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Abstract, We define a restricted domain as the discrete set of points representing any convex,
four-connected, filled polygon whose (i) vertices lic on the lattice points, (ii) interior angles are
multiples of 45°, and (iii) number of sides are at most eight. We describe the boundary code and
discrete half-plane representation and use them for representing restricted domains. Morphological
operations of dilation and n-fold dilation on the restricted domains with structuring elements that
arc also restricted domains are expressed in terms of the above representations. We give algorithms
for these operations and prove that they are of O(1) complexity and hence are independent of the

sizc of the objects.

We prove that therc is a set of 13 restricted domains {K1, K3, ..., Kj3} such that any given

restricted domain X is expressible as K = Ky @ ( iD Kl) ea( l?i Kz) G---®
1

( o KB), where
kg

( ? K,-_) represents the k;-fold dilation of K; and Kj is a translation. We show that this entails a

linear transformation from a 13-dimensional space in which restricted domains are represented in
terms of n-fold dilations of the 13 basis structuring elements, to an eight-dimensional space in which
restricted domains are represented in terms of their eight side Jengths. Furthermore, we show that
any particular decomposition forms a particular solution of this transformation and that finding all

possible dilation decompositions of a restricted dom

ain is equivalent to finding the general solution of

this transformation. Finally, we derive a finite-step algorithm for finding a particular decomposition
and then give an algorithm for finding all possible decompositions,
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1 Introduction

The concepts of mathematical morphology have
been used for shape description. Guibas et al,
[1}, Guibas [2], Ghosh [3], Pitas and Venet-
sanopoulos [4], Xu [5], [6], Sinha and Giardina
[7}, Lozano-Perez [8], and Grunbaum [9] have
authored a few of the numerous papers pub-
lished in this arca. Shapes or objects can be
described in terms of simpler, better character-
ized, underlying parts. A morphological descrip-
tion of a shape usually expresses the shape by
decomposing it into an equivalent series of dila-
tions of simpler parts. Simpler parts in the case
of binary shapes can be disks, lines, rectangles,

etc., of various sizes. A shape is expressible as a
dilation of two other simpler shapes if the orig-
inal shape can be described as the area marked
out when one of the parts is held fixed and the
other is swept over it.

Binary shapes are usually represented as the
sets of all the points that constitute them.
These shapes are completely characterized by
their boundaries, and many efficient representa-
tion schemes for representing border informa-
tion have been prescntcd; see Freeman [10].
Boundary representations make explicit many
important features, such as vertices and edge
lengths. If these features are used by shape-
description algorithms, the use of the boundary
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representation will make the extraction of the
description from the represcntation much more
efficient. Algorithms that perform morpholog-
ical operations by using object outlines in the
two-dimensional continuous domain have been
proposed [3], [8].

Morphological operations on machines spe-
cialized to perform these operations are limited
by the maximum size of the structuring elements
that the hardware allows. If a morphological op-
eration has to be performed with a structuring
clement larger than the maximum allowable size,
the structuring element must be decomposed in-
to smaller ones. The new structuring elements
have to be such that (i) each of them can be
handled by the hardware and (ii) the dilation of
all of them is the original structuring element,

From the above discussion we can see that
structuring-clement decomposition is an impor-
tant problem from both points of view—shape
description and hardware implementation of
morphological operations. Several algorithms
to find such decompositions have been present-
ed in the literature. Most of these algorithms
work on shapes represented cither as sets or
as their outlines in the continuous domain and
have a time complexity of O(n?). Xu [5] first de-
composed chain-coded two-dimensional restrict-
ed domains as dilations of a set of 3x3 primitive
structuring elements. However, these primitive
structuring elements did not form a basis set.
Subsequently, we presented a basis set consisting
of 13 structuring elements and gave an algorithm
for decomposing any two-dimensional restricted
domain as dilations of these basis structuring
elements [11]. Xu [6] also arrived at the same
basis set, aithough the proofs for the algorithms
in the two papers are different. Xu's proof
was by induction, whereas our proofs are alge-
braic and rely on the underlying geometry of
the decomposition problem. In this paper we
interpret the decomposition problem as a vector-
space problem, and show that the solution to
the problem is not unique. Next, we show that
the decompositions obtained in [6] and [11] are
particular solutions of the linear-transformation
problem. We show that the general solution

of the linear transformation is the sum of a
particular solution and the homogencous solu-

tions, and we give algorithms for finding them.
Some of the results presented here have been
presented in [11]-{14].

In section 2 we set the stage by giving all the
definitions and notations. In section 3 we de-
fine B-codes. In section 4 we define restricted
domains and give two schemes for represent-
ing them, one with B-codes and the other with
half planes. Here we also give algorithms for
interconversion of representations. B-code di-
lation and n-fold dilation are discussed in sec-
tion 5, and morphological algorithms and their
computational complexity are given in section
6. The algorithm and proof for structuring-
element decomposition are given in section 7.
The computational complexity of the algorithms
has been considered for each algorithm present-
ed. Finally, a summary of the presented work
and directions for future work toward generaliz-
ing the algorithms for any discretely convex and
nonconvex shape are considered in section 8.

2 Preliminaries

In this scction we define all the necessary terms
and give the notations used in this paper.

Any p € Z2, where Z is the set of integers,
will be referred to as a lattice point. In this
paper we arc intcrested in binary images that
take on the values 0 or 1 at the lattice points.
The terms structuring element and shape will also
refer to binary images.

DEFINITION 2.1. A four- or eight- connected
component F is discretely convex if and only if all
the lattice points lying inside the convex hull of
F belong to F. This definition directly implics
that a discretely convex connected component
has no holes.

Next, we restate the definitions of the basic
morphological operations based on the tutorial
by Haralick et al. [15] and Haralick and Shapiro
[16]. Also see [17] and [18].

DEFINITION 2.2.  The dilation of A by B is

denoted by A® B and is defined as A® B =
{c€Z*c=a+b for some a€ 4 and b € B}.
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DEFINITION 23.  The erosion of A by B is
denoted by A B and is defined as A6 B =
{z € Z|¢ + b € A for every b € B}.

DEFINITION 2.4. The opening of a set B by a
structuring element K is denoted by Bo K and
is defined as BoK = (BO K)@ K.

DEFINITION 2.5.  The closing of a set B by a
set K is denoted by Be K and is defined as
BeK=(BoK)oK.

