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ABSTRACT
It has become standard for search engines to augment result
lists with document summaries. Each document summary
consists of a title, abstract, and a URL. In this work, we
focus on the task of selecting relevant sentences for inclu-
sion in the abstract. In particular, we investigate how ma-
chine learning-based approaches can effectively be applied
to the problem. We analyze and evaluate several learn-
ing to rank approaches, such as ranking support vector ma-
chines (SVMs), support vector regression (SVR), and gradi-
ent boosted decision trees (GBDTs). Our work is the first
to evaluate SVR and GBDTs for the sentence selection task.
Using standard TREC test collections, we rigorously evalu-
ate various aspects of the sentence selection problem. Our
results show that the effectiveness of the machine learning
approaches varies across collections with different character-
istics. Furthermore, the results show that GBDTs provide
a robust and powerful framework for the sentence selection
task and significantly outperform SVR and ranking SVMs
on several data sets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
sentence selection, learning to rank, gradient boosted deci-
sion trees

1. INTRODUCTION
Search engines have become popular and are widely used

for many different tasks, such as web search, desktop search,
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enterprise search, and various domain-specific verticals. It
has become almost standard for search engines to augment
result lists with document summaries. It is important to
produce high quality summaries, since the summaries can
bias the perceived relevance of a document. For example,
if the summary for a highly relevant document is poorly
constructed, the user may perceive the document as non-
relevant and may never view the document. Since users
implicitly infer relevance from these summaries, it is im-
portant to construct high quality summaries that align the
user’s perceived relevance of the document with the actual
relevance of the document.

Document summaries can either be query independent [8,
15] or query dependent [26, 29]. A query independent sum-
mary conveys general information about the document, and
typically includes a title, static abstract, and URL, if ap-
plicable. Here, titles and static abstracts can either be ex-
tracted from the document, manually constructed, or auto-
matically generated. These types of summaries can be com-
puted offline and cached for fast access. The main problem
with query independent summaries is that the summary for
a document never changes across queries. This is one of the
problems that query dependent summarization algorithms
attempt to address, by biasing the summary towards the
query. These summaries typically consist of a title, dynamic
abstract, and URL. Since these summaries are dynamically
generated, they are typically constructed at query time.

In this paper, we focus on the task of automatically gener-
ating abstracts for query dependent summarization. Given
a query and a document, a query dependent abstract is gen-
erated as follows. First, relevant (with respect to the query)
sentences or passages within the document must be identi-
fied. This is referred to as the sentence selection problem.
After the relevant sentences have been identified, the com-

position phase begins. When composing an abstract, it is
important to take into account how many sentences to in-
clude, and how to compress the sentences to fit within a
fixed bounding box [14]. Furthermore, notions of readability
and novelty also play a role during composition. Since the
composition process can quickly become overly complex due
factors involving presentation, user interaction, and novelty,
we focus on the sentence selection problem in the remainder
of this paper and leave composition as future work.

We propose using machine learning techniques to solve
the sentence selection problem. There are several benefits
to using such techniques. First, they provide an easy means
of incorporating a wide range of features. It is often difficult



to incorporate arbitrary features into standard information
retrieval models, such as language modeling and BM25. Sec-
ond, depending on the machine learning technique used, the
model can be learned over a rich function space. Manually
constructing such a function would require a great deal of
effort. Finally, machine learning techniques provide a mech-
anism for learning from explicit (e.g., human judgments) or
implicit (e.g., click data) training data. Of course, this may
also be one of the biggest disadvantages to using machine
learning, as well, as it is often difficult or expensive to ob-
tain training data. All of the techniques we explore are fully
supervised, and therefore require some form of training data.

A recent study has shown the feasibility of using machine
learning approaches for sentence selection [29]. Wang et

al. showed that ranking support vector machines (SVMs)
outperform SVM classifiers and BM25 on a very small test
collection of only 10 queries. In this paper, we augment
the observations presented by Wang et al. and undertake
a more comprehensive view of the problem from multiple
perspectives.

