,N + M.

4. Randomly permute (reorder) Z.

5. Partition the set Z into two sets X’ and Y’ where X' = {z,...,2y5} and

Y' ={2n41,---,2N+M}-
6. Compute d; = p(X',Y").
7. Repeat steps 4, 5 and 6 K times to get K distances dy,...,dx.
8. Compute the distribution of d;’s empirically: P(d > v) = #{k|dr > v}/K
9. Compute the P-value: ¢g = P(d > dp).

10. Reject the null hypothesis that the two samples come from the same population
if € < €.

This method is also depicted in figure 6.1.

The above procedure computes the null distribution of the distance function
p(X,Y) nonparametrically. In a standard parametric hypothesis testing procedure,
the form of the distributions of z and y are known (usually Gaussian) and so the null
distribution of p(X,Y) is known. In contrast, we compute the null distribution by
randomly permuting the data set Z and creating a histogram of d;’s.

By design, the size of the test, €, is fixed. Thus, irrespective of the distance
function p(X,Y), the percentage of time that the validation procedure rejects a true
null hypothesis that the two samples are from the same underlying population is €. In
other words, the probability of misdetection is e. What is not fixed is the probability
of false alarm, 4. Moreover, although the use of various distance functions for p and ¢

gives rise to the same probability of misdetection, €, each has a different probability
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of false alarm, -y, which is the probability that the procedure claims that X and Y
come from the same underlying populations when, in fact, they come from different
underlying populations.

It is important to note that if two samples X and Y pass the validation procedure,
it does not mean that we accept the null hypothesis. Rather, it means that we do
not have enough statistical evidence to reject the null hypothesis. Nevertheless, when
we reject a null hypothesis, it does mean that we have enough statistical evidence to

reject it.

6.3 Power Functions

Let us assume that the z;’s are distributed as F(fx) and the y;’s are distributed
as F(0y), where 8x and fy are the parameters of the distributions. Let the null

hypothesis, Hy, and the alternate hypothesis, H,, be:

HN . GXZHY (61)
Hy : O0x #6y (6.2)

The size of the test, €, is fixed by the algorithm designer and is given as
e = P(Hu|Hy is true) . (6.3)

The plot of 1 minus the probability of false alarm as a function of 8 is the power
function. Thus, if we fix the distribution parameter of the z;’s at x = 6y, and vary
the distribution parameter value 8y = 6 for y;’s, the power function is denoted by

Y6, (), and is given by:
790(0) = P(HA|€X = 90 and GY = 9) . (64)

Thus 1 — vg,(6) is the probability of false alarm. The power function should have a
minimum at x = 0y = 0y, with v5,(60) = €, and should increase on either side and
go up to 1 when 8y = 8 is very far from 6.

Let us say there are two validation schemes A and B with test size € and power
functions ’y;z (6) and 'yeB; (8). Since the misdetection probability, €, is the same for both

schemes, A is better than B if the false alarm rate of A is less than the false alarm
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P(Reect)

8y Oy

Figure 6.4: The true parameter of the sample X is ©®x. The parameter Oy of the
sample Y is updated and the corresponding probability of the test rejecting the null
hypothesis that X and Y are from same underlying distribution is plotted. The

resulting curve is the power function.

rate of B. That is, A is better than B if 1 — 2 (6) <1 — 42 (6) or 44 (6) > 75 (6) .
If the above relation is true for all values of 8, then the procedure A is said to be
uniformly more powerful than B. That is, the scheme A is better than scheme B if
the power function plot of A is above the power function plot of B for all values of 6.
Generalizing, if there are many validation schemes, the one whose power function is
above all other power functions, is the best scheme. If the power functions intersect,
there is no clear winner; for some regions in the parameter space one scheme is better
while in other regions the other scheme is better.

For a given validation scheme, if we increase the sample sizes N and M, the power
function changes and the new power function is higher than the old power function,
and so by definition is more powerful. Thus, the sensitivity, i.e., the width of the
notch at the minimum, is a function of the sample sizes N and M. When the sample
size is small, the notch is broader and when the sample size is large, the notch is
sharper. This fact is used in deciding what sample size should be used for the test:
choose the sample size such that the desired probability of false alarm is attained

when the parameters 8x and 8y differ by a specified amount A4.
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Finally, our validation scheme described in the previous section is dependent on
two distance functions p and §. Thus, each choice of p and §é gives rise to a different
power function. The combination that produces the highest power function is the

best choice. See [Arn90] for details on power functions.

6.4 Distance Functions, QOutliers, and Robust Statistics

Various distance functions p(X,Y) can be used for computing the distance between
the sets of characters X and Y. We use the following symmetric distance functions
for p.

Mean Nearest Neighbor Distance:

(pMean(Y; X) + pMean(X; Y))

p(X,Y) = prean(X,Y) = (N + M)

where,

PMean(Y; X) = Z(min5(m,y))

zeX yey

Prean(X;Y) = Z(min5(m,y))

yey zeX

Trimmed Mean Nearest Neighbor Distance:

where,

prrim(Y; X) = Trimgex (min&(m,y))
yey
prrim(X;Y) = Trimyey (Il’él}r(_l 6(a:,y))

Here the Trim function accepts as input a set of real numbers, orders them in an
increasing order, discards the top and bottom 10%, and returns the mean of the rest
80%.

Median Nearest Neighbor Distance:

P(X,Y) = prea(X,Y) = (paea(Y; X) + parea(X;Y))/2
where,

pumed(Y; X) = Median (min5(m,y))
yeY

pumed(X;Y) = Median (min&(m,y))

zeX
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POXY) = (Ut us+ ... +Uy)/4

P(Y;X) = (v + Vo + ... +v5)/5
P(X,Y) = (pP(X;Y) +p(Y;X))/2

Figure 6.5: The black dots are elements of the set X and the white dots are elements
of the set Y. In the figure on the left, the distance p(X;Y) from Y to X is computed
by summing the distance of each y; to the nearest z;. Similarly on the right the
distance p(Y; X) is computed. The final symmetric distance p(X,Y") is computed by

taking the mean.
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Notice that the mean nearest neighbor (NN) distance is not a robust distance
measure. That is, if for some reason, a data point is far from norm, the P-value com-
putation becomes very sensitive to this data point. This can occur when a character
in the real data set X is actually a ‘c’ (instead of being an ‘e,’), and is identified
wrongly as ‘e’. Yet another outlier source is connected characters: when characters
are extracted from a real document, they might be touching other characters, pieces
of which might slip in. The Median and the Trimmed Mean distance measures are
robust against outliers since they do not look at the tails of the distribution. One
would expect that these should work better in the cases where there are outliers.

The distance function, §(z,y), mentioned earlier is the distance between two indi-
vidual characters z and y. We use the Hamming distance for §. This is computed by
counting the number of pixels where the characters z and y differ after the centroids
of z and y have been registered. A variety of other character distances, §(z,y), and
set distance functions, p(X,Y’), could have been used. (e.g. the Hausdorf distance,
rank ordered Hausdorf distance, etc.) The combination of character distance §(z,y),
and set distance, p(X,Y’), that give rise to the best power function is the best pair

of distances to use for the validation procedure.

6.5 Estimation of the Degradation Model Parameters

Given a degraded document we would like to estimate the parameters, (:), of the degra-
dation model that could be used to create degraded documents which are “similar”
in the sense discussed earlier.

We use the following procedure to estimate the parameter vector 6.

1. Given a fixed sample X of size N and an inital guess of ©.
2. Generate a sample Y of size M and with model parameter ©.

3. Check if the validation procedure accepts the null hypothesis that X and Y

come from the same underlying population.
4. Repeat K times steps 2 and 3 and estimate the reject rate.

5. Change the parameter © of the sample Y and repeat steps 2 through 4, to get

a reject rate function.
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6. Find the parameter value ©q where the reject rate function is minimum.

7. ©g 1s the best estimate.

There is a subtle difference between the power function and the reject rate func-
tion generated in the estimation procedure. In the validation procedure, the power
function is generated by creating new samples of X and Y, in each step. However,
during estimation, we have only one given sample of X, which is fixed in all the
experiments, while multiple samples of Y are generated. In chapter 7 we use this

method to estimate the parameters of the degradation model.

6.6 Comparing Two models

Let us say there are two document degradation models M; and M,. The problem is
to find the model that is closer to the real process. We know that if the sample size
N of the synthetic samples and the real samples is increased, after a certain point the
validation procedure will start rejecting both the models. However, we will now give
a procedure that will allow a researcher to decide which model is closer to reality for

a fixed sample size N.

1. Fix the sample size N.
2. We are given the real sample D of size N.

3. Genrate synthetic samples S; and S, of size N using the models M; and M,

respectively.

4. Conduct the two sample validation test using the real sample D and the syn-

thetic sample S;. Let the associated P-value be p;.

5. Conduct the two sample validation test using the real sample D and the syn-

thetic sample S,. Let the associated P-value be p,.

6. If py > py, the model M; is closer to the real process for a sample size of N.

Otherwise the model M; 1s closer.
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Thus the above procedure allows a researcher to choose between models.

When we were choosing between parameter setting for a fixed model, we could
use the power function to arrive at the best parameter sitting. However, two different
models have different parameter space and hence they cannot compared using power

functions. The P-value forms our means of comparing the models on a common basis.

6.7 Discussion

In this chapter we gave non-parametric procedures for validating and estimating
degradation models. The validation procedure is a two-sample permutation test.
One sample is a set of real characters, and the other sample is a set of synthetically
degraded characters. The null distribution of a (given) sample distance function is
constructed by a random permutation process.

We gave power functions for our validation procedures. The power functions
enable give us a way of choosing between distance functions and other parameters
that a validation procedure may have. The parameter value that gives rise to the
lowest power function is the best parameter setting. They also allow us to study the
probability of rejecting the null hypothesis over the parameter space as a function of
the sample size.