DEFINITION 2.6. The nold dilation of a set B
by a set A is denoted by B @ ( <3 A) and is
defined as

n times
,————-—/\-—-—.—_\
Be( @ A) =BOAGAG---DA.

DEFINITION 2.7. The n-fold erosion of a set B
by a set A is denoted by B o ( ® A) and is
defined as

Be ( D A)

n times
:2...(((39A)9A)6A)»-~e;5-

3 Boundary Codes

Line drawings have been commonly used to rep-
resent the boundaries of two-dimensional ob-
jects. In the case of discrete, binary images
these line drawings of the object boundary can
be rcpresented in any of the following ways: (i)
as a sequence of points, (ii) by a chain-code
representation, or (iii) as a sequence of line
segments. Descriptions of these methods can
be found in [16] and [19].

The chain-code representation as proposed by
Freeman [10] does not incorporate the lengths
of the edges into its notation. It nevertheless
has a provision for a special token in the im-
plementation that allows for the length of the
edge to be stored. In this section we discuss

a notation for chain codes that requires explic-
it representation of the boundary edge lengths
and directions. This boundary encoding scheme,
referred to as B-code, uses a list data structure.

B-code is a representation scheme for con-
nected components in terms of their boundary
lattice points. Only one starting boundary point
is represented explicitly, and the rest of the
boundary points are represented in terms of
successive displacements in one of eight possi-
ble directions, If the successive displacements
happen to be in the same direction, they are en-
coded as the direction followed by the number
of moves in that direction. The formal notation
to represent a connected component A4 is

A = (G4 Ja)l(dr : n)(Grey 5 nysy)
-l ) 0

Here (i4, ja) is the starting boundary lattice
point, and the ordered pairs to the right of
the vertical bar describe each successive dis-
placement. The number of ordered pairs is
equal to the number of changes in the di-
rection of displacement. In the ordered pair
(x : ng), di € {dg, dy, ..., d7} represents the
direction of the displacement, and the non-
negative integer n; to the right of the colon
represents the number of successive moves in
that direction. The directions dy, ..., d; are
the same as the chain-code directions 0, ey 1y
which correspond to angles {0°, 45°, 90°, 135°,
180°, 225°, 27°, 315°} with respect to the posi-
tive z axis: do = (1, 0), d; = (1, 1), d; = (0, 1),
d = (-1,1), d¢ = (~1,0), ds = (-1, ~1),
ds = (0, -1), and dy = (1, ~1).

Figure 1 illustrates the relation between B-
codes and chain codes. It can be seen that the
B-code representation can be thought of as a
run-length encoding of the chain code. Also,
any simply or multiply connected binary image
that can be encoded by using the chain codes
can also be encoded by using the B-codes.

4 Restricted Domains

The class of objects we will decompose and
work on in this paper arc discretely convex,
four-connected sets all of whose boundaries are
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Fig. 1. Example of B-coding of images. (a) Basic directions, (b) a binary image, (c) pixels explicitly represented by
its chain code (5, 1): 0000011112222444422222444444 5666666666677, and {d) pixels explicitly represented by its B-code
(5. Ditdy = S)(dy = 4)(dz : A)(dg = 4)(d; : 5)(dy - 6)(ds : 1)(dg : 10)(dy : 2)).

oriented at angles that are multiples of 45° and
whose lengths are multiples of the pixel side
lengths for 0° and 90° orientations and multiples
of V2 times the pixel side lengths for 45° and
135° orientations. We will refer to the set of
all objects belonging to this class as restricted
domains. This class of objects was also studied
by Xu (5], [6].

DEFINITION 4,1. A restricted domain is a dis-
cretely convex, four-connected shape whose con-
vex hull has sides at angles that are multiples
of 45° with respect to the positive z axis.

Some examples of restricted domains are giv-
en in figure 2. In the following sections we will
define the restricted domains in terms of their
B-codes and will present an equivalent repre-
sentation in terms of half planes.

4.1 B-Code Representation

4.1.1 Convention. Given a binary image of a
restricted domain A4, we will represent it in the
‘B-code form for further processing. The binary
" image of a restricted domain can be represented
in many ways by using 2 B-code representation,

ie., the B-code representation is not unique,
because the only restriction on the starting point
of a B-code representation is that it should

be a vertex. Thus there are as many B-code
representations of a restricted domain as the
number of vertices. To avoid ambiguity we will
use the following convention:

The starting point is always the low-
est and leftmost vertex of the restricted
domain. The other vertices are encod-
ed by traversing around the restricted
domain along its boundary points in
the counterclockwise direction, encod-
ing the length of the edges that consti-
tute A, The interior points of the set
are those to the left of the direction of
motion.

The B-code obtained by using this convention
represents an equivalence class of B-codes— the
class of all B-codes representing the considered
restricted domain. Each B-code in the equiv-
alence class is a rotated version of some other
(with an appropriately modified starting point),
but it represents the same set of lattice points
nevertheless.

4.1.2  Properties of B-coded restricted domains.
In this section we present some useful proper-
ties of B-coded restricted domains, and these

properties will be usad in later proofs. Diseus-
sions of a few of these properties can be found
in [6], [12}, and [13].
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Fig. 2. Examples of restricted domains. Note that the diagonai lines in the hox are not strictly restricted domains since they

are not four-connected,

PROPERTY 4.1, Any restricted domain can be
represented by a general B-code of the form
A = {(i, 7)I(do : no)(dy : ny)(dz : mp)(d; : ma)
(ds : na)(ds : ns)(dg : mg)(dy @ 7)) by giving
appropriate values to the n;s. Thus in this
representation there are always eight vertices
and eight displacements and the displacement
angles are monotonically increasing from dg to
d;. If there is no displacement corresponding to
one of the directions, the corresponding pair can
be dropped from the B-code and the particular
n; is given a value zero. Note that in this case
two vertices become coincident.

Given a closed contour, the net displace-
ment on traversing its complete boundary is
zero. Since the B-code of a restricted domain
A= (i, 3)I(dy : no)(dy : my)-(dy : na)) rep-
resents a closed contour, it inherits the following
two properties of a closed contour.