Our work has four key contributions. First, we propose
using regression-based models, such as support vector re-
gression (SVR) and gradient boosted decision trees (GB-
DTs) for the sentence selection problem. Regression mod-
els, and GBDTs, in particular, have recently been shown
to be highly effective for learning ranking functions for web
search [17, 32]. We hypothesize the same will be true for
sentence selection. Second, we carry out a rigorous set of ex-
periments over three TREC data sets that, combined, have
200 queries associated with them. The results of these ex-
periments provide unique insights into the applicability of
the various learning techniques to data sets with different
characteristics. Third, we show that performance is quite
sensitive to how sentences are actually selected by compar-
ing and contrasting the effectiveness of retrieving a fixed
number of sentences per query/document pair versus using
a global score threshold. While this topic is often ignored,
it is important when using these algorithms in practice. Fi-
nally, we plan to release our data set for possible inclusion in
the LETOR benchmark suite. This would allow researchers
to explore various aspects of learning to rank in the context
of an interesting application that has many unique charac-
teristics that differentiates it from ad hoc retrieval and web
search.

The remainder of this paper is laid out as follows. First, in
Section 2, we detail related work in both summarization and
machine learning approaches to ranking. Then, in Section 3,
we describe the three machine learning models used, the
features used with the models, and the different strategies
for choosing the number of sentences to select. In Section 4
we describe our experimental evaluation. Section 5 discusses
miscellaneous sentence selection issues. Finally, in Section 6,
we conclude and describe possible areas of future work.

2. RELATED WORK
Automatic text summarization has been explored in many

research areas including artificial intelligence, natural lan-
guage processing, and information retrieval [21, 19]. While
research in AI and NLP has focused on analyzing well-written
text and generating large summaries (5-10 sentences), web
search and information retrieval has focused on generating
very small summaries. In fact, in web search, the role of
the summary is to give an idea to the user whether or not

the destination page is relevant for the user’s query. Since
a search result page typically has 10 or more URLs, the
summary associated with an individual URL can not exceed
more than 2-3 lines.

Kupiec, Pedersen and Chen [15] first addressed the sen-
tence selection problem by using a binary Näıve Bayes clas-
sifier that learned if a given sentence should be part of the
summary or not. The features used within the model were
query independent, and therefore the goal of the model was
to generate static abstracts. The model was trained using
a corpus where human judges selected sentences that they
thought should be part of the summary.

Tombros and Sanderson [26] conducted user studies using
query-biased summaries. Their experiments suggest that
query-biased summaries improve the ability of users to ac-
curately judge relevance. Clarke et al. [3] studied the corre-
lation of various attributes of summaries with click behavior.
Goldstein et al. proposed various features and scored sen-
tences in newspaper articles according to a specific scoring
function. The function itself was not learned, however. In
addition, Turpin et al. recently described techniques for ef-
ficiently compressing summaries [27]. However, this work
does not take quality/relevance of the summary into ac-
count, which is the primary focus of our work.

More recently, initiatives, such as the Document Under-
standing Conference (DUC) and the Text Retrieval Con-
ference (TREC) have conducted quantitative evaluations of
various summarization algorithms and sentence retrieval tasks.
In particular, the TREC Novelty Track, which ran from 2002
to 2004 included a sentence retrieval sub-task that required
participants to retrieve relevant sentences, rather than rele-
vant documents. A majority of the groups participating used
standard information retrieval models for the task, such as
language modeling and BM25. It is important to note that
sentence selection is very closely related to sentence retrieval.
The primary difference is that in sentence retrieval, a ranked
list of sentences is returned for a set of documents, whereas
the sentence selection task only returns a ranked list of sen-
tences for a single document. Since the two tasks are so
similar, it is likely that techniques developed for sentence
retrieval will also work well for sentence selection, and vice
versa.

The problem of learning to rank for information retrieval
has become a topic of great interest in recent years. Many
different techniques have been proposed, including logistic
regression [7], SVMs [2, 12, 20], neural networks [1], and
perceptrons [6]. These techniques have been adapted to opti-
mize information retrieval-specific metrics, such as precision
at K [13], mean average precision [30], nDCG [16], among
others. While benchmark data sets exist for ad hoc and web
retrieval [18], none currently exist for sentence selection.

Regression-based models, and in particular, gradient boosted
decision trees, have recently been explored for learning to
rank and and have been shown to be highly effective for
web search [32, 17]. In this work, we apply regression-based
techniques to the sentence selection problem, which has very
different characteristics than web search, both in terms of
features and in terms of context.