In many scenarios, such as when there are outliers in the data set, an exact
hypothesis test always ends up in rejecting the null hypothesis when the sample size
is made large enough. Equality of distributions not really the kind of test one would
like to conduct. Rather, one would like to know if two distributions are ‘close enough.’
We showed that using robust set distance functions is one way of performing such
approximate tests.

We made use of a variant of the power function procedure for estimating the
parameters of the model. Given a real sample, we generated synthetic samples and
estimated the parameter of the model by sampling the parameter space. Two sam-
pling procedures were used. First was a brute force search where we sampled each
parameter at equal intervals and searched over all the possibilities. The second was
a line search procedure where optimal value of the objective function was computed
along an axis in the parameter domain. Once the optimum value was found, the
particular parameter value was frozen, and the objective value was minimized along

another axis. This procedure was repeated three times.



Chapter 7
EXPERIMENTAL PROTOCOL AND RESULTS

In this chapter we outline the protocol we use to conduct the experiments. Here
we give all the sample sizes we use, the number of trials that are run at different
stages, the exact model parameter values that are used for generating the synthet-
ically degraded characters, etc. The purpose of this section is twofold: first, to
design experiments that validate the theoretical formulations developed in the previ-
ous chapter; and second, to provide enough information so that anyone can replicate
our experiments;

There are three types of experiments possible:

Synthetic vs. Synthetic: One sample X is synthetically created using the doc-
ument degradation model, with a fixed model parameter value. Then many
samples Y are generated, again using the model, but with different parameter
setting. The validation procedure can be run on the samples X and Y, and
the power function generated. This experiment is in part a sanity check for
the methodology: if it does not work on controlled synthetic data, there is little
point in trying it on real data. Also, the parameter estimation methodology can

be studied in this way since the true parameter © is known and the variance of

the estimated parameter © can be calculated.

Real vs. Real: This experiment tests for systematic dissimilarities between two im-
age populations (e.g. rotations, fonts, etc.). Note that this use of the validation

procedure is independent of degradation models.

Real vs. Synthetic: Here the sample X consists of real degraded characters and
the sample Y is generated by varying the degradation model parameter ©. The
validation procedure is run on the X and Y samples, and a power function is
generated. This experiment tests whether or not the synthetic characters are

actually close to the real characters.
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7.1 Protocol for Synthetic vs. Synthetic

The following protocol is used for creating the samples X and Y. The distribution
parameter O is fixed with the following parameter component values: 7y =, = 0,
ap = Bo =1, a = = 1.5, and the structuring element size k¥ = 5. The distribution
parameter Oy is varied by varying a and (. In our experiments we make a equal
to B. The other parameter components of Oy — nf, 7, ag, Bo, k — are made equal to
the corresponding components of the model parameter ®x. In all cases the noise-free
document is the same (a JATpX document page formatted in IEEE Transaction style)
and the same set of 340 character ‘¢’ (Computer Modern Roman 10 point font) are
extracted from the page, for creating the sample X and the sample Y.

The validation procedure parameters used are as follows:

1. Sizes of samples, X, and Y: N = M = {10,20,60}.

2. Number of permutations: K = 1000.

3. Significance level of the test: e = 0.05.

4. Number of repetitions, 7, for computing the power function: 7' = 100.

5. The character-to-character distance, §(z,y), used is the Hamming distance.

6. The set-to-set distance, p(X,Y), used is the mean nearest-neighbor distance.

The noise-free document is shown in Figure 7.1(a). The degraded document gen-
erated with model parameter ©x is shown in Figure 7.1(b). The power function for
the sample sizes 10, 20, 60 are shown in Figure 7.2. The power function corresponding
to sample size 10 is the widest, and the power function corresponding to sample size
60 is the narrowest. Note all the three power functions give a misdetection (reject)
rate close to € = 0.05 when the Oy is close to ©x. (Only the a component, which
is equal to 1.5 for Oy, is shown in the plot.) Furthermore, when the a component
for Oy is far from 1.5, the misdetection rate is close to 1.0, which implies that the
validation procedure can distinguish the two samples with high probability. An image

generated with @ = § = 1.7 that the validation procedure accepted with a probability
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close to 0.9, is shown in Figure 7.1(c). Two document images generated with param-
eter values a = f = 2.0 and a = # = 0.9 that are easily rejected by the validation
procedure are shown in Figure 7.1(d) and Figure 7.1(e), respectively.

7.2 Protocol for Real vs. Real Experiment

In this section we outline the experimental protocol that is used to validate the real-
degraded characters against real-degraded characters.

First, various European language texts are generated using the Adobe Times-
Roman typeface at 8 point. Next, these documents are printed on a Cannon laser
printer and then scanned at 400 pixels per inch using a Cannon scanner. Lower-case
‘e’s are extracted semiautomatically by OCR (thus some characters possess artifacts
resulting from resegmentation). From among these, 3000 characters are selected by
two persons working independently to avoid misclassifications.

Before selecting the two populations, we randomly shuffle the real data in order
to obscure any systematic perpage dissimilarities (due to, for example, skew scale
variations). The validation procedure does not reject the null hypothesis that the
two samples are from the same underlying population. Repeated trials give a reject

rate close to 0.05, the significance level designed into the test.

7.3 Outliers and Distance Function Comparisons

The validation procedure protocol is as follows: the significance level € is fixed at 0.05;
the sample sizes N = M used are 10, 20, and 60; the number of permutations K for
creating the empirical null distribution is 1000; the number of trials 7' for estimating
the misdetection rate is 100.

We studied the sensitivity of the validation procedure to the set distance p(X,Y)
as follows. The data sets X and Y are collections of (synthetic) degraded character ‘e’.
Degradation parameter values for X are fixed at @« = 8 = 1.5, but the corresponding
degradation parameters for Y are varied from 0.6 to 2.4. The Hamming distance
is used for the character-to-character distance, é§(z,y). Sample size of X and Y is
fixed at N = M = 60. The mean, trimmed mean and median distances are used to
compute the power function, both, in the presence and in the absence of outliers.

Figures 7.3(a), 7.4(a), and 7.5(a), show the power functions in the absence of
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Figure 7.1: Local document degradation model. (a) Subimage of the noise free doc-
ument. (b) Reference degraded document generated with « = § = 1.5. (c¢) Probe
sample accepted, @ = 8 = 1.7. (d) Probe sample rejected, & = 8 = 0.9. (e) Probe

sample rejected, a = B = 2.0. Sample size used is 60.
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Figure 7.2: Power plots for the local document degradation model. The reference
distribution had @ = 8 = 1.5. Notice that the power function has a minimum near
a = B = 1.5. The power function corresponding to sample size of 60 (boxes), is

sharper; that corresponding to a sample size of 10 (crosses) is broader.
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Figure 7.3: Power functions of the validation procedure when mean nearest neighbor
distance is used for the set distance functions p(X,Y). Figure (a) is when there are

no outliers. Figure (b) corresponds to the situation when there are 5 outliers in one
of the data sets.

outliers when the mean, trimmed mean distances are used. Next, we introduced
outliers in the data set X by substituting 5 degraded ‘e’s with degraded ‘c’s. The ¥V
data set is unchanged. Figures 7.3(b), 7.4(b), and 7.5(b), show the power functions
in the presence of outliers. Clearly the median and trimmed mean nearest neighbor
distances are more robust against outliers, since the corresponding power functions
are not affected. Furthermore, it can be seen that the median NN distance function,
in the outlier-free case, is less ‘powerful’ than the mean distance function since the
function lies below the mean NN power function plot. Finally, it can be seen that the
10 % trimmed NN distance function is superior to the other two distance functions,
since the corresponding power function is robust against outliers and at the same

time higher.
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Figure 7.4: Power functions of the validation procedure when median nearest neighbor
distance is used for the set distance functions p(X,Y"). Figures (a) is when there are

no outliers. Figure (b) corresponds to the situation when there are 5 outliers in the
X data set.
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Figure 7.5: Power functions of the validation procedure when 10% trimmed mean
nearest neighbor distance is used for the set distance functions p(X,Y"). Figures (a)
is when there are no outliers in the data X and Y. Figure (b) corresponds to the

situation when there are 5 outliers in the X data set.
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7.4 Protocol for Calibration

The ideal image for calibrating the printer-photocopier-scanner process is created as
follows. First a grid of equally spaced “4” symbols is arranged on a 3300 x 2500
binary image. The vertical and horizontal bars of the “+” symbol are 25 pixels long
and 3 pixels thick. The number of symbols on each row and column of the grid are
23 and 30, respectively.

The ideal image is then printed and scanned. The intersection points of the two
bars of the “+” symbols are used as the calibration points. The calibration points
are detected by a morphological algorithm: first the image is closed with a 3 x 3
square structuring element. Next, two images are created by opening the closed
image with a vertical and horizontal structuring elements, respectively. Calibration
points on the scanned image are detected by binary-anding these two images. A
connected component algorithm is then run on the image with the detected calibration
points. The centroids of the connected components are used as the coordinates of
the calibration points. The calibration points in the ideal image are known since the
ideal calibration image is created under experimenter’s control.

To estimate the projective transform, four feature points are first detected using
the algorithm described in chapter 5. Next, we estimate the projective transform
parameters from the ideal and real points (correspondences are known since we order
the four points in a counter clockwise order, starting with the upper left feature point,
and assume that the orientation of the page is unchanged). The estimated transform
parameters are then used to project all the ideal points. An exhaustive search is
conducted to establish correspondences between the projected ideal calibration points
and real calibration points. That is, for each projected ideal point, we find the closest
real point, and assume the two points match. A registration error vector, which is
the error between each real calibration point and the projected calibration point, is
computed for each calibration point. The maximum error we attain is with +4 pixels
in each coordinate.