PROPERTY 4.2. The sum of displacements con-

tributing to the positive z direction is equal to
the sum of displacements contributing to the
negative z direction:

ng + 11 + ny = n3 + ng + ns. 2

PROPERTY 4.3. The sum of displacements con-
tributing to the positive y direction is equal to
the sum of displacements contributing to the
negative y directiom;

M+ + 1y = ns + ng + ng. 3

PROPERTY 4.4. Any B-code of the form 4 =
(G, DNde : no)(dy : m)(d2 : ma)(dy : ng)(dy :
n4)(ds : ns)(dg : ng)(dy : ny)) whose n;’s satisfy
the properties in equations (2) and (3) is cither
a restricted domain or a line at 45° or 135°. The
lines are special cases and are of the form A =
(G, )I(dr : ni)(ds : ms)) and A = (GG, 7)i(ds :
n3) (d7 : n7)).
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Given a B-code of a restricted domain A =
((i, ])I(do H no)(dl . n,)---(d'y : 717)) all the
cight vertices of the polygon arc uniquely de-
fined and can be found in the following two
ways.

PROPERTY 4.5, Let the vertex vy be the starting
lattice point (%, 5). The other vertices are given
recursively. Given the kth vertex vy, then the «
and y coordinates of the (k + 1)th vertex vy,
are given by the recursive equations

= x[u] + mex|d], “
= y[u] + niy[di] )

for 0 < k < 6. Here x{1y] = i and Y[vg] = 7 are
the z and y coordinates of the starting point of
the B-code.

The coordinates of the vertices of A can also
be computed relative to the starting point of the
restrictcd domain.

X[vi41]
Yves1]

PROPERTY 4.6. The coordinates of the kth ver-
tex v can be computed in terms of the starting
location (4, ;) and the lengths n;, 0 < I <k. Let
Vi, ¥y, V, and N be the matrices

xfuo} " ylvo)
X[v] y[v]
Vy = s vy = . s
x[»] L y[er]
Fno
vV = [Vx }, N = Lo}
Vy :
L N7
6)
Then
)
J
I Y] N
e[5lel¥ o
J
N
where -
_ P o
=[] ®

.l

10060000000
1010000 000
1010100000
1010100000
Pr=110101-10000] ©®
10101-1-1 000
10101-1-1-100
10101-1-1-100]
(01000600 0 007
0100000 0 00
01010000 00
01011000 00
Pr=10101110000]| QO
01011100 00
0101110-1 00
01061110-1-10]

Note that the matrix P is very sparse and is used
here only for notational convenience. Thus in
the actual matrix multiplications, only the nonze-
ro entries in the matrix need to be multiplied
out.

4.2 Normalized Half-Plane Representation

Restricted domains can be represented in terms
of the intersections of discrete half planes. Let
A= ((i, DI(do : no)(dy : my).--(dy : 19)) be a
restricted domain. Then the lattice points be-
longing to A can be defined in terms of intersec-
tions of eight discrete half planes H;, 0 <i < 7.
These half planes #; are functions of the ba-
sic directions of the displacement d; and the
vertices v; of the restricted domain. Each dis-
crete half plane H; is such that its boundary
passes through the vertex »; and its cdge is
along the direction d;. The half plane H; rep-
resents all the points to the left of and on
the boundary for a traverse in the direction d;
along its boundary, Therefore a restricted do-
main A = ((3, /)|(de : no)(d; : ny)- - (d7 : 7))
can be represented as

A=HoNH;N-- N'Hy, 1y
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H,

H,

Fig. 3. Restricted domains as intersections of half planes
Hp---H;. The unshaded half represemts the half plane.
Here the intersection set is the unshaded central region.

where H; is a discrete half plane given by

H; = {p = (z, y) € Z? such that

T - X['U,']
xX{vi] +x{d] ylv] + y[di]

y - ylu]

<o}

(12)

Figure 3 illustrates the half-plane concept. We
can expand the above expression for the par-
ticular cases of M;, 0 <:< 7. Substituting the
expression for the vertex v; of the restricted
domain given in (7) into inequality (12), one
obtains the inequalities for the half planes M-

7‘(7:

H():
H,; :
7‘[2:
'H3:
Hy

Hs
Hg
Hy

(O)z
()=
(D=
(6}
()
(=)=
: (-2
: (-z

+

+ + + + + + +

(-1y
(-1)y
Oy
Ny
My
1y
O)y
(-Dy

IAIA IA A A AN A A

e,
Cy,
2
C3,
Cay
cs
6,
en,

(13)

where «, y, ¢; € Z and the ¢; are given by

1
C=L} j1i, (19)
where i
[ o
€y
&)
3
C & (15)
es
cs
L & ]
and
[ 0-1 0 0 000000O]
1-1 1 0 000000
1 011 000000
L = 1 11 2 100000
10 1 0 1 110000
-1 1-1 0 121000
-1 0-1-1 011100
~1-1-1-2-101210]
' (16)

To make the information more compact, we
will usec matrices to represent the system of
linear inequalities in (13) as

Mp' < C, (17)
where .
[ 0 -1
1 -1
1 o0
1 1
M= 0 1 (18)
-1 1
-1 0
-1 -1 ]

and p = (z, y) is a lattice point. Note that the
inequalities (17) are considered row-wise.

The physical interpretation of the system of
inequalities (17) is as follows. Consider eight
half planes passing through the origin, each cor-
responding to a direction d;, 0 < < 7. The half
planes are translated from the origin up, down,
feft, and right such that they pass through the
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(a) Unnormalized

Fig. 4. Unnomalized and normalized half planes. The unshaded haif represents the half plane. The half-plane H, in (a) is
redundant and can be moved unit it passes through the vertex of set A; this situation is shown in (b).

corresponding vertices »;, The intersections of
these half planes give us the lattice points be-
longing to the restricted domain.