The work done by Wang et al. [29] is the most closely
related to ours. The authors propose using SVMs and rank-
ing SVMs to model the relevance of sentences to queries.
Their results show that ranking SVMs outperformed stan-
dard SVMs on a small test collection of 10 queries. In their



experiments, they do not have a methodology for select-
ing the number of sentences. Instead, they always retrieve
three sentences per document. In our work, we use ranking
SVMs as a baseline against which we compare regression-
based models, such as SVR and GBDTs. In addition, we
analyze two different strategies for choosing the number of
sentences to retrieve and carry out experiments out on three
different test collections with over 200 queries, which allows
us to draw inferences about the influence of various data set
characteristics on effectiveness.

3. SENTENCE SELECTION USING MACHINE
LEARNING

In this section, we describe the three machine learning
techniques that we use for sentence selection, the set of
features that we consider, and strategies for automatically
choosing the number of sentences to return.

3.1 Models
There are numerous approaches to estimating the value

of a categorical or continuous response variable (the hu-
man judgments) from measurements of explanatory variables
(the extracted features). This problem has been studied un-
der the names of statistical inference [28], pattern recogni-
tion [11] and more recently statistical machine learning [10].
Logistic regression, support vector machines, neural net-
works, and decision trees are some of the popular techniques.
In this section, we briefly describe the three machine learn-
ing algorithms that we use for sentence selection.

3.1.1 Ranking SVMs
Ranking SVMs are a generalization of the classical SVM

formulation that learns over pairwise preferences, rather than
binary labeled data [12]. The motivation behind ranking
SVMs is that for ranking problems, it is inappropriate to
learn a classification model, since it does not take the struc-
ture of the problem into account. Instead, pairwise prefer-
ences can implicitly encode the structure of ranking prob-
lems, and therefore learning an SVM over such pairwise pref-
erences is typically more effective when used for ranking
since its objective function tends to be more in line with
standard information retrieval metrics, such as precision,
mean average precision, and F1.

Formally, the ranking SVM is formulated as a quadratic
programming problem that has the following form:

min 1

2
||w||2 + C

P

i,j ξi,j

s.t. (w · xi − w · xj) ≥ 1 − ξi,j ∀(i, j) ∈ P

ξi,j ≥ 0 ∀(i, j) ∈ P (1)

where w is the weight vector being fit, P is the set of pairwise
preferences used for training, and C is a tunable parameter
that penalizes misclassified input pairs. Once a weight vec-
tor w is learned, we can score unseen sentences by computing
w ·xs, where xS is the feature vector for the sentence. These
scores can then be used to rank sentences.

Ranking SVMs have been shown to significantly outper-
form standard SVMs for the sentence selection task and are
currently the state of the art [29].

3.1.2 Support Vector Regression
Another generalization of the classical SVM formulation

is support vector regression, which attempts to learn a re-

gression model, rather than a classification or pairwise pref-
erence classification model. In our work, we fit a regression
model directly to the human judgments, which typically cor-
responds to a target of +1 for relevant documents and -1 for
non-relevant documents.

Support vector regression is formulated as follows:

min 1

2
||w||2 + C+

P

i:yi=1
(ξi + ξ∗i ) + C−

P

i:yi=−1
(ξi + ξ∗i )

s.t.

yi − w · xi − b ≤ ǫ + ξi

w · xi + b − yi ≤ ǫ + ξ∗i

ξi, ξ
∗

i ≥ 0 (2)

where w is the weight vector being fit, C− controls the cost
associated with errors on non-relevant documents, C+ con-
trols the cost associated with errors on relevant documents,
and ǫ is a free parameter controlling the amount of error tol-
erated for each input. In our experiments, we use ǫ = 0.1.

Notice that the formulation we use allows for different
costs for the relevant (+1 target) and non-relevant (-1 tar-
get) inputs. This is very important, since there are typically
many more non-relevant sentences than there are relevant
sentences. Therefore, it typically makes sense to ensure that
the ratio of C+ to C− is greater than 1 in order to learn an
effective model in the presence of such an imbalance.