In Figure 7.6(a) we show a subimage of the scanned calibration document. The
detected calibration points are shown in Figure 7.6(b). In Figure 7.6(c) the ideal
calibration points are transformed using the estimated projective transformation and

overlaid on the real calibration points. A scatter plot of the error vectors is shown in

Figure 7.7.
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(c)

Figure 7.6: (a) A subimage of the scanned calibration document. The detected
calibration points are shown in (b). (c) The ideal calibration points are transformed
using the estimated projective transformation and overlaid on the real calibration

points.
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7.5 Data Collection

The ideal data is a ATRX formatted document. The IEEE Transaction style is used
for typesetting the document. The corresponding ideal binary image and character
ground truth is created using the DVI2TIFF software. The ideal document is created
at 300 x 300 dots/inch resolution and the size of the binary document in pixels is
3300 x 2550. This document is printed using a SparcPrinter II. Next, the original
printed document is photocopied five times using a Xerox photocopier - once at the
normal setting, twice with darker settings, and twice with lighter settings. Finally
the five photocopied documents are scanned using a Ricoh scanner. The scanner is
set at 300 x 300 dots/inch resolution. The rest of the scanner parameters are set at

normal settings. The scanned binary image is of size 3307 x 2544.

7.6 Protocol for Generating Real Ground Truth

Once the real scanned documents have been gathered as described in the previous
section, we use the registration algorithm, described in chapter 5 to i) transform the
ideal binary documents so that it registers to the scanned document and ii) to create
the ground truth corresponding to the scanned document. The transformed ground
truth also forms the ground truth for the transformed ideal document. The local
nonlinearities of the transformation are accounted for by searching in a local neigh-
borhood for a good match between the ideal character symbol and the real character
symbol. The local template match window size is determined by the calibration ex-
periment we performed earlier. Since the maximum error in the registration is +4
pixels, we used a window with —7 < Az, Ay < 7. The ground truth generated by
our algorithm is highly accurate. A subimage of the scanned image with the overlaid
bounding box is shown in Figure 7.8. An exclusive or-ed image of the real scanned
document and the registered ideal document is show in Figure 7.8. The time taken

for this procedure on a SUN SPARC 5, is 2 minutes.

Our model validation methodology requires a sample of degraded bit patterns
corresponding to characters. We extract the degraded bit patterns corresponding to
the characters ‘e,” ‘a,” and ‘s,” of 10 point size and Computer Modern Roman font.

The number of ‘e’s on a typical IEEE Transactions page is 300.
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7.7 Protocol for Estimating Real Model Parameters

The seven dimensional parameter space is sampled according to the protocol given
below. For each parameter setting, a synthetically degraded document is created,
and the statistic value is computed between the scanned degraded and the synthetic
degraded images. The parameter setting for which the statistic value is minimum is
used as the optimal estimate of the model parameters. The sampling protocol for the

parameter space we used is:

ap = {0.0+0.2,:=0,..,5} (7.1)
a = {0.5+40.17,:=0,..,15} (7.2)

Bo = {0.0+40.27,2=0,...,5} (7.3)
= {0.54+0.17¢,2 =0, ..,15} (7.4)

= {1,2,3,4,5,6,7} (7.5)

d = {0,1,2} (7.6)

7o = 0.0. (7.7)

In Figure 7.11(a) a subimage of a scanned document is shown. The estimated

parameter for this documents is
(o =04, =2.0,8,=0.0,6=0.0,d=1,k =2,7 =0.0).

In Figure 7.11(b) the corresponding synthetically degraded document is shown.

7.8 Protocol for Validating Real vs. Synthetic Degradations

Real data is first collected using the protocol outlined in section 7.6. The parameters
are then estimated using the protocol specified in section 7.7.

In all cases the noise free document is the same (a IATgX document page for-
matted in IEEE Transaction style) and the same set of 340 character ‘¢’ (Computer
Modern Roman 10 point font) are extracted from the page, for creating the synthetic
population Y.

The validation procedure parameters used are as follows:

1. Sample sizes of scanned characters, X, and synthetic characters, Y: N = M =

{10, 20, 60}.
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Figure 7.11: (a) Real document. (b) Synthetically degraded document. The param-
eters used for the simulation are estimated from the real document. The parameter

values used are: ap =0.4, a=2.0,58,=0.0,=0.0,d=1,k=2,n=0.0.
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Figure 7.12: The objective value as a function of the structuring element size, k. Rest

of the parameters are fixed at the optimal solution.
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Figure 7.13: The objective value as a function of the structuring dilation structuring

element size, k. Rest of the parameters are fixed at the optimal solution.
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Figure 7.14: The objective value as a function of . Rest of the parameters are fixed

at the optimal solution.
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Figure 7.15: The objective function as a function of the decay constant a. Rest of

the parameters are fixed at the optimal solution.
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2. Number of permutations, K, for creating the empirical null distribution: K =

1000.
3. Significance level of the test: e = 0.05.

4. Number of bootstrap repetitions, 7', for computing the reject rate of the test:

T = 100.

5. The bootstrap samples are sampled (with replacement) from a pool of size

Ny = 100.
6. The character-to-character distance, §(z,y), used is the Hamming distance.

7. The set-to-set distance, p(X,Y), used is the mean nearest-neighbor distance.

The above test is conducted on ‘e’s. The test did not reject the null hypothesis
that the samples are from the same population for a sample size of 10. That is, the
reject rate is lower than 5%. For the sample size of 20, 46% percent of the time the
test rejected the null hypothesis. For sample size of 60, the null hypothesis is rejected
100% of the times.

7.9 Discussion

In the previous section we used a two sample permutation procedure to test the null
hypothesis that the sample of real degraded characters and the sample generated by
the estimated degradation model are from the same underlying population. We found
that when the sample size is forty, the test procedure rejects the null hypothesis.

In fact, in a two sample test, if one of the samples is from a distribution that is
even slightly different from the second sample’s distribution, the statistical testing
procedure will be able to reject the null hypothesis that the samples are from the
same underlying population if the sample size is large enough.

Since we know that any model of a real process, with very high likelihood, is
just an approximation to the real process, the samples generated from the model will
be different from the real samples. Thus, any validation procedure will be able to

distinguish the real and synthetic samples if the sample sizes are large enough. In
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other words, it is futile to test the equality of the distribution of the synthetic samples
and the real samples; they will be always proved to be unequal if a sample size that
is large enough is used. Even if some other validation procedure is used, for example
any method based on comparison of confusion matrices, the equality test is always
going to give a negative result when the sample size is made large enough.

The next question is: How can one use the validation procedure in practice if the
models are always going to be proved incorrect?

There are two ways one can approach this impasse. First method is to use the
validation procedure for comparing two models. That is, given two models, and a
fixed sample size, we use the validation procedure to quantitatively judge which of
the two synthetic samples is closer to the real sample.

The second method is to use an approximate hypothesis test instead. That is,
given two samples, we will use a test to say whether the two distributions are within
€ instead of being equal.

In the following subsections we discuss the two methods in more detail.

7.9.1 Comparing Two models

Let us say there are two document degradation models M; and M,. The problem is
to find the model that is closer to the real process. We know that if the sample size
N of the synthetic samples and the real samples is increased, after a certain point the
validation procedure will start rejecting both the models. However, we will now give
a procedure that will allow a researcher to decide which model is closer to reality for

a fixed sample size N.

1. Fix the sample size N.

2. We are given the real sample D of size N.

3. Generate synthetic samples 57 and S, of size N using the models M; and M,

respectively.

4. Conduct the two sample validation test using the real sample D and the syn-

thetic sample S;. Let the associated P-value be p;.
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5. Conduct the two sample validation test using the real sample D and the syn-

thetic sample S,. Let the associated P-value be p,.

6. If py > py, the model M; is closer to the real process for a sample size of N.

Otherwise the model M, is closer.

Thus the above procedure allows a researcher to choose between models.

When we were choosing between parameter setting for a fixed model, we could
use the power funciton to arrive at the best parameter sitting. However, two different
models have different parameter space and hence they cannot compared using power

functions. The P-value forms our means of comparing the models on a common basis.

7.9.2 Approzimate Tests

Let X = {z1,z2,...,2,} be a sample of real ‘¢’s and let Y = {y1,92,...,¥yn} be
sample of synthetic ‘e’s.

Let us say we are given a distance function p(X,Y’) between the sets X and Y.
Since X and Y are random variables, p(X,Y) is a random variable. In section 6.2
we described a method for computing the null distribution of p(X,Y’) which is the
distribution of p(X,Y’) under the assumption that X and Y come from same under-
lying population. Now, instead of shuffling the two samples X and Y, as was done
in section 6.2, and then computing the null distributions, we will proceed slightly
differently. We will compute two empirical distributions. The first distribution is
generated using the same procedure but instead of using samples from both X and
Y, data only from X is used. That is, the set X is split into X; and X, and the
permutation procedure is applied J times to generate the empirical histogram. Let
the empirical null distribution obtained only using X be Fx = (p1,p2,...,pr) and
similarly let the null distribution obtained only using Y be Fy = (41,4, -.,qL)-
These empirical distributions are computed by breaking the real line into L intervals,
counting the number of elements that fall into each bin, and then dividing each count
by the total number of trials J.

We will use the Bayes error as a distance measure between the two density func-
tions Fx and Fy. Bayes error is defined by:

1 L

BE = §Zmin(pl,ql) (7.8)
=1
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Notice that if the distributions X and Y are close, BE will be close to 0.5. If they
differ, the Bayes error will decrease. Thus the Bayes error is bounded: 0 < BE < 0.5.
We will test the hypothesis BE < €. Now, in order to use the Bayes error as a test
statistic, we require its null distribution. To test this hypothesis at the a significance

level we need to determine 8 such that

a = P(>_ min(g,p) > B|Y_ min(q,p) < €) (7.9)

=1 =1

and we will reject the hypothesis if the test statistic 7 = ¥, min(g;, p;) is greater
than 8.