Notice that since the d;'s are fixed, the slopes
of the discrete half planes are also fixed and
hence the half plane ; is uniquely represented
by the corresponding c;’s. However, a set of
c;’s representing a restricted domain need not
be unique. For example, in figure 4 we see
that the half planes corresponding to two differ-
ent sets of ¢;’s represent the same intersection
set, because the half plane X, is redundant and
can be translated to infinitely many location-
s without having any effect on the intersection
set. All the possible sets of c¢’s representing
a given restricted domain form an equivalence
class. This raises a question about a conven-
tion that we can follow such that a equivalence
class of restricted domains can be represented
through a unique ¢; set. We notice that the
¢;’s that are obtained from the B-code repre-
sentation by using (14) always represent discrete
half planes passing through the vertices of the
testricted domains. Those that are redundant,
that is, thosc that correspond to a displacement
of length zero along the d; direction, also pass
through a vertex, even though they have poten-
tially infinite possibilities. Thus we will follow
the convention that if a set of ¢;'s represent a
restricted domain, it should be normalized such
that all the half planes pass through the vertices
of the intersection set. Such a set of eight ¢;’s,
represented by a vector C, will be called the nor-

(b) Normalized

malized half-plane representation of the restricted
domain. The half planes that are not redundant
and form the sides of the polygon will be called
primary.

Before we proceed further, we need to address
the following issues:

1. Under what conditions does the set of ¢’s
represent a nonempty set?
2. Under what conditions is the restricted do-
main represented by the set of ¢;’s a normal-
ized representation, and if it is not, how can
it be normalized?

The ¢;’s represent a set of discrete half planes.
Hence the set of points belonging to the inter-
section of these half planes is not empty if and
only if the set of points belonging to the inter-
scction of any two of these half planes is not
empty. Figure 5(a) is an example in which the
half plane H, is unnormalized. Since it should
be moved so that it touches the intersection set,
it is obvious that it should be moved to r, the
intersection point of #; and Hy. Other possi-
bilities are p, the intersection point of H; and
Ha, and g, the intersection point of H,; and Hs.
Notice that p and ¢ do not belong to the inter-
section set and they are below r. Figures 5(b)
and 5(c) are examples in which #, has to be
moved to p and ¢ respectively. Notice that in
this case p is above ¢ and r, In figure 5(d) *

is a primary half plane and cannot be moved.
In this case M, is above p, g, and . Thus the
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algorithm for normalization of H, then becomes
(i) find the intersection points p, ¢, and r, and
(ii) update cq such that H, passes through the
one belonging to the set. If X, is primary,
nothing should be done to ¢. It is convenient
that the ¢ found this way forms a bound for
the half planc %, i.e., the half plane H3 cannot
be below this level. If it is, the intersection of
the half planes results in an empty set.

By using the same argument for all other half
planes, it can be shown that a set of cight ¢’s
represents a nonempty set if and only if

€2 Coouns = max[G,C, G,C, G4, —[G4CJ]
(19

and a set of ¢’s is normalized if

C 2 max{G,G,C, GGsC, ~-16G,G4CY], (20)
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Fig. 5. Normalization of Hy—four cases. In (a), (b), and
(c) the half-planc H, is redundant and must be normalized,
that is, moved up so that it passes through », p, and gq,
respectively, In (d) , is primaty and cannot be moved.

where the 8 x 8 matrices G, ..., Gy used in the
algorithm are given by

[0 0 0 0-1 0 ¢ ¢

0 0 00 0-19¢ ¢

000 00 0-1 ¢

=1 000000 0-1
G1=1.1 000009 gl@

0-1 0 0 0 0 0 ¢

0 0-1 0 0 0 0 ¢

| 0 0 0-1 0 ¢ o 0

0 0-1 0 01 @ ¢

0 0 0-1 0 0-2 ¢

0 0 0 0-10 0-1

=1=2 0 00 0-1 0 ¢
©2=1 6.1 00 0 0-1 g%

0 0-2 0 0 0 0-1

-1 0 0-1 0 0 ¢ o

L 0-1 0 0-2 0 ¢ 0]

[0 0 0-1 0 01 0]

0 0 0 0-2 0 9-1

-1 0 00 0-1 0 ¢

=] 0-1 0 0 0 0-2 ¢
=10 0-100 0 o]

~2 0 0-1 0 0 g g

0-1 0 0-1 0 ¢ ¢

0 0-2 0 0-1 ¢ 0]

0 001/201/20 0
0 00 01 01 0
0 00 001/201/2
1 00 00 01 0
G=1o120 00 o001y (24)
1 01 00 00 0
0120120 00 0
0701 01 00 o]

The lower ceilings come about because the 45°
and 135° lines need not intersect at a lattice
point. Notice that G2 = I Here the matrix
multiplications find the intersection points, and
the max operation selects the one nearest to the
set. Thus both the issues mentioned above have
been addressed.

Notice that when €} = —C5 OF €3 = —¢7, WE
have diagonal lines at 45° and 135° respectively.
These arc not strictly restricted domains since
they are not four connected (they are eight
connected). Thus since restricted domains are
four connected, the following constraints should
hold:

1> —cs and ¢z > —ay. (25)

Function Normalize given in Algorithm 1
takes as input the C array of a restricted do-
main and returns the normalized C array if one
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exists, or else it returns a null value. Since the
algorithm has five multiplications of 8 x 8 ma-
trices with 8 x 1 vectors, one lower ceiling of a
8 x 1 vector, one 8 x 1 vector comparison, one
row-wise max operation of four 8 x 1 vectors,
and no loops it is constant in time,

ALGORITHM 1, Normalization of half planes.

function Normalize(C) : ArrayObject

Input:
ArrayObject C;

begin
Cbound = max[GIC, GzC, G3C, —[_G4CJ];
if (C < Cbound)
then
return NULL;
else
C := max[C, G,G,C, G,G;C, —|G1G4C]J;
return C;
end Normalize;

4.3 Conversion from Normalized Half Plane to
B-Code

Given the ¢;'s of a normalized restricted domain,
we should be able to (i) find the vertices of a
restricted domain in terms of the c/’s, (ii) find
the n’s in terms of the ¢’s, and (iii) find the
B-code representation of the restricted domain,

The vertices of the restricted domain can be
computed by finding the intersections of the
consecutive half planes, They can be expressed
in terms of the vector C as follows:

v=n[g], (26)

where

D= [%’ Igz]’- @n

[ 1000 0 0 0 -1
~1100 0 0 0 0
0010 0 0 0 0
0010 0 0 0 0
Di=1 0001-1 0 ¢ o @
0000 1-1 0 0
0000 0 0~1 0
| 0000 0 0-1 0]
-1 0 0000 0 O]
-1 0 0000 0 0
0-1 1000 0 0
0 0-1100 0 0
D=1 0 0 0010 0 o] @
0 0 0010 0 0
0 0 0001 -1 0
| 0 0 0000 1 -1

The n;’s can be computed by finding the distance
between the two consecutive vertices vi4g and
v;. Thus

N =QC, (30)
where
(=2 1. 0 0 0 0 0 1]
1-1 1 0 0 0 o 0
0 1-2 1 0 0 0 0
_ 0 0 1-1 1 0 0 o
Q= 0-0 0 1t-2 1 0 0
0 0 0 0 1-1 1 90
0 0 6 0 0 1-2 1
L 1 0 0 0 0 0 1 -1 ]
31)

The B-code representation of the restricted
domain is determined by vy and N.