3.1.3 Gradient Boosted Decision Trees
Gradient boosted decision trees are another technique that

can be used for estimating a regression model [4]. Here,
we use the stochastic variant of GBDTs [5]. GBDTs are a
promising new machine learning approach that computes a
function approximation by performing a numerical optimiza-
tion in the function space instead of the parameter space.
We provide a brief overview of the the GBDT algorithm and
the parameters that influence the algorithm.

A basic regression tree f(x), x ∈ RN , partitions the space
of explanatory variable values into disjoint regions Rj , j =
1, 2, . . . , J associated with the terminal nodes of the tree.
Each region is assigned a value φj such that f(x) = φj if
x ∈ Rj . Thus the complete tree is represented as:

T (x; Θ) =
J

X

j=1

φjI(x ∈ Rj), (3)

where Θ = {Rj , φj}
J
1 , and I is the indicator function. For

a given loss function L(yi, φj) the parameters are estimated
by minimizing the the total loss:

Θ̂ = arg min
Θ

J
X

j=1

X

xi∈Rj

L(yi, φj). (4)

Numerous heuristics are used to solve the above minimiza-
tion problem.

A boosted tree is an aggregate of such trees, each of which
is computed in a sequence of stages. That is,

fM (x) =
M

X

m=1

T (x; Θm), (5)

where at each stage m, Θm is estimated to fit the residuals

from the m − 1th stage:

Θ̂m = arg min
Θm

N
X

i=1

L(yi, fm−1(xi) + φjm). (6)



In practice, instead of adding fm(x) at the mth stage, one
adds ρfm(x) where ρ is the learning rate. This is similar
to a “line search” where one moves in the direction of the
gradient, but the step size need not be equal to the gradient.
In the stochastic version of GBDT, instead of using the entire
data set to compute to loss function, one sub-samples the
data and then finds the function values φj such that the
loss on the test set is minimized. The stochastic variant
minimizes overfitting issues.

The depth of the trees in each stage is another algorithm
parameter of importance. Interestingly, making the trees
in each stage very shallow while increasing the number of
boosted trees tends to yield good function approximations.
In fact, even with depth 1 trees, often called stubs, it possible
to achieve good results. Interaction amongst explanatory
variables is modeled by trees of depth greater than 1.

Finally, the GBDT algorithm also provides what is called
feature importance [4]. The importance is computed by keep-
ing track of the reduction in the loss function at each feature
variable split and then computing the total reduction of loss
function along each explanatory feature variable. The im-
portance is useful for analyzing which features contribute
most to the model.

3.2 Features
Features play an important role in any machine learning

algorithm. Since it is not the goal of this paper to under-
take a comprehensive exploration of features for sentence
selection, we use a relatively simple, yet representative set
of features in our models. The features that we consider can
be divided into those that are query dependent and those
that are query independent. We now briefly describe how
each is computed.

3.2.1 Query Dependent Features
Query dependent features attempt to capture how rele-

vant a given sentence S is to the query Q. We use four
different query dependent features that model relevance at
different levels of granularity and expressiveness.

The first feature is exact match. It is a binary feature
that returns 1 if there is an exact lexical match of the query
string within the sentence. It is computed as:

fEXACT (Q, S) = I(Q substring of S) (7)

where I is the indicator function that returns 1 if its argu-
ment is satisfied.

The next feature is overlap, which is simply the fraction
of query terms that occur, after stopping and stemming, in
the sentence. Mathematically, it is computed as:

fOV ERLAP (Q, S) =

P

w∈Q I(w ∈ S)

|Q|
(8)

where |Q| is the number of non-stopword terms that occur
in Q.

The next feature, overlap-syn, generalizes the overlap fea-
ture by also considering synonyms of query terms. It is
computed as the fraction of query terms that either match
Q or have a synonym that matches Q. It is computed as:

fOV ERLAP−SY N (Q, S) =

P

w∈Q I(SY N(w) ∈ S)

|Q|
(9)

where SY N(w) denotes the set of synonyms of w. Note that
SY N(w) also includes w itself.

The last query dependent feature, LM, is based on the
language modeling approach to information retrieval [25].
It is computed as the log likelihood of the query being gen-
erated from the sentence. The sentence language model is
smoothed using Dirichlet smoothing [31]. The feature is
computed as:

fLM (Q, S) =
X

w∈Q

tfw,Q log
tfw,S + µP (w|C)

|S| + µ
(10)

where tfw,Q is the number of times that w occurs in the
query, tfw,S is the number of times w occurs in the sentence,
|S| is the number of terms in the sentence, P (w|C) is the
background language model, and µ is a tunable smoothing
parameter.