Here € is the user-specified threshold on the Bayes error, and 3 is the location such
that the area under the null distribution and to the right of 8 is «, the significance

level of the test. To compute the null distribution we proceed as follows:

1. Choose g;, pr at random such that they satisfy the constraint 7, min(q;, p;) <

€.

2. Generate J samples according to multinomials (py,...,pz) and (qi,...,q5),
where J is the number of trials that were performed to estimate Fx and Fy.

Then use the samples to estimate the empirical probabilities ¢, p;.
3. Compute the statistic T = YF, min(g;, p1).
4. Repeat steps 1 through 3 K times and compute T3, £ =1,..., K.

5. The normalized frequency distribution of T} is the null distribution.

Notice that the Kolmogorov test is a special case of the Bayes error distance. In
Kolmogorov test, the maximum distance between the two binned cumulative distri-
butions is used as the test statistic. The maximum distance is used as a test statistic
because the corresponding null distribution is known (derived theoretically). In the
case of Bayes error, however, the null distribution is unknown. Thus we create an

empirical null distribution using the data.



Chapter 8
DISCUSSION

In this chapter we will discuss many issues and concerns that are related to the

thesis topic.

8.1 The Scientific Method

The scientific method dictates that any explanation of a particular phenomenon
should have the following two components. First, there should be a model for the
phenomenon; and second, an experiment should be conducted to verify if the model
is correct. The proposed model itself should be such that experiments can be de-
signed to test the model’s effectiveness in explaining the data. The model should
then be used to predict the consequences of a hypothetical experiment. If the model-
based predictions agree with the empirical data gathered by actually conducting the
experiment, we declare that the model is a scientific explanation for the phenomenon.

If one can conduct an experiment and show that the model-based prediction is
not close to the experimental results, we say that the model is not valid, or not
a good model. Furthermore, if we have two models and the first model predicts
the outcomes of an experiment more accurately than the second model, we declare
that the first model is a better model or explanation of the phenomenon. Thus this
hypothesize-and-test loop allows us to weed out models and compare models against
each other.

An important point to note is that if the model accurately predicts the results
of an experiment, we can only say that currently we do not have evidence against
the model. This does not mean that the model is correct. For instance, it might so
happen that although the model predicts the results of one experiment accurately, it
does not predict the results of another experiment accurately. Thus a model is correct
until proven otherwise. In physics, Newtonian mechanics was considered a correct
model for motion until it was noticed that the behavior of bodies at high velocity

could not be explained by the theory. Relativity theory is the currently accepted
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theory for motion.

So what about mathematics? Mathematics is also a science, albeit of a different
type. In mathematics there are axioms that are assumed correct without question.
Various relations are then derived from the axioms using the symbol manipulation
rules of a particular mathematical system. For instance, in group theory, all the
results are derived from the definition of groups. Since the definitions and axioms
have nothing to do with natural phenomenon, the results of the subsequent symbol
manipulations have nothing to do with the natural world. Thus, mathematical results
stand on their own, and no experiment, in the sense of measuring something, needs
to be done to verify the results.

The Webster’s dictionary gives the following definition for ‘scientific method’:
“principles and procedures for the systematic pursuit of knowledge involving the
recognition and formulation of a problem, the collection of data through observation

and experiment, and the formulation and testing of hypotheses.”

8.1.1 Electrical Engineering and the Scientific Method

The scientific method, which was briefly summarized in the previous section, does
not restrict its applicability to natural phenomena alone. Let us say an engineer
designs a new OCR algorithm that is supposed to work for certain class of scanned
documents. Here one can model the class of documents, the printing and scanning
processes, and finally the algorithm. The designed experiment, once performed, in-
dicates whether or not the algorithm works according to our prediction. If it does
not, the engineer individually checks the object model, the imaging model, and the
algorithm itself. The algorithm is improved by this process of scientific analysis. In
fact, the Webster’s dictionary defines the word ‘engineering’ as: “the application of
science and mathematics by which the properties of matter and the sources of energy
in nature are made useful to people in structures, machines, products, systems, and
processes.”

On occasions when an algorithm shows potential for monetary profit, or when
there are time constraints, scientific analysis may be bypassed — the rigorous scientific
method is not applied to the designed algorithm to check if the claimed features of the
algorithm agree with the experimental findings. However, the engineering tradition

does not encourage such practice. In fact, many research areas such as document
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understanding have hit a road block due to such practices.

8.1.2 Computer Science and Scientific Method

There has been much debate whether computer science is a scientific discipline or
an engineering discipline. It is quite amazing that well-respected computer scientists
believe that computer science is not about validating and comparing models. For
instance, Juris Hartmanis, a physicist-turned-computer-scientist, who received the

1994 Turing award for developing the concept of computational complexity, says

[Har94b]:

“...Computer science deals with information, its creation and processing,
and with the systems that perform it, much of which is not directly re-
strained and governed by physical laws. Thus computer science is laying
the foundations and developing the real search paradigms and scientific
methods for the exploration of the world of information and intellectual
processes that are not directly governed by physical laws. This is what

sets it apart from the other sciences ...”

We disagree with Hartmanis. The information that is gathered (using various types
of sensors) in document understanding, computer vision, et cetera is clearly at the
mercy of the imaging process. The imaging process itself is governed by the physical
laws and thus we are forced to model the sensed data, which is not created by a
computer, and which can be noisy. This in turn leads to various competing models
for the sensing process and various optimal algorithms for each model. However,

Hartmanis thinks otherwise:

“Thinking about the previously mentioned (and other) theoretical work in
computer science, one is lead to the very clear conclusion that theories do
not compete with each other as to which better explains the fundamental
nature of information. Nor are new theories developed to reconcile theory
with phenomena, as in physics. In computer science there is no history
of critical experiments experiments that decide between the validity of

various theories, as there are in physical sciences.”

Our impression is that Hartmanis has focussed on a narrow area of computer

science that is referred to as ‘theoretical computer science’ (mainly automata theory,
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computability and complexity theory). True, these are mathematical fields that start
with definitions and abstract mathematical models of computers, languages and al-
gorithms and use the rules of mathematics to arrive at relationships and properties
of the abstract model being studied. Research in these areas is as scientific as a
mathematician’s research. However, all areas of computer science that have to sense
the natural world (most artificial intelligence topics), are also scientific disciplines,

but like physics and other natural sciences. Fortunately many others feel similarly

[H95]

8.1.8 Performance FEvaluation and Characterization

Now that we have talked about the scientific method, we can easily see how perfor-
mance evaluation forms a part of scientific investigation. In the context of computer
vision, suppose we are given an algorithm that is claimed to perform a certain task,
on a specified population of images and to a specified accuracy level. The algorithm
typically has various algorithm parameters, and the image population too can be
specified by certain image population parameters. We have two problems at hand.
The first problem is to verify that the algorithm works as claimed over the entire
population of images it is supposed to work on. The second problem is to provide
the algorithm users some way of predicting the results of the algorithm on a given

set of data.

8.2 Automatic Groundtruth: Making the Scientific Method Practical

Having talked about the scientific method, it is important to realize that in many
cases it may not be possible to apply the scientific method. For example, in the case
of OCR, to check whether an OCR algorithm actually performs at the advertised
accuracy level, we have to know what is the correct answer (that is, the groundtruth).
Furthermore, since the population on which the algorithm is applied is large, a large
database of scanned documents with groundtruth is required. Such large databases,
until now, were not feasible since they required a person to manually annotate a
document image with groundtruth information. Since manual groundtruth is prone
to errors, expensive, laborious, time consuming and a health hazard, the project was

not attempted.
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However, this thesis has changed the situation. Our closed loop procedure allows
us to automatically generate groundtruth information for scanned document images.
Not only that, it works for any language. Thus, now it is possible for the research
community to generate large databases with thousands of scanned characters with
groundtruth. In fact, we have already produced such a database with 62000 charac-
ters.

In contrast, the photogrammetry and the medical imaging communities still man-
ually enter groundtruth data. Whereas a team of about seven persons manually
collected groundtruth for seventy aerial images in over two years, our automatic
model-based groundtruth procedure generated groundtruth for 33 document images
in two and half hours, without any human intervention. There is no reason why our
procedure cannot be used to groundtruth aerial images.

It is interesting to note that all the components of the registration and groundtruth
generation algorithm — scanners, printers, document typesetting languages, regression
and model-based matching algorithms — have all existed almost as long as researchers

have been working on OCR.

8.3 Degradation Models

So if we have a way of generating large size real data sets with groundtruth, one can
question why is there any need for a generative model? Why not let a large sample
of degraded documents represent the degradation model instead of a functional or
algorithmic model? That is, why not set the parameters of the OCR algorithm by
finding the parameter setting that minimizes the classification error over the entire
database of real images?

As usual, there are pros and cons. From a practical point of view, if a product
is to be delivered in a short time, one might be better off just finding the parameter
setting that minimizes the classification error. In such a situation, only obtaining
the optimal accuracy matters, and an explanation of why the accuracy is what it is
does not matter. Usually the search space in this case is very large and finding the
optimal solution is time consuming.

However, when the optimal performance rates do not meet the requirements, the
OCR algorithm designer asks the question why? An explanation is sought as to what

went wrong where. The components of the systems are investigated with the hope of
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possible improvements.

In a model-based approach, one can derive the optimal solution by assuming an
underlying model. One can say a solution is the optimal and no further improvements
can be made — e.g. the Kalman filter is optimal for Gaussian noise. Furthermore,
using a noise model allows a designer to propagate the error through the various
components and predict what the final performance will be even before implementing

the system and running experiments.

8.4 Validating What?

There is a proposal by another group that the way to validate a model is by testing
the difference in error patterns produced by OCRing a real image and OCRing a
synthetically degraded image. If the errors are ‘similar’ under some distance measure,
there is not enough statistical evidence to invalidate the model. Else, if there is
substantial difference, the model is invalid.