5 B-Code Morphology for Restricted Domains

In this section we give constant-time algorithms
for dilation, erosion, opening, closing, n-fold
erosion of restricted domains by using their half-
plane and B-code representations. We show that
the results obtained by using these algorithms
are equivalent to those obtained by using regular
morphology. If the input-restricted domains are
in their B-code representations or if the output-
restricted domains are needed in their B-code
representations, the results of section 4 can be
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used for the interconversion of representations,
For the detailed proofs of theorems on erosion,
opening, and closing, refer to {12] and [13].

5.1 Dilation of Restricted Domains

Let A and B be two restricted domains given
by the B-codes

A = ((a, ja)l(do : ng)(dy : nf

U (d7 : ng}»’ (32)
B = (G5, j)l(ds : ng)(d; : nP)

- (dy : nB)), (33

and let their normalized half-plane representa-
tions be

A = {seZ’Md <CY, (34)
B = {beZ’MV <5}, (35)

where C4 and C2 are given by

7A iB
Cl=1 j‘; and C% = L jlz . (36)
N N

N4 and NZ and & x 1 column vectors with the
respective edge lengths as their clements, and
M and L are the .matrices defined in (18) and
(16), respectively,

LEMMA 5.1, The set C given by
C = {ceZ)Md < CC}, (3n

where € = C4 + CB, is a restricted domain,
and the vector CC is a normalized half-plane
representation of C.

Proof. From the discussion in subsection 4.2 and
from (19), the sufficient condition for C€ to be a
restricted domain is that C¢ > €S . Since 4
and B are restricted domains and since C£ and
C?Z arc normalized half-plane representations,

CA Z Ct?ound = max[G]C", G2CA;
G3C4, -[G.C4], (38)
max[G,CE, G,(P,
G3C%, ~|G4CP]]. (39)

c?>ct

und
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Thus by adding the above equations we get
C° = ci+cCP
> max[G;C4, G,C4, G;C4,
~{G4C4|] + max[G,C?, G,C?,
G;C?, ~[G4CP]]. (40)
However, we know that max[a, b] + max{c, d]
2 max|(a + ¢), (b + d)]. Hence
C% > max[Gy(C4 + CB), G(C* + CP),
G3(C* + CB),
~[G«(C* + CB)1. (41)
Thercfore CC represents a restricted domain.
Similarly, we now show that CC is a normalized

half-plane representation. Since C4 and C¥ are
normalized representation, we have

C* > max[G;G,C4, G,G;C4,

~161G4C4]), (42)
C® > max[G:G,C?, G,G,CE,
~161G4CB ). (43)

As before, from the above equations we get
C*+C? > maxG,G,(CA + CP),
G1G3(C4 + CB),
—[G1G4(C4 + CB)[]. (44)

Thus C° is normalized. Furthermore, since 4
and B are four-connected restricted domains,
we have from (25) that cf > —cf, cf > ~¢4,
of > —cf, and ¥ > —cF. Manipulating, we
get of +cf > e+ cf and A4 +cf>ch+ el
Thus C is four-connected and C€ is a normalized
half-plane representation of a restricted domain.
Note that even if either A or B is a diagonal
line, e.g., ¢ff = ¢ or ¢f = B for the case of 45°
diagonal lines, the resultant shape is still be a
restricted domain (because the four-connectivity
constraints are still satisfied).

LEMMA 5.2. The eight vertices V€ of C are the
vector sums of the respective vertices VA and
VB of A and B.

Proof. The vertices of C are given by

v°‘=n[ggJ, (4%)
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where D is the matrix (27). Since C¢ = C4+C?2,
we have

CA+CB
Ve o= D{C4+Cf’}
cA cs
= D[CA}+D[CB]. (46)
Hence
\ad v4 4 vB, (47)
o v+l 0<i<7. (48)

[}

The lemma is thus proved.

Now we show that the dilation of two resirict-
ed domains can be performed by adding their
respective C vectors.

PROPOSITION 5.1. A& B is given by the re-
stricted domain C whose normalized half-plane
representation is given by C¢ = C4 4 CB,

Proof. We will proceed by proving (i) that A @
B € C and then (ii) that C C A® B.

(i) Let c€ A® B. Then by the definition of
dilation there exist a € 4 and b € B such that
¢=a+b Sincc a € A and b ¢ B, from (34)
and (35) we have

Mqad’ cA,
My co.
Adding the above equations, we get
Md +M¥ < CA+C3,
M(a+b) § C*+CE.
Hence ¢ € C, and therefore A® B C C.
(i) Let ¢ € C. We have to prove that there

exist o € A and b € B such that a+b = ¢. Since
¢ € C, it satisfies the relation

IA A

Mc <CA+C3, (49)
From Lemma 5.1 we know that C is a restricted
domain and thus by definition it is discretly
convex. Hence c belongs to the convex hull

of C and it can be expressed as the convex
combination of the vertices of C. Thus

c= ¥ anf, (50)

0<i<7

where o; €R, 0< o; < 1, and Y, o = 1. From
Lemma 5.2 we get

It

¢ > o (v +0f), (51

0<ig?
c = c4+cp, (52)

where ¢4 = Focicqanft and cp = Py oav?.
The first term, c4, on the right-hand side of
(52) belongs to the convex hull of the restricted
domain A4, whereas the second term, cp, belongs
to the convex hull of the restricted domain B.
Notice that (51) docs not guarantee that c4 and
cp are Jattice points, ie., they need not belong
to Z2. It merely represents the fact that the
vector sum of two points c4 and cp in R? is
the lattice point ¢ in Z2. We will now show
that we can always find a lattice point belonging
to 4 in the neighborhood of c4 and another
belonging to B in the neighborhood of cp such
that their vector sum is the lattice point c. This
is illustrated in figure 6.
Lete=(l,m),ca=(p+6¢g+7),and cg =
(r+1-6,s+1—v)such thatl, m,p, g, 7,8€2
and 0 € 6, v < 1. Going back to (52) and
replacing ¢, c#, and ¢® by their values, we get

c = (I,m)