Although approaches such as language modeling and BM25
are well known to be highly effective text retrieval models,
we include all of the simpler query dependent features be-
cause they may provide additional useful information to the
classifier when learning a sentence selection model. In fact,
the features do end up playing an important role, as we will
show in Section 5.

3.2.2 Query Independent Features
The goal of query independent features is to encode any a

prior knowledge we have about individual sentences. Here,
we use two very simple query independent features.

We expect that very short sentences and, possibly, very
long sentences are less likely to be relevant, therefore our
first query independent feature is length, which is the to-
tal number of terms in the sentence after stopping. It is
computed as:

fLENGTH(S) = |S| (11)

The other query independent feature we consider is loca-

tion, which is the relative location of the sentence within the
document. The feature is computed according to:

fLOCATION (S, D) =
sentnumD(S)

maxS′ sentnumD(S′)
(12)

where sentnumD(S) is the sentence number for S in D and
maxS′ sentnumD(S′) is the total number of sentences in D.

Although not explored here, other query independent fea-
tures are possible, such as readability, formatting, among
others.

3.3 Result Set Filtering
Each of the machine learning methods described produce a

real-valued score for every query/sentence pair. For a given
document, these scores can be used to produce a ranked
list of the sentences within the document. However, when
constructing a summary, we only want to consider the most
relevant sentences in the document. This requires using a
decision mechanism that filters the ranked list of sentences,
eliminating the least relevant sentences, and keeping the
most relevant ones. We now briefly describe two solutions
to this problem that have been used in the past. In our eval-
uation, we compare the effectiveness of the two approaches.

3.3.1 Fixed Depth
Perhaps the most simple and straightforward way of filter-

ing the result set is to only return the top k ranked sentences
for every document. Filtering in this way is useful if the un-



N2002 N2003 N2004
Query / Doc. Pairs 597 1187 1214
Avg. Sentences per
Pair

52.1 31.9 30.5

Avg. Relevant Sen-
tences per Pair

2.3 13.1 6.9

Table 1: Overview of the TREC Novelty Track data
sets used in the experimental evaluation.

derlying summary construction algorithm requires a fixed
number of sentences as input.

However, fixed depth filtering has several disadvantages.
For example, if k = 5, but the document only contains a sin-
gle relevant sentence, then we would end up returning four
non-relevant sentences. At the opposite end of the spectrum,
if the document contained ten relevant sentences, then we
would miss out on returning five of them. Therefore, the
fixed depth filtering scheme is very rigid and fails to adapt
to documents with very few or very many relevant sentences.

3.3.2 Global Score Threshold
One way to overcome the rigid nature of fixed depth fil-

tering is to filter based on the scores of the sentences. If
we assume that the scores returned by the machine learning
algorithm are reasonable, then it is fair to believe that sen-
tences with higher scores will be more likely to be relevant
than those with lower scores. Therefore, in order to filter,
we can set a global score threshold, where sentences with
scores above the threshold are returned, and sentences with
scores below the threshold are not returned.

Of course, there are also issues concerned with global
thresholding, such as the fact that scores may not be com-
parable across queries. However, our evaluation shows that
this may actually not be an issue for the machine learning
techniques used here. In fact, we will show that the optimal
global score threshold, particularly for SVR and GBDTs, is
not only comparable across queries, but also across data sets,
meaning that it is very easy to choose such a threshold.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of ranking

SVMs, SVR, and GBDTs. We also analyze the effectiveness
of two result set filtering techniques just described. All of
our experiments are carried out on the 2002, 2003, and 2004
TREC Novelty Track data sets. These data sets include
human relevance judgments for query / sentence pairs, and
therefore can be used to evaluate sentence selection algo-
rithms. Note that we do not use any of the novelty-related
judgments associated with these data sets, only the rele-
vance judgments. For more information on the details of
these data sets, please refer to the TREC Novelty Track
overview papers [9, 24, 23]. For our purposes, we throw out
all query / document pairs that have no relevant sentences
associated with them, since these are uninteresting from a
learning and evaluation perspective. Summary statistics for
the data sets are provided in Table 1. Notice that the char-
acteristics of the data sets are quite varied, both in terms of
average number of sentences per pair, as well as the propor-
tion of relevant sentences per document. This allows us to
analyze how the various learning algorithms perform over a
range of data sets.