We, on the other hand, work much earlier on in the whole OCR process. Our
method creates a null distribution of a test statistic that is a distance function between
two sets of degraded characters. One set of degraded characters is real, the other is
synthetic. If the p-value associated with the test is less than the significance level set
by the user, the null hypothesis that the two samples come from the same underlying
distribution is rejected. Otherwise, we say that there is not enough evidence to
invalidate the model.

There are many problems of using an OCR in the procedure for validating a
degradation model. First, it is important to remember that what is being validated
is the model and the OCR system together and not just the model. Similarly, in our
methodology, what is being validated is the model and the distance function together
and not just the degradation process. Thus, using an OCR for validation implies that
the validation results become a function of the OCR package and all its parameters.
A typical OCR is quite complicated, and so for each parameter setting of the OCR
package, one gets a different validation result. In contrast, in our methodology the
distance functions are much simpler entities than OCR systems. Besides, we provide
a rigorous statistical procedure based on the power function that can decide which
distance function gives a more powerful test. On the other hand, computing a power

function for an OCR-based validation scheme would be, to say the least. quite time
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consuming.

Furthermore, OCR packages usually perform noise removal, skew compensation,
etc. as part of a preprocessing stage. Thus, something is awkward in the OCR-
based evaluation — it is the degradation that is getting validated but a component
in the process is getting rid of it. If for example, only rotation degradation is being
validated, a validation scheme that uses an OCR with skew correction will never be
able to detect a rotation degradation because it will get undone by the preprocessing

step.



Chapter 9

CONCLUSIONS

Two document degradation models are proposed. The first model is applied on
binary images at a page level and it accounts for local degradations that occur while
printing, photocopying and scanning documents. The model is motivated by studying
the spatial properties of the degradations and using the morphological operations
that best model such spatial distortions. The reason for representing the distortions
using morphological operations is simple: since most noise removal and restoration
algorithms today are morphological, it is best to have a degradation model that fits
into this framework. In particular, the local degradations are modeled by making the
pixels flip from zero to one and vice-versa according to a probability that depends
inversely on the distance between the pixel and the boundary of the character. The
correlation due to the optical point spread function is modeled by a morphological
closing operation. The model is parametrized and thus it can be used to synthetically
generate a large number of degraded documents. Moreover, since the input to the
model is a binary image, binary document images in any language can be degraded
using this model. The implemented software takes approximately two minutes on a
SUN sparc 10 to degrade a 3300 x 2550 binary image.

The second model accounts for the perspective and illumination distortions that
occur while photocopying or scanning a thick, bound book. The model is based on
the physics of imaging, and takes into account the optics of the imaging system, the
shape of the book surface and its reflectance properties. As a result, it can model
the defocus, illumination change and the gradual skew in the imaged document. This
model is also parametrized and allows us to synthetically generate distorted document
images. Furthermore, a model such as this allows researchers to ‘undo’ the perspective

and illumination distortions. This model was also simulated and on a sun machine.

A methodology for producing groundtruth information for the synthetically de-
graded documents (the identity, location, bounding box, and font type of individual

characters) is described. The general method is to (i) start with a document in a sym-
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bolic form, where the text, formatting and layout is known without ambiguity, (ii)
create the ideal bit map, (iii) create the ideal groundtruth from the knowledge of the
typesetting language, and finally (iv) degrade the document image using the model.
Since a document can be typeset in various styles and formats and degraded using
this model, the methodology gives us access to a vast variety of degraded documents.
In this thesis the text is represented using ASCII and the layout is typeset using
IARTEX. The groundtruth for synthetically degraded document images is generated ef-
fortlessly, and at no cost. Since documents of various types and in various languages
can be typeset using IATEX or any similar typesetting language, groundtruth for text
in any language can be generated using our methodology. In fact, we used the model
and the groundtruth method to generate, synthetically degraded music, mathematics,
Arabic, Hindi and engineering linedrawing document images with the corresponding
groundtruth. An implementation of this methodology takes less than a second on a
SUN sparc 10 to generate groundtruth for a synthetically degraded document page
of size 3300 x 2550 with approximately 2000 characters.

Accurate character groundtruth information for real document images has always
been difficult to obtain. In this thesis a methodology is described to generate highly
accurate groundtruth for real document images. The steps of the procedure are: (i)
generate an ideal document image with the associated ideal groundtruth, (ii) print
the ideal document image, (ii) scan the printed page, (iii) find a transformation
that registers the ideal document image to the real document image, and finally
(iv) transform the ideal groundtruth using the estimated transformation to get the
groundtruth for the real document image. The procedure takes about five minutes
on a SUN spac 10, for an image of size 3300 x 2550 and with about 2000 characters
per page. Again, this methodology is independent of the language in which the text
is written, and so can be used to generate groundtruth for real documents in any
language. A database of 33 real document images with a total of 6200 characters,
and their corresponding groundtruth is created using this methodology. Creation of

such accurate databases of real character groundtruth was not possible until now.

Two methods for estimating the parameters of the degradation model is described
and implemented. Thus, given a real document and its corresponding ideal document,
the parameters of the model that generates ‘similar’ looking degraded documents from

ideal documents can be estimated. The first method samples the six-dimensional
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parameter space coarsely and chooses the parameter value that yields the lowest
objective function value. The second method starts with an initial estimate and then
searches for a minimum along each parameter one at a time. The process is stopped
after three iterations. The estimation procedure is extremely useful for creating large
database of synthetically degraded documents from a small sample of real documents.
This obviates the need for manual printing, photocopying and scanning of documents

on a large scale.

The degradation model validation problem is posed as a two-sample statistical
hypothesis testing problem. A non-parametric permutation test is adopted for this
purpose. The user specifies a test statistic, which is essentially a distance function
on the two sets of degraded characters. The null distribution, which is the distribu-
tion of the test statistic under the hypothesis that the two samples come from the
same underlying population, is created using a permutation procedure. The p-value
corresponding to the test statistic associated with the the two sets is computed and
compared with the user-specified significance level to reject or accept the null hy-
pothesis. This procedure and several robust variants are implemented. The distance
functions used for the test statistic are somewhat heuristic and questionable. This
issue is addressed by using the power functions — a standard statistical device — to
find the distance function that is more powerful. The local degradation model passes
the validation test when the sample size is small but rejects it when sample size is
increased. This is so because any model of a real world process is an approximation
and thus will not pass the test if the sample size is increased. A method of conducting
approximate tests instead of equality tests is also described.

Another way of using the validation procedure is for choosing between models.
After the validation procedure is run, a p-value is obtained. Thus if two different
models are tested on the same real data, each validation procedure gives rise to a
p-value for each model. The model whose associated p-value is larger is in closer

agreement with the real data and thus should be preferred.

A summary of the major contributions in this thesis now follows.

9.1 Summary of Contributions

The main contributions that are presented in this thesis are:
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. A model for the local degradations that are introduced while printing, photo-
copying and scanning a document. This model is motivated by studying the
spatial properties of the degradations and the natural morphological operations
that can represent such spatial characteristics. Documents of various types and

in various languages can be degraded at user-specified levels.

. A physical model that accounts for the perspective and illumination distortions
that occur while photocopying or scanning a thick, bound book. The model
takes into account the optics of the imaging system, the shape of the book
surface, defocus, illumination and reflectance properties of the surfaces. This
model is also parametrized and allows us to synthetically generate distorted

document images.

. A methodology for automatically generating groundtruth for synthetically de-
graded documents. The method uses the original symbolic text and the typeset-
ting information and produces the groundtruth for the synthetically degraded

document image in any language.

. A methodology for automatically generating groundtruth for real degraded doc-
uments. The method registers the ideal document image to the real document
image and then transforms the ideal groundtruth using the estimated transform
such that the groundtruth overlays the real document image very accurately. A
database of 33 real document images with 6200 characters and the correspond-
ing groundtruth information is created using this methodology. Now researchers
can evaluate their OCR systems at character level on large databases of real

documents. This was not possible until now.

. A methodology for degradation model parameter estimation is given. Given a
sample of real images, the nonparametric estimation procedure finds the pa-
rameter values that make the simulated samples closest to the real ones. Thus,
from the user’s point of view, a person having a small sample of real images
can create a large sample by first estimating the parameters of the model and

then synthetically generating a large data set.
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6. A methodology for degradation model validation. Given a sample of real doc-
uments, and a sample of synthetic documents, this nonparametric hypothesis
testing procedure tests the null hypothesis whether or not the two popula-
tions come from the same underlying distribution. The local degradation model
passed the validation procedure for small sample sizes but rejects it when the

sample size increases.

7. A method for comparing models is discussed. After the model parameters are
estimated, the validation procedure can be run to obtain the associated p-values.

The model with higher p-value is better.

8. A methodology based on the power function that allows to optimize the vali-
dation procedure is described and implemented. The validation procedure has
variables such as the choice of distance functions. This power function procedure
allows us to select the distance function that makes the validation procedure

more powerful (in a statistical sense).