(p+6,q+7)
+(r+1-6s+1-%)

(+r+l,g+a+1) (53)

i

It can be seen from the above equations that
the point ¢4 lies between the four lattice points
@9, (p+1,9),(p,g+1), and (p+1,¢+1)
Similarly, the point cp lies between the four
lattice points (r, 8), (r + 1, 8), (r, s + 1), and
(r+1, s+1). We will prove that the vector sum
of two of these eight points, one belonging to
A and the other belonging to B, is the lattice
point (I, m) = (p+r+1,g+s+1)

We can determine which of the four surround-
ing lattice points necessarily belongs to the re-
stricted domain A, given c4 (and hence § and
7). Depending on the values of § and 7, the
area between the lattice points surrounding ca
and cp can be divided into several regions. The
inclusion of a particular neighbor in the set A
depends on where the point ¢y falls. The attack

has to be on a case-by-case basis.
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(r,s41) .(r-l-l,s+l)

ns) @ | O +1,5)

Fig. 6. Relations among p, q, r, s, 6, and Y. We have to find one neighboring lattice point of ¢4 and another of ¢y such that

their vector sum is ¢ = (p +r + L,g+s+1)

Consider the case for which ¢, lies in the
region defined by v > 6. We can see that for
such a case the neighboring lattice point (p, g+
1) necessarily belongs to A4, because if (v, g+1)
did not belong to A, no convex combination of
any subset of the other three neighboring lattice
points could produce a c, in the region defined
by v > 8. From symmetry we can see that for
7 >4, (v +1, s) necessarily belongs to the set B.
Thus the desired lattice points are (r, g+1) and
(r + 1, s), since their vector sum is the lattice
point (p+1, g+ 13 = (I, m) = ¢

Similarly, for the cases for which Y< b 4>
1-6,and v < 1 -6, we can find lattice points
belonging to 4 and B such that their vector sum
is the lattice point (I, m) = ¢.

The only region inside the squarc not yet
considered is § = v = 0.5, which is the center
of the square. When 6 = y = 0.5, we fall into
neither of the above categories and hence we
maust treat this casc separately. We notice that
the lattice point (p+ 0.5, ¢+ 0.5) can result from
the convex combination if all four neighboring
lattice points belong to the set, only three of the
ncighboring lattice points belong to the set, or
any two diagonally opposite lattice points belong
to the set. We can eliminate the last case, since
it implies the A is a diagonal line and hence
is not four connected, thereby contradicting our
assumptions. Thus for the case for which § =

v = 0.5, either or four of the lattice points
neighboring c4 necessarily belong to 4. The

same is true for the set B. Note that the
lattice points belonging to A do not in any
way constraint the ones belonging to B. It
is easy to verify that given any three lattice
points surrounding c4 and three lattice points
surrounding cp, we can always find two lattice
points, one neighboring c4 and one neighboring
cp, such that their ssmis c= (!, m) = (p + » +
L, g+ 5+1). In fact, there are many such pairs,

Thus we have proved that C ¢ A® B. Hence
C=Aa&B.

We now prove an important lemma that states
that a dilation of A by B is just the addition
of the respective side lengths and the starting
points.

LEMMA 53. If C = A® B, then (ic, jo) =
(i4, J4) +(ip, j3) and NC = N4 + N5,

Proof. Since C° = C4+C5, we have NC = QC°

= Q(C4 + CP) = N4 + NB. The rest of the
lemma follows from the fact that V€ = VA + V5,

3.2 Erosion of Restricted Domains

Let A and B be two restricted domains with
normalized half-plane representations:

A= {acZiMd<CY,  (54)
B {b € Z2M¥ < €5}, (55)

L}

il
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where C# and C? are given by
A1
Ch = L| 541, (56)

cB = L| ;8 |. 7

B
| N7

N4 and N? are 8 x 1 column vectors with the
respective edge lengths as their elements, and
M and L are the matrices defined in (18) and
(16), respectively,

The erosion of A and B can be performed
by subtracting the C matrix of B from that of
A. The resulting C matrix need not be a nor-
malized half-planc representation—it must be
normalized by using Algorithm 1. Furthermore,
the crosion of a restricted domain with another
need not produce a restricted domain. Con-
sider, for example, the erosion of a rectangle
by a rhombus, where the sides of the rectangle
and the rhombus are oriented at 45° and 135°
and the sides of the rhombus equal the smaller
of the two sides of the rectangle. It can be
casily seen that the result of the erosion is a
line oricnted along the longer side of the rect-
angle, i.e., it is a line at 45° or 135°. Since lines
at 45° and 135° are not four-connected (but
are eight-connected), they are not restricted do-
mains. These special cases must be considered
separately.

Now we state a lemma, the proof of which
can be found in [12].

PROPOSITION 5.2, A@ B is given by C, whose
half-plane representation is given by

C = {ce2’Md < C},

where C° = C4 - CB, ( can be either a re-
stricted domain or a diagonal line.

3.3 Opening

Morphological opening of a binary set A by
_ another binary set B is denoted by Ao B and is
defined as

AoB=(AoB)oB. (58)

Since dilations and erosions of restricted do-~
mains have been defined, the above definition of
opening is also valid for restricted domains. The
definition is also valid for the following more
general cases when either 4 or B or both are
not restricted domains: (i) A© B is a restricted
domain and B is a line at 45°, (ii) Ac B is a
restricted domain and B is a line at 135°, (iii)
A© B and B are lines at 135°, and (iv) Ao B
and B are lines at 45°. Note that lines at 45°
and 135° are not restricted domains since they
are not four-connected. The algorithm cannot
be used if A© B and B are lines at 45° and
135°, respectively. This constraint is due to the
fact that the dilation of a 45° line with a 135°
line results in a rhombuslike shape with one-
pixel holes, ie., the shape is not filled. Thus
set-theory dilation results in a shape that not
filled, but the half-plane and B-code dilation
algorithms produce a shape that is filled.