Algorithm 1 Evaluation Algorithm

for i = 1 to 5 do
(TRAIN, V ALIDATE) ← split(TRAINi, p)
utilitymax ← −∞
for θ ∈ Θ do

model ← train(TRAIN ; θ)
utility ← eval(model, V ALIDATE)
if utility > utilitymax then

utilitymax ← utility

modelmax ← model

end if
end for
output rank(TESTi, modelmax)

end for

We use 5-folds cross validation for evaluation. All of the
learning techniques have a number of hyperparameters that
control various aspects of the learning algorithm. In order
to properly tune the models, we must consider all reason-
able settings of these hyperparameters. Therefore, we use
a slightly modified version of 5-folds cross validation. The
details of our evaluation algorithm are provided in Algo-
rithm 1. In the algorithm, Θ is the set of hyperparameters
that we will train over and eval is some evaluation measure
that we are trying to maximize, such as precision, recall, or
F1. As we see, during each training fold, the algorithm at-
tempts to find the setting of the hyperparameters that max-
imizes the metric of interest by doing a brute force sweep
over all reasonable settings. In order to control for overfit-
ting, the effectiveness is measured on a held-out validation
set.

For ranking SVMs, our algorithm sweeps over values for
C (misclassification cost) and γ (RBF kernel variance). For
SVR, we try various values for C− and C+ (misclassification
costs), as well as γ. Finally, for GBDTs, we sweep over var-
ious weight values for the positive instances and tree depths
(1, 2, 3). Additionally, for ranking SVMs and SVR, we only
report results using the radial basis kernel, which provided
the best results. Results for other kernels are omitted due
to space constraints.

We use the SVMlight1 implementation of ranking SVMs
and SVR. We construct P, the set of pairwise preferences
used for training the ranking SVM, as the cross product
of the relevant sentences and the non-relevant sentences for
each query / document pair. For GBDTs, we use the GBM
package for R [22].

Although none of the algorithms considered here directly
maximize the metrics of interest to us, such as precision,
recall, or F1, by training in this way we are implicitly op-
timizing for these measures by choosing the setting of the
hyperparameters that maximizes the final measure we are
interested in.

4.1 Sentence Selection
We now evaluate the effectiveness of the various machine

learning algorithms for the sentence selection task within
our experimental framework. There are many different ways
to measure retrieval effectiveness, but most of the standard
measures commonly used are inappropriate for the sentence
selection task. From our perspective, R-Precision, computed

1http://svmlight.joachims.org/



N2002 N2003 N2004
LM .2602 .5566 .3944

Ranking SVM .3792α .6904α .4771α

SVR .3587α .7005αβ .4757α

GBDT .4047αβδ .7060αβ .4806α

Table 2: R-Precision for each data set and sentence
selection approach. The α, β, and δ subscripts in-
dicate a statistically significant improvement over
language modeling, ranking SVMs, and SVR, re-
spectively, according to a one-tailed pair t-test with
p < 0.05.

over query/document pairs is one of the most meaningful
measures. For a given query / document pair, R-Precision
is computed as the precision at rank R, where R is the total
number of relevant sentences in the document. This measure
is appropriate because we ideally would like to return only
the relevant sentences. Therefore, if a document has 10 rel-
evant sentences, but we only retrieve 3 relevant sentences in
the top 10, we have done a bad job for that document. Mea-
sures, such as precision at rank 10 do not take the number
of relevant items per document into account, and therefore
are not appropriate here.

Table 2 lists the R-Precision values of each learning method
on each data set. For the sake of comparison, we also com-
pare against language modeling (LM), which is a state of
the art “bag of words” information retrieval model. The
superscripts in the table indicate statistically significant im-
provements in R-Precision, as described in the caption.

The results indicate that all of the machine learned meth-
ods are better than language modeling, which is not sur-
prising, since the language modeling score is a feature used
by the learning algorithms that only considers term occur-
rences. This suggests that the other features we consider
add considerable value.