9. All the software and the real character groundtruth data sets will be made
available to researchers on a CD-ROM.

9.2 Future Research

This work has opened up many new areas of research that need to be explored.

e Since there are two models, experiments need to be conducted to compare both

models and see which one is closer to the real degradations.

o Our parameter estimation methodology requires us to have the ideal image. In
many cases this is not possible. How does one approach the problem then? One
way might be to collect symbols from the image and make an ‘ideal font’ by

averaging a large number of instances of the same symbol.

e A bootstrap procedure for estimating the covariance of the estimated parame-

ters. Other techniques could be compared.
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e Efficient search/optimization procedures for estimating the parameters of the
models would help. The objective function is not continuous and differentiable
and so currently we have computed the estimate by evaluating the objective

function at sampled locations in the parameter space.

e Since there is another group having another validation procedure, both valida-

tion procedures can be be compared to find which one is more sensitive.

e A method for validating the perspective distortion model.
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Appendix A

NULL DISTRIBUTION FOR GAUSSIAN
POPULATIONS

In this appendix we compute the null distributions of two set distances p(X,Y")
when z; and y; are Gaussian distributed. We show that when z and y are each
Gaussian distributed with a known variance o2, the two distance functions considered
are x? distributed under the null hypothesis. Such closed form solutions for the
null distributions are possible only when the underlying distributions are known «
priori. However, this is not the case in general — the Gaussian assumptions might
be appropriate in some settings but could be completely wrong in other settings.
Thus, the non-parametric permutation method described in chapter 6 is a much
better approach to computing the null distributions when the forms of the sample
distributions are not known. Nevertheless, for the purpose of validating the software
and algorithm for computing the empirical null distribution, the Gaussian case is
very useful since it allows us to compare the empirical distributions against known

(theoretically computed) distributions.

A.1 Inter Cluster Mean Distance

Let X = {z1,2,...,zn} be a set such that z; € R and z; ~ N(ux,o?). Similarly,
let Y = {y1,92,...,yn~} be a set such that y; € R and y; ~ N(uy,o?*). The problem
is to test the null hypothesis that ux = py, when o2 is known.

Now, we know that

. 1 &
ix = 32 @i~ N(px,0"/N) (A1)
=1
1 N
v = 5 2.9~ N(pr,0*/N) . (A.2)
2=1

Therefore,

ix — iy ~ N(px — py,20°/N) (A.3)
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and

N/2(jix — fioy)/o ~ N(px — py,1) . (A.4)

Now, let
t=p( )= (£ iy )?
p X, Y 952 Hx Hy ) -

Thus under the null hypothesis that ux = py, we have
t=p(X,Y)~xi. (A.5)

Thus, instead of empirically computing the distributions as described in chapter 6
we can use the above analytic form of the distribution to accept or reject the null
hypothesis. Moreover, we see that the empirical method has reduced to a standard

statistical technique when the underlying distribution is known to be Gaussian.

A.2 Likelihood distance

In the previous section we picked a particular distance function p(X,Y’) and showed
that its null distribution is x2. In this section we pick a distance function based on
the likelihood function of the data. It turns out that this distance function is the
same as the one used in the previous section.

Let X = {z1,z,...,zn}, where z; € R, and z; ~ N(ux,oc?). Similarly, let
Y = {y1,¥2,---,yn}, where y; € R, and y; ~ N(uy,o?). The problem is to test the
null hypothesis that px = uy = u.

Let py(X) denote the distance of set X from set Y. Here we use a function of the
likelihood for p.

ex(Y) = f(P(y1,-..,yn|Z1,...,2N,0)) (A.6)
er(X) = f(P(z1,...,zN|y1,...,YN,0)) . (A.7)

In general, the above distances need not be symmetric in X and Y. Hence, we also

consider symmetric distances of the form

ID(X,Y):f(P(ylj...,yN|iL'1,...,fEN,U)P(CIJ1,...,$N|y1,...,yN,U)) : (AS)
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We can also consider the right hand side in the equation above divided by
log max, P(z1,...,ZN,Y1,---,YN|§, o). That is,

P(y1,...,yn|Z1,...,2N,0)P(21,...,ZN|Y1,..., YN, O
p(X,Y):log( (v: ma}'{ 1P(m )P (a1 s AN (A.9)
n 17"'7$N7y17"'7yN|/1’70-)

We can use the standard rules of probability theory to manipulate the above

equation as follows.

P(ys,...,yn|z1,...,2N,0)

[eo]

= / P(,Ul,yl,...,yN|CE1,...,CEN,O')d,UI

— o0

/‘°° P(yl,...,yN,:El,...,:EN,p,,U)d
—o P(zy,...,zN,0) a

_ /‘°° P(yl,...,yN|a:1,...,a:N,p,,U)P(acl,...,a:N,p,,a)d
—o0 P(zy,...,zN,0)
/00 P(yla---7yN|lu’:o-)P($1:'--;mN|)u’70-)P(/u’70-)d
—o0 I P(z1,...,zn|A, 0)P(X, 0)dA

©

(A.10)

Now, we make the assumption that p and o are independent so that P(u,o) =
P(p)P(0). Furthermore we assume that g and o have a uniform prior. Although
this implies the prior is improper (since its integral is not equal to 1), the posterior
distribution integrates to one. Thus, P(u,0) = P(u)P(c) « €. But the € in the
numerator and the denominator of equation (A.10) cancel out and the numerator

can now be written as follows.

P(y17"'7yN|lu’70-)P(m17'")IN“"’)U)P(/I’)U)

]_ N 1 N 2 1 N 1 N ) 9
= ( 2 ) e 202 i=1(yi_ﬂ) . ( 2 > e—m jzl(z‘J—p,)
mo N/ 2mo

2N N N
_ 1 e_#[Em(yi—u)2+zj=1(zrﬂ)2] . (A.11)
2no
Since the denominator is not a function of either p or y,...,yn, it is a con-
stant. The denominator can be computed by integrating out u,y,...,ynx from the

probability density in equation (A.11). Thus,

P(y,...,ynlz1,...,2N,0)
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- C/ ( 27rU> € 5T [E’ () D (o ”)] (A.12)

where the constant of integration C' can be found by equating the right hand side to
1. In order to compute the integral, we simplify the exponent inside the integral.

N

(=) + ;(wa -

S YRR T RS R S
= é(yz — 5+ g(yz —§)(F — u) + NG - p)?
¥ (as =2 + 3 (o =)o — )+ Nz = )
— S Y P NG NG (A1)
But,
(F—p)?+(E-n)? = w2+y2+2[#2—2ﬂ(i;g)]
- epon ()
al (50« (7]
Sl ()]
- (m_zy) +2[M—(m;y)r . (A.14)
Thus, from equations (A.14) and (A.13)
= é(ml—if-Fé(yg—y)2+?(m—y)2+2N<,u—(j+g))2 (A.15)

Also, since

1 _;(”_H_@

[+ At
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we have,

P(y,...,ynlz1,...,2N,0)
N
_ o < L )2 M0t | (e P (-9 + H -0 (
V2N

Now to get the value of C, we proceed as follows.

= o (1 Y L[S (w43 (mjon)?
]_ = C/ .../ < ) e 202 [Ez:l(y y‘) +EJ=1( y‘) :|dy1 __.dyNdy,

2o

1 N N 2 2

2ro

N
1 2 __ 1 NN )2
- () e TR (A.18)

Thus, we have computed C to be

—(N+1) 1 N o,
o < 1 ) VN et [ Lim @] (A.19)

2ro

A.17)

2no

Finally we now can write the complete conditional density as

P(ys,...,ynl|z1,...,2N,0)

= [( 1 )‘(N+1)\/Neﬁ[2f;(zi_i)g]]

2no

( L )” 210w | S e 4 D -0+ 5 -9

2ro V2N
N
1 1 N a2 N(F_5)2
_ < 2M> VE e[Sy ] (A.20)

Thus, we can use the 202 times the negative exponent of the conditional proba-
bility, as given in equation (A.20), as the test statistic px(Y). Notice that it is not

symmetric in X and Y.

px(Y) = f(P(y1,...,yn|21,...,2n,0)) (A.21)

N 1
= —log P(y1,...,y~n|Z1,...,2N,0) + 0 log(2mo?) — 5 log(2) (A.22)
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= (z(yi -9)° + g(g—; - 7)° (A.23)

ev(X) = f(P(z1,...,zNly1,...,yN,0)) (A.24)
= —log P(z1,...,zNly1,...,yN,0) + glog(Zwaz) — %log(Z) (A.25)

= Z:(a; —z)*+ g(y —z)? (A.26)

) (A.27)

In order to get a symmetric test statistic, we can look at the product of the conditional

probabilities so that

px(Y)+o(X) = Yue =9+ 5 (=0 + Lo~ + 57— (A28)

But we know that the sum of within cluster scatter and the between cluster scatter

is equal to the total scatter. Thus,

N N N _— N - =
_ N, _ _ z+7\\2 Z+7\\2
S+ 5 @—gr+ @2t =Y (s - (5 0)) +X (w- (52)
s 2 s s 2 e 2
= = 2= 1=

Notice that for given data sets, the above summation is the same constant regardless

of which points go with z; and which with y;. Thus,

px(¥Y) 4 py(X) = O+ 5 (5 -3 (A.29)

where C is a constant. Thus a symmetric test statistic based on likelihood is

p(X,Y) = (5~ 5) (A.30)

The reason for normalizing by o2 will become clear shortly.
The Monte Carlo hypothesis tests can now be conducted with the distance func-
tions p defined in this appendix. In Figure A.1 we show that the theoretically com-
puted null distribution agrees with the null distribution computed empirically by

random permutations.
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It is important to statistically compare the test statistics px(Y), py(X), and
py (X) computed in this section. Notice that,

z ~ N(0,0%/N)
g ~ N(0,0°/N)
-9 ~ N(0,20°/N)
Thus,
(z—7) ~ 20°/Nxi
and,
N _\2 2
pXY)= 5@ -9 ~ x (A.31)

Thus, p(X,Y) has a mean of 1 and variance of 2

Similarly,
1 & 2 2
;Z(yi_ﬂ) ~ XN-1
=1
Thus,
1 ¥ ) N,
S L=+ 5@ =0~ x4,
=1
so that

px(Y) ~ x5 - (A.32)

We see that px(Y') has a mean of N and variance of 2N. This implies that the p(X,Y)

is a more powerful test statistic (in terms of false alarm) than px(Y) or py(X).
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Empirical and Theoretical Null Distribution
N = 75; Num Permuts = 1000; x,y ~ N(15,1); t ~ xl2

15 |
—— Empirical
“‘ —— Theoretical

1.0 |
2
E
S
Q
o
a

0.5 |

0.0 BT . ‘ ‘

0.0 5.0 10.0 100

t = p(X,Y) = N(xbar - ybar)’/(20”)

Figure A.1: Empirical and theoretical null distributions for two sample tests. Samples
X and Y of size N = 75 are drawn from N(15,1). The empirical null distribution is
computed as described in chapter 6. We use 1000 random permutations for computing
the distribution. The distance function used is t = p(X,Y) = N(z — 4)?/(20?%). The
theoretical distribution of ¢ is x2. The empirical and theoretical plots have been

plotted together in this figure.