5.4 Closing

Morphological closing of a binary set 4 by an-
other binary set B is denoted by Ae B and is
defined as

AsB=(A®B)oB. (59)

Since dilations and erosions of restricted do-
mains have been defined, the above definition of
opening is also valid for restricted domains, The
definition is also valid for the following more
general cases when either A or B or both are
not restricted domains: (i) A is a line at 45° and
B is a restricted domain, (ii) B is a line at 45°
and A is a restricted domain, (iii) A and B are
lines at 45°, and (iv) A and B are lines at 135°.
Note that lines at 45° and 135° are not restricted
domains since they are not four-connected. The
algorithm cannot be used if A and B are lines
at 45° and 135°, respectively. This constraint is
due to the fact that the set-theory dilation of a
45° line with a 135° line results in a rhombus-
like shape with one-pixel holes, ie., the shape
is not filled. Thus set-theory dilation results in
a shape that is not filled, but the half-planc and

B-code ditation algorithms produce a shape that
is filled.
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6 Algorithms and Their Complexity

In this section we give the algorithms for com-
puting the dilation and erosion of restricted
domains represented by half planes. The al-
gorithms for opening and closing can be easily
obtained by applying the dilation and erosion
algorithms in the appropriatc order. The al-
gorithm for n-fold dilation and n-fold erosion
need onc multiplication step, which we explain
at the end of this section. The following data
structures are used in the algorithms:

ArrayObject is a data structure containing an
array and its dimensions. In the algorithms
the vectors associated with B-codes, half planes,
etc., arc stored by using this data-structure type.,

RDObject is a data structure used to represent
restricted domains, It contains the three matri-
ces, N, V, and C, associated with the restricted
domain.

Procedure DilateRDObject in Algorithm 2
takes as input two RDObject and outputs RDOb-
Ject, which is the dilation of the two input RDOb-
Ject.

ALGORITHM 2. Dilation of restricted domains.

procedure DilateRDObject(4, B, C)

Input:
RDObject A, B;
Output:
RDObject C;
begin
NC:= N4 4+ N5,

(e, Jo) == (34, ja) + (ip, jB);
end DilateRDObjects;

Procedure ErodeRDObject [12] takes as input
two RDObject and outputs RDObject, which is
the erosion of the two-input RDObject. This
procedure calls the normalization function that
is given in Algorithm 1. Function Normalize
takes as input an ArrayObject containing the
C array of a restricted domain and returns the
normalized C array if one exists; otherwise it
returns a null value,
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The n-fold dilation of a restricted domain B
by a restricted domain A is B & ( @ A) , the

dilation of B by the n-fold dilation of A. In
the B-code domain this amounts to multiplying
the side lengths of 4 by n and adding them
to the side lengths of B and then multiplying
the starting point of A by n and adding it to
the starting point of B. If 4 and B have the
side lengths given by the vectors N4 and NB
and starting points (i, ja) and (ig, Jg), then

@ A) has side lengths given by the vector
n

nN4 and starting point n(iy, Fa). It follows that
Bo( © A) hasside lengths given by the vector

N = NZ 4-nN4 and the starting point (ip, jg) +
n(ia, ja). Dilation can also be performed by
adding the C vectors associated with A and B
in the discrete half-plane representation. Thus

the C vector associated with B @ ( B A) is

C = CB + nCA,
The n-fold erosion of a restricted domain B
by a restricted domain A is Bo ( & A) , the

erosion of B by the n-fold dilation of 4. Let
C# and CP be the vectors associated with A
and B. Then nC4 is the vector associated with

( & A). Thus in the half-plane domain the

n-fold erosion of B by A amounts to CP — nCA4.

Algorithm 2 for the dilation of restricted do-
mains consists of only 10 additions. Hence it is
a constant-time algorithm. Note that the time
complexity is independent of the size of the
structuring clement. In conventional motphol-
ogy this is not the case —the time complexity is
O(n?), where n is the number of elements in
cach set,

The algorithm for an n-fold dilation of re-
strictcd domains consists of eight multiplications.
Hence it is also a constant-time algorithm.

The erosion algorithm given in [12] consists
of eight subtractions followed by the process of
normalization. The normalization in Algorithm
1 was shown to be constant time. Thus the
erosion algorithm is a constant-time algorithm.

The n-fold erosion is represented in terms
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of n-fold dilation. Since the n-fold dilation
algorithm is constant time, the n-fold erosion
algorithm is constant time.

The algorithm for opening consists of two
stages—an crosion stage followed by a dilation
stage. Since erosion and dilation algorithms
are constant time, the algorithm for opening is
also constant time. Similarly, the algorithm for
closing consists of two stages—a dilation stage
followed by an erosion stage. Since erosion and
dilation both are constant time, the algorithm
for closing is also constant time.

We now apply the algorithms on some typical
restricted domains. Figure 7 is an exampic of a
dilation. Here C = A® B, where

A = (0, 2){(dy : 3)(d5 : 2)(d4 : 1)(d : 5)),
B = ((1, )|(dy : 1)(d5 : 1)(ds : D(dy : 1)).
Thus
(4 Ja) = (0,2) and
N4 = [0306210507,
(isy78) = (1,1) and
NB = [01010101],
N = NA+NP
= [04031151},
(ig. jc) = (i, ja) + (i, jn)
= (1,3).
Therefore
C = ((1,3){(d, : 4)(d; : 3)(ds : 1)ds : 1)

(dg : 5)(dy : 1)).

Thus we started from the B-code represen-
tations of A and B, and then we added the
respective side lengths and starting locations to
get the B-code for C,

For a worked-out example of erosion of re-
stricted domain, see [12] and [13].

.7 Decomposition of B-Coded Restricted Do-
maing

In this section we state the decomposition prob-
lem in terms of restricted domains, We formally
express the problem as a theorem and prove it

by giving a constructive solution. Furthermore,
we interpret the problem of finding the decom-
position as a vector-space mapping problem and
show that the constructive solution is just a par-
ticular solution of a linear system of equations.
The nuil space of the mapping is then found
by finding the homogeneous solution. Finally,
the general solution is expressed as the sum of
a particular solution and the homogeneous so-
lution of the system. Since the decomposition
problem may not have a unique solution, the
particular solution is only one possible decom-
position, whereas the general solution is the set
of all possible decompositions.