Furthermore, we see that SVR is significantly better than
ranking SVMs on the 2003 data set (1.5% improvement),
and that GBDTs are significantly better than ranking SVMs
on the 2002 (6.7% improvement) and 2003 (2.3% improve-
ment) data sets. Therefore, the regression-based techniques
are more effective than ranking SVMs, which is the current
state of the art for sentence selection [29]. Lastly, we note
that GBDTs are significantly better than SVR on the 2002
(12.8% improvement) data set. Thus, for the sentence selec-
tion problem, GBDTs are robust and highly effective across
the different collections.

Interestingly, as the data set size grows, the effectiveness
of ranking SVMs, SVR, and GBDTs seems to converge. This
suggests that GBDTs, and SVR to a lesser extent, generalize
better when the training data is sparse. It would be interest-
ing to see if this behavior would persist if a larger feature set
was used, as it would take more training examples to learn a
good fit. This is an interesting area for future investigation.

4.2 Fixed Depth vs. Threshold Filtering
In our previous experiments, we always retrieved R sen-

tences per query/document pair. While this was useful for
comparing the effectiveness of the various techniques, it is
not something that can be done in practice, since we do not
know, a priori, how many sentences are relevant. There-
fore, we must use one of the filtering techniques described

earlier. When using these techniques, it is possible to re-
trieve a variable number of results per query/document pair.
Therefore, R-Precision is no longer an appropriate measure.
Instead, we use the F1 measure, which is the harmonic mean
of precision and recall. This measure emphasizes the impor-
tance of both precision and recall and is comparable across
query/document pairs that return different numbers of sen-
tences.

In order to compare the effectiveness of fixed depth fil-
tering and threshold filtering, we conduct an “upper bound”
experiment. For each data set, we find the depth that results
in the best F1, as well as the threshold setting that results
in the best F1. We then can compare these two numbers to
see which filtering technique, in the best case, would result
in the best effectiveness. The results of this experiment are
given in Table 3.

The results show that using fixed depth filtering is more
effective on the 2002 data and threshold filtering yields bet-
ter results on the 2003 and 2004 data sets. These results
indicate that when there are very few relevant sentences per
document, as is the case for the 2002 data set, a very shal-
low fixed depth filtering is better than using a global score
threshold. Conversely, when there are many relevant sen-
tences per document, as with the 2003 and 2004 data sets,
fixed depth filtering is much worse than global thresholding.

In addition, the results show that GBDT have the most
potential in terms of real world applicability, since the tech-
nique outperforms the others for both fixed depth and thresh-
old filtering in a majority of cases. However, as we indicated,
these results are upper bounds on the actual effectiveness
that can be achieved using these filtering techniques.

In practice, one would have to either automatically learn
the correct depth or threshold to use or use some robust“de-
fault” setting. Typically, it is difficult to define one setting
that will work well across multiple data sets. However, as
Figure 1 shows, the optimal threshold setting for GBDTs
is very stable across the collections, more so than for rank-
ing SVMs, and SVR. In fact, choosing -0.55 as a “default”
threshold for GBDT yields an F1 that is within 2% of the
optimal F1 for all three data sets.

Therefore, based on the sentence selection and filtering re-
sults, GBDTs appear to be the best choice of models to use
out of the three that we explored. When using GBDTs, we
recommend using fixed depth filtering for tasks with few rele-
vant sentences per document, and that threshold filtering be
used for tasks with many relevant sentences per document.
Furthermore, if a threshold setting can not be reasonably es-
timated for the given task, then empirical evidence suggests
that using -0.55 is a reasonable “default”.

5. DISCUSSION
We now briefly discuss miscellaneous issues concerned with

the approaches we explored in this paper.