Appendix B
POWER FUNCTIONS FOR GAUSSIAN POPULATIONS

Let us consider the case where we have a sample z1,z,,...,z, drawn from a
Gaussian population with a known variance, o3. That is, z; ~ N(u,02). Suppose we
have to test whether or not the mean of the population is equal to a specified value:
i.e., 4 = po. If we have multiple ways of testing, it is fair to ask which one is the best.
This can be ascertained by considering the probability of Type I and Type II errors
incurred while performing each test and selecting the one that has lower Type I and
Type II errors. Let Hy be the null hypothesis and H4 be the alternate hypothesis.
That is,

Hy : p= po. (B.1)
Hy @ p# po. (B.2)

When we reject Hy given Hy is true, we call the error to be Type I, or a misdetection.
When we accept Hy given H, is true, we call the error to be Type I, or a false alarm.
In most statistical hypothesis testing procedures, one fixes the size € of the test, which
is the probability of Type I error. If € is fixed for all the tests, the probability of Type
I error is the same for all tests, and thus cannot be used for comparison. What can
be used for further comparison amongst the tests is the Type II errors. The test that
has the lowest Type II error is the best test.

We are given that under the null hypothesis ¢ ~ N(po,03). Thus we can find z*
and a such that

o 1 0 —2%(93—#0)2
P(z > z*|Hy) = / e % dz = a (B.3)
2wo Jeo
Thus as a test, one would use the following rule: if z < z® accept Hy, otherwise
accept H4. By design we are assured that the misdetection rate is going to be €. That
is, if one runs this test 7' times with true null hypothesis, on the average, €' number

of times the null hypothesis will be rejected.
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Now consider the case when the alternate hypothesis, Hy, is true. That is, z ~
N(p,02), where u # po. Now the probability of rejecting the null hypothesis Hy as

a function of y is given below.

1) = Pl lH) = [ (B.4)
21g Jx=

The function y(u) is called the power function. The false alarm rate, which is proba-

bility that the null hypothesis is accepted given that the alternate hypothesis is true,

is given by P(z < z%|Ha) =1 — v(p).

If two tests have power functions v;(x) and v2(u), the test whose power function
is higher for all values of u, is a more powerful test, and is considered better. The
power function has a minimum at g = p; where it attains a value € and gradually
increases as we go away from u,, and attains a value of 1 when we go far enough on
either side. The sensitivity, i.e, the width of the notch, is a function of the sample
sizes N and M and the various metrics used. When the sample size is small, the

notch is broader and when the sample size is large, the notch is sharper.



Appendix C

MULTIVARIATE HYPOTHESIS TESTING FOR
GAUSSIAN DATA

Multivariate hypothesis testing plays a central role in statistical analysis, which is
an integral part of computer vision and image processing. Although theory of univari-
ate hypothesis testing and software implementations are readily available, the theory
of multivariate testing is usually not available in one book, and we are not aware of
software implementations of multivariate tests. In this appendix we summarize var-
ious hypotheses that can be made about the population parameters of multivariate
Gaussian distributions, and describe the various tests that can be conducted to reject
these hypotheses. These tests have been implemented in C and we describe the inter-
face to these functions. The theory and software have been validated by statistically
testing empirical distributions against their theoretical distributions. The software is

available free.

C.1 Computer vision and multivariate testing

Many computer vision problems can be posed as either parameter estimation prob-
lems (for example, estimate the pose of the object), or hypothesis testing problems
(for example, the image represents which of the N objects in a database.) Since
the input data (such as, images, or feature points) to these algorithms is noisy, the
estimates produced by the algorithm are noisy. In other words, there is an inherent
uncertainty associated with the results produced by any computer vision algorithm.
These uncertainties are best expressed in terms of statistical distributions, and the
distributions’ means and covariances. Details of the theory and application of covari-
ance propagation can be found in [Har94a|, and the references cited in that paper.
Usually, implementations of vision algorithms run into thousands of lines of code.
Furthermore, the algorithms are based on many approximations, and numerous math-
ematical calculations. One way to check whether the software implementation and

the theoretical calculations are correct is by providing the algorithm input data with
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known (controlled) statistical characteristics, which is possible since the input data
can be artificially generated, and then checking if the estimated output is actually
distributed as what was predicted by theoretical calculations.

Since many of the estimation problems are multidimensional, testing whether the
means and covariances of the empirical distribution and predicted distribution are
the same is easier than testing whether or not the shapes of the two distributions are
the same. In this article, we summarize statistical tests for the case when the random
estimates can be assumed to be multivariate Gaussian. We also describe the function
interfaces to software we have implemented for conducting these tests. Although the
software libraries and environments (e.g. Splus, numerical recipes) are available for
conducting the tests for one-dimensional samples, we are unaware of similar software
libraries for multivariate case. In fact, most of the statistics books do not give all
the five tests we have give (for example, Koch [Koc87] does not address the fifth
testing problem). A description of how the software and the theory are tested using

statistical techniques is also included.

C.2 The hypotheses

Let z1, 3, ..., z, be a sample from a multivariate Gaussian distribution with popula-
tion mean p and population covariance ¥. That is, z; € RP and z; ~ N(u,X), where
p is the dimension of the vectors z;.

We can make various hypotheses regarding the population mean and covariance
depending on what is known and what is unknown. The data z; are then used to
test whether or not the hypothesis is false. Notice that each population parameter
(here we have two — p and %) can be either (i) tested, or (ii) unknown and untested,
(iii) or known. If a parameter is being tested, then a claim regarding its value is
being made. If a parameter is unknown and untested, no claim is being made about
the value of that parameter; its value is not known and therefore we cannot use it in
any computation. If the value of a parameter assumed to be known, then its value
is known without error and cannot be questioned or tested, just like the normality
assumption is not questioned. Furthermore, when a parameter value is known, the
value itself can be used in computation of test statistics for other parameters.

In general, if the distribution has ¢ parameters, then there can be 32 — 29 tests.

The reasoning is as follows. Since each parameter can be either tested, or unknown
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and untested, or known, the number of possibilities is 39. But, of these the number

of combinations in which none of the parameters are tested (that is, they are either

known, or unknown and untested — and so do not represent a test) is 2¢. Thus,

the total number of distinct hypotheses that can be made about a sample from a

g-parameter distribution is 37 — 29.

In the case when the data comes from multivariate normal distribution, N(g, %),

we have ¢ = 2 and thus can have 32 — 22 = 5 possible hypotheses. Now we describe

each of the five tests when the data comes from a multivariate normal population.

Hll

Hgl

Hgi

H4I

B = o, (£ =2X; known.) In this test, the question is whether or not the sam-
ple is from a Gaussian population whose mean is uo. The population covariance
Y} is assumed to be known and equal to ¥;. Thus, no question can be asked re-
garding }; — the spread of the population from which the sample comes from is
known without error, and can be used in the computation of any test statistic.
The only thing that is unknown about the population is its mean. The data is
used to reject the null hypothesis that the mean p is actually equal to pqg.

¢ = po, (¥ unknown, untested.) In this test, the question is whether or not
the sample is from a Gaussian population whose mean is pg. No statement is
made regarding the population covariance ¥ and since its value is unknown, it
cannot be used in any computation of a test statistic. Thus, one is concerned
whether or not the location of the sample is around pg, the spread can be

anything and we do not care about that.

Y. =¥, (& = p1 known.) In this test, the question is whether or not the sam-
ple is from a Gaussian population whose covariance is Yo. The population mean
1 is assumed to be known and equal to p;. Thus, no question can be asked re-
garding p; — the location of the population from which the sample comes from is
known without error, and can be used in the computation of any test statistic.
The only thing that is not known about the population is its covariance, and

the data is used to reject any hypothesis about the population covariance.

Y. =¥, (¢# unknown, untested.) In this test, the question is whether or not
the sample is from a Gaussian population whose covariance is 5. No statement

is made regarding the mean p and since its value is unknown, it cannot be used
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in computation of any test statistic. Thus, one is concerned whether or not the
spread of the sample is around Xo, the location (mean) can be anywhere and

we do not care about that.

Hyg: p = po, ¥ =3 In this test, the question is whether or not the sample is from

a Gaussian population whose mean is pg and covariance is Y.

C.3 Definitions

In this section we briefly describe the terms used in the rest of the appendix. For a
lucid explanation of the basic univariate concepts please see [CB90]. A more rigorous
treatment of the univariate and multivariate test is given in [Arn90]. Multivariate
tests are treated in great detail in [Koc87]. The most authoritative reference on
multivariate statistics is [And84]. Although this book has most of the results, it is
not very readable, and the results are scattered all over the book.

A statistic of the data z4,...,z, is any function of the data. For example, sample
mean, Z, is a statistic, and so is the sample variance, S. The statistic need not be one-
dimensional — (Z,S)* together form another statistic of the same data. A sufficient
statistic 1s a statistic that contains all the information about the data; any inference
regarding the underlying population can be made using just the sufficient statistic -
the individual data points do not add any more information to the inference process.
For example, the vector of original data (z1,...,z,)" is a sufficient statistic — it
contains all the information regarding the data. Another sufficient statistic is (z, S)*.
Sufficient statistic is not unique. A minimal sufficient statistic is a sufficient statistic
that has smallest number of entries. For example, for Gaussian data, (Z,S) is the
minimal sufficient statistic.

A hypothesis is any statement about a population parameter that is either true
or false. The null hypothesis, Hy, and the alternate hypothesis, H,, form the two
complementary hypothesis in a statistical hypothesis testing problem.

A test statistic is just another statistic of the data that is used for testing a
hypothesis. The null distribution is the distribution of the test statistic when the null
hypothesis is true. The alternate distribution is the distribution of the test statistic
when the alternate hypothesis is true.

There are two types of errors: misdetection and false alarm. If the null hypothesis
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is true but the test procedure decides the null hypothesis to be false, it is called a
masdetection. When the alternate hypothesis is true but the test procedure accepts
the null hypothesis, it is called a false alarm. The misdetection probability, a, of a
test procedure is also referred to as the significance level. Typical value for « is 0.05.

The power function of a hypothesis test is a function of the population parameter
6, and value of the function B(6) is equal to 1 minus the probability of false alarm.
Ideally, the power function should be zero for # where the null hypothesis is true
and one for all § where the alternate hypothesis is true. For most realistic testing
problems one cannot create a test procedure with such an ideal power function. Power
functions are very useful for evaluating hypothesis testing procedures, as was shown in
this thesis. A uniformly most powerful test is a test procedure whose power function
is higher than all other test procedures.

There are many methods for designing tests and corresponding test statistics.
The test statistics given in this appendix were derived in [And84| by maximizing the

likelihood ratio. Please refer to the cited literature for the derivation.

C.4 Test statistics, null distributions and power

In this section we summarize all the test statistics and their distributions under true
null hypothesis and, if known, their distributions under the alternate hypothesis. For
a detailed discussion and derivations please refer to [And84].

In the following discussion we use the following definitions of z and S :

and

where we have assumed that the data vectors z; are p-dimensional and the sample
size 18 m.
C.4.1 Test 1: p = po with known 3 = 3

Test statistic:
T = (3 — )51 (5 — o). (c.1)
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Distribution under null hypothesis is Chi-squared (Anderson, page 73):

T~X2

p*

The alternate hypothesis is Hy : p # po; the distribution under the alternate hypoth-

esis is noncentral Chi-squared (Anderson, page 77):

T~ Xﬁ,d

where d = n(u — po)'27 (1 — po) is the noncentrality parameter.
Reference: Anderson, pages 73, 77.

C.4.2 Test 2: p = po with unknown X

Hotelling’s Test statistic:

Distribution under null hypothesis (F):
T ~ Fpnp-

The alternate hypothesis is Hy : p # po; the distribution under the alternate hypoth-
esis is noncentral F":

T~ Fpnpd

where d = n(p — po)*Y (g — po) is the noncentrality parameter.
Reference: Anderson page 163.

C.4.8 Test 3: ¥ = ¥o with known p = py

Let

n

C=) (i —m)(zi —m) = (n=1)S + (2 — pa)(z — )" .

=1
and

A = (e/nP2|CS5 [ exp(—tr(CT51)/2) .
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Test statistic:
T = —2log . (C.3)

Distribution under null hypothesis is Chi-squared:

2
T ~ Xp(pt1)/2:

The alternate hypothesis is Hy : X # ¥o; the distribution under the alternate hy-
pothesis is unknown.

Reference: Anderson page 249, 434, 436.

C.4.4 Test 4: ¥ = Yo with unknown p

Let
B=(n-1)85,

and

A= (e/(n = )2 BES (D2 exp(—tr( B, ) /2)

Test statistic:
T = —2log A (C.4)

Distribution under null hypothesis is Chi-squared:

T ~ Xp(p+1)/2-

The alternate hypothesis is Hy : ¥ # 3¥j; the distribution under the alternate hy-
pothesis is unknown.

Reference: Anderson page 249, 434, 436.

C.4.5 Test5: Y =%q and p = po

Define
B=(n-1)§

and

X = (e/nyP™?BRg [ exp (—[tr(BS5") + n(& — o) S5 (2 — 1o))/2) -



126

Test statistic:
T = —2log A (C.5)

Distribution under true null hypothesis is Chi-squared:

2
T ~ Xp(p+1)/2+p

The alternate hypothesis is Hy : ¥ # 3o, and g # po; the distribution under the
alternate hypothesis is unknown.

Reference: Anderson page 442.

C.5 Validating theory and software

Two checks have to be performed. First check is that the theory is correct: the
theoretically derived null distributions of the test statistics are actually correct. The
second check is that the software is correct: the implementation is exactly what the
theory dictates. Both the checks can be done by computing the empirical distribu-
tions and comparing them with the theoretically derived distributions. In the next
subsection we describe how we empirically compute the null distributions of the five
test statistics, and in the following section we describe how we use the Kolmogorov-
Smirnov test to check if the empirical distribution and the theoretically-derived dis-
tributions are the same.

For our implementation we used public domain software for generating random
numbers (ranlib library [BL]) and for computing P-values (cdflib library [BLR94]).

Few other basic routines were borrowed from [PFTV90].

C.5.1 Empirical null distributions

In order to generate the empirical null distributions we proceed as follows.

1. Choose some values for the multivariate Gaussian population parameters p,

and 3.
2. Generate n samples from the population.

3. Compute the value of the statistic, T', for the test you are verifying.
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4. Repeat steps 2 and 3 M times to get 75,2 =1,..., M.

5. The empirical distribution 7' can be computed by computing the histogram of
T;.

We ran the above procedure for tests 1 through 5 described in the previous section
and the plots of the empirical distributions of the corresponding test statistics are
given in figures C.1 through C.5. The population parameters were: The dimension
of data, p = 4 and p = 1; sample size, n = 100; population mean, g = (1 2 3 4)* for
p = 4 and p = 10 for p = 1; population covariance, > = 5] for p =4 and ¥ =5
for p = 1; the number of repetitions M = 500. The histogram of the statistic and
the theoretically derived function are shown in the figures. In the cases that the null
distribution is distributed as x?, one can check the empirical distribution by using
the fact that the mean, variance and mode of a xi random variable are k, 2k, and

k — 2, respectively.

C.5.2 Kolmogorov-Smirnov tests

The Kolmogorov-Smirnov (KS) procedure tests whether two distributions are alike.
The KS test uses the fact that the maximum absolute difference between the em-
pirical cumulative distribution (the KS test statistic) and the theoretical cumulative
distribution has a known distribution (the null distribution). For a more detailed
discussion on the KS test see [PFTV90].

The Kolmogorov-Smirnov test was performed to check if the empirical distribu-
tions and the theoretical distributions were close enough. The p-value for the KS test
are given in table C.1. All the empirically computed null distributions passed the KS
test. Thus we have confirmed that the theoretical derivations of the null distributions

are correct and the software implementing the theory is also correct.
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Test Statistic Distribution Test Statistic Distribution
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Figure C.1: Empirical and theoretical distributions of the Test 1 test statistic under
true null hypothesis. In this case the theoretically derived null distribution is Xf,
where p is the dimension of the data. The histogram was computed by computing
the test statistic 7' given in equation (C.1) M = 500 times. A sample size of n = 100
was used in each trial. In (a) dimension p = 4, population mean x = (1 2 3 4)*, and
the population covariance ¥ = I. In (b) dimension p = 1, mean p = 10, and variance

Y =5.
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Test Statistic Distribution Test Statistic Distribution
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Figure C.2: Empirical and theoretical distributions of the Test 2 test statistic under
true null hypothesis. In this case the theoretically derived null distribution is Fj, ,_,
where p is the dimension of the data. The histogram was computed by computing
the test statistic 7' given in equation (C.2) M = 500 times. A sample size of n = 100
was used in each trial. In (a) dimension p = 4, population mean x = (1 2 3 4)*, and
the population covariance 3 = I. In (b) dimension p = 1, mean p = 10, and variance

Y =5.



130

Test Statistic Distribution Test Statistic Distribution
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Figure C.3: Empirical and theoretical distributions of the Test 3 test statistic under
true null hypothesis. In this case the theoretically derived null distribution is Xf)(p+1)/2
where p is the dimension of the data. The histogram was computed by computing
the test statistic 7' given in equation (C.3) M = 500 times. A sample size of n = 100
was used in each trial. In (a) dimension p = 4, population mean x = (1 2 3 4)*, and
the population covariance ¥ = I. In (b) dimension p = 1, mean p = 10, and variance
Y =5.
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Figure C.4: Empirical and theoretical distributions of the Test 4 test statistic under
true null hypothesis. In this case the theoretically derived null distribution is Xf)(p+1)/2
where p is the dimension of the data. The histogram was computed by computing
the test statistic 7' given in equation (C.4) M = 500 times. A sample size of n = 100
was used in each trial. In (a) dimension p = 4, population mean x = (1 2 3 4)*, and
the population covariance ¥ = I. In (b) dimension p = 1, mean p = 10, and variance
Y =5.
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Figure C.5: Empirical and theoretical distributions of the Test 5 test statistic un-
der true null hypothesis. In this case the theoretically derived null distribution is
Xi(p+1)/2+p where p is the dimension of the data. The histogram was computed by
computing the test statistic 7' given in equation (C.5) M = 500 times. A sample
size of n = 100 was used in each trial. In (a) dimension p = 4, population mean
p = (123 4), and the population covariance ¥ = I. In (b) dimension p = 1, mean

p = 10, and variance ¥ = 5.
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Table C.1: Kolmogorov-Smirnov test results for empirical null distributions shown in
figures C.1 through C.5. Each empirical distribution was computed using M = 500

test statistic values. See the text for the corresponding population parameters.

Test | Dimension p | KS P-value Eiscfo?zt

0.322895 Yes
0.753276 Yes
0.563564 Yes
0.820641 Yes
0.337940 Yes
0.652343 Yes
0.338493 Yes
0.827236 Yes
0.157761 Yes
0.261129 Yes

—
o~
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