5.1 Loss Functions
One theoretically interesting aspect of our work is the fact

that regression-based models do not directly maximize the
retrieval metric under consideration. Instead, they try to
find a model that best fits the target labels. Ranking SVMs
do not directly maximize general metrics, either, but they at
least take the structure of the problem into account, more
so, it seems, than simple regression models. However, as
our results and the results of others indicate [17, 32], using



N2002 N2003 N2004
Depth F1 Thresh. F1 Depth F1 Thresh. F1 Depth F1 Thresh. F1

Ranking SVM 2 .3411 -0.9 .2474 22 .5794 1.2 .6330 11 .4416 1.0 .4736
SVR 2 .3350 -0.9 .2880 22 .5791 -0.9 .6503 8 .4407 -0.2 .4637

GBDT 2 .3576 -0.55 .3302 20 .5771 -0.2 .6691 11 .4389 -0.5 .4745

Table 3: Comparison of result set filtering methods. For each data set, the optimal F1 measure for each
technique is reported. The optimal depth and threshold settings are also reported.
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Figure 1: Effectiveness, measured in terms of F1, as a function of threshold value for the TREC 2002, 2003,
and 2004 Novelty data sets (left to right).

these GBDT models prove to be highly effective. However,
it is not yet clear as to exactly why this is the case. It
would be interesting, as part of future work, to compare the
effectiveness of regression-based techniques with those that
directly optimize the metric of interest for this task.

5.2 Feature Importance
As discussed in Section 3, GBDTs provide a mechanism

for reporting the relative importance of each feature. By
analyzing the relative importances, we can gain insights into
the importance of each feature for a given data set.

As an example, Figure 2 plots the relative feature impor-
tances of the features for the 2002 (top) and 2003 (bottom)
data sets. It is interesting to note that the ordering of the
importances is different for the two data sets. The two fea-
tures with the highest importance for the 2002 data set are
overlap− syn (query/sentence overlap with synonyms) and
overlap (query/sentence overlap), whereas the two features
with the highest importance for the 2003 data set are length

(sentence length) and lm (language modeling score). The
ordering is also different for the 2004 data set, which indi-
cates it may be difficult to manually construct a heuristic
rule-based method that works well for all data sets. Al-
though such rule-based methods may work well for a single
task, such as web search, we are primarily interested in de-
veloping approaches that work well across a wide range of
application domains.

5.3 Efficiency
Although our primary focus in this work is on effective-

ness, we briefly describe our general observations on the ef-
ficiency of the three machine learning approaches explored
here. First, the ranking SVM model was the least efficient
of the techniques. This is due to the fact that the model
is trained over pairwise preferences, which are inherently
quadratic in nature. The SVR did not suffer from this prob-
lem, however. Second, SVR and ranking SVM models took
even longer to train when the RBF kernel was used. Train-
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Figure 2: Relative feature importances, as com-
puted by gradient boosted decision trees, for the
Novelty 2002 (top) and 2003 (bottom) data sets.



ing time was significantly reduced when the “linear” kernel
was used instead, but effectiveness was reduced. Finally, the
GBDTs took significantly less time to train than the SVR
and ranking SVMs (with and without kernels). The GBDTs
were boosted for up to 1500 iterations. However, retrospec-
tive analysis shows that the optimal number of trees (iter-
ations) for a model was always less than 200, which means
that the training time could have been sped up even more.
Therefore, in addition to the advantages GBDTs provide
with respect to effectiveness, they also provide a number of
benefits in terms of efficiency, as well.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed using regression-based machine

learning techniques, such as support vector regression (SVR)
and gradient boosted decision trees (GBDTs), for the sen-
tence selection task, which is an important sub-task of con-
structing query-biased abstracts and summaries.

Our experimental results showed that SVR and GBDTs
significantly outperform a simple language modeling base-
line and ranking SVMs, which are considered to be the cur-
rent state of the art. Our results also show that GBDTs
are very robust and achieve strong effectiveness across three
data sets of varying characteristics.

We also investigated two result set filtering techniques, in-
cluding fixed depth and global score threshold filtering. Our
results showed that fixed depth filtering is effective when
there are few relevant sentences per document and that
threshold filtering is more effective when there are many
relevant sentences per document. Furthermore, our results
indicated that threshold-based filtering for GBDTs is much
more stable across data sets than ranking SVMs or SVR.

As part of future work, we plan to compare SVR and GB-
DTs to methods that directly maximize R-Precision or F1
to better understand the impact of the underlying loss func-
tion. We would also like to investigate set-based ranking
algorithms in order to incorporate notions of novelty and
sub-topic coverage. In addition, we would like to make our
feature sets available as part of the growing LETOR bench-
mark [18] so that other researchers can develop and evaluate
learning to rank techniques for the sentence selection task,
which has very different characteristics than the typical ad

hoc and web retrieval tasks.
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