7.1 Statement of the Problem

We will consider the following problems: (i) If
we are given a restricted domain, is it possible
to decompose it and express it as the dilation of
simpler restricted domains? (i) In particular,
is it possible to represent any restricted domain
as dilations of members of a finite-basis set of
restricted domains? (iii) Is the decomposition
unique? If not, how do we find all the possible
decompositions?

7.2 Basis Set

We show here that any restricted domain A can
be decomposed as the n-fold dilations of 13 basis
structuring elements. That is, any restricted
domain is a point in 2 13-dimensional space
whose basis directions are 13 shapes. These
basis structuring elements are shown in figure
8. Their B-code representations are given by

Ky = {(0,0)|(dy : 1)(ds : 1)),
K; = (0, 0){(d; : 1)(ds : 1)),
Ki = {0, 0)|(d; : 1){d¢ : 1)},
Ke = ((0,0){(ds : 1)(dy : 1)),

Ks = {(0, 0){(dy : 1)(d; : 1)(ds : 1)),
Ks = {(0,0)|(dp : 1)(ds : 1)(ds : 1)),
Ky = ((0,0)i(dy : 1)(dy : 1)(dg : 1))
Kg = ((0,0)/(d; : 1)(dy : 1)(dy : 1))
Ky = {0 0)|(dp : 3)(ds : 1)(ds : 1)),
Ko = {(0,0)l(dy : 1)(dg : 2)(dy : 1)),




1ermore,
decom-
dem and
st a par-
juations.
n found
Finally,
: sum of
gous so-
iposition
ion, the
decom-
s the set

s (i) If
possible
jation of
uticular,
domain
is set of
iposition
possible

in A can
"13 basis
estricted
al space
These
in figure
ven by

A B

Vector-Space Solution for a Morphological Shape-Decomposition. Problem 67

C

Fig. 7 Example of dilation. G is obtained by dilating A by B. Here 4 = ((0, 2)i(dy : 3)dy : 2)(dy : D(dg : 5)),
B= (L DIy 13 = Dfds : 1)(dy 2 D), and C = (1, 3)|(dy : 41y : 3Ny : 1)(ds : D(dg - Ay ¢ 1.

Ky = {(0,0))(d; : 1)(d; : 1)(dg : 2)),
((0, 0)i(d; : 2)(ds : 1)(dy : 1)),
((0, 0)}(@y : 1)(ds5 : 1)(ds : 1)

(d7 : 1)), (60)
That is, any restricted domain A can be decom-

posed as the kith-fold dilations of the 13 basis
structuring elements K; shown in figure 8:

el
i

A = Koe( 631{1)69( @Kz)@
ky &
"'39(@}{13), (61}
kyg

where K; is a member of X, the basis set of
structuring elements, and k; are nonnegative
integers representing the number of times K;is
dilated. Notice that the X; are triangles, lines,
or a rhombus,

Comparing the left-hand side of (61) to it-
s right-hand side, we see that for the above
proposition to be true, the lengths of the sides
of the restricted domains on the left-hand side
and the right-hand side should be the same.
We can compute the dilations on the right-hand
side by using the B-code dilation and finding the

lengths of the sides of the resulting restricted
domain in terms of the &;, 1 <i < 13. Then we

need to find a set of k; such that the lengths of
the sides of the resulting restricted domain are
the same as those of A. In subsection 7.3 we
will show that we can find a set of nonnegative
integers k; that satisfy the following relations:

Mo = ki + ks + ke + 2k,

ny = kytkrt+kg+ kyy + ki3,

ng = k3 + ks + kg + 2k,

n3 k4+k(,+k9+kn+k13,

ng = ki+kr+kg+ 2k,

ns = kytks+ ket kyp+ ks,

ne = ky+ ks + ke + 2k,

Ny = kgt kst kg + kyp + kys, (62)

i

where n; are the lengths of the sides of the
restricted domain A.

7.3 Linear-Space Interpretation of the Problem

From subsection 7.2 we sec that solving the
decomposition problem is equivalent to finding
all the solutions of the set of equations {62). The
set of linear equations in (62) can be rewritten

by using a matrix representation as follows:

T-K=N, (63)
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Fig. 8 Thirteen basis structuring elements K 1 oees Ko
The respective B-codes are give in equation (60).
where T is the 8 x 13 transformation matrix
_1000110020000'
0100001001101
0010100100020
1001010010101
T=160100001102000/"
0000100010011
0010011000200
_0001000101011_

N is a 8 x 1 vector with nonnegative integer
entries representing the restricted domain 4 in
terms of its side lengths, and K is a2 13 x 1
vectar. representing A in terms of its dilation
decomposition.

Thus the decomposition problem can-be re-
stated as follows: given thc matrix T and the

vector N, find a vector K such that its elements
are nonnegative integers and it satisfies (63).

The matrix T is a linear transformation from
a 13-dimensional linear space into an eight-
dimensional linear space that transforms the
vector K into the vector N. Therefore to find
the vector K we must find the preimage of the
vector N in the transformation T.

Since the dimension of the null-space K" of
the transformation T is not zero, the vector N
has more than one preimage in T and there is
more than one possible decomposition of the
restricted domain. In general, we can express
any preimage of N4, the N vector of a restricted
domain 4, as the sum of one particular preim-
age K* and a vector from the null-space K",
Finally, all the solutions K¢ can be expressed as
K¢ = K* + K%, In subsection 7.3.1 we find a
particular solution K?. In subsection 7.3.2 we
compute the homogeneous solution K* The
general solution K¢ is finally computed in sub-
section 7.33. The vector-space interpretation is
summarized in figure 9.

7.3.1 Particular solution. We will find a par-
ticular solution of the system of equations (62)
K” by looking at the underlying geometry of the
problem. A different proof by induction can
be found in [6]. Note that finding a particu-
lar solution to (63) simultancously proves the
existence of the decomposition of a restricted
domain. In this section we will give a construc-
tive algorithm for finding such a decomposition.
For each step we will give the geometry and
follow it up with a lemma that proves that the
geometrical construction is valid.

We start by noticing that a restricted domain
A can be represented as the dilation of A trans-
lated to the origin with a point that translates it
back to its original position. This is stated for-
mally in Lemma 7.1, and an example is shown
in figure 10.

LEMMA 71. Any restricted domain A =
(G, ja)l(de = no)(dy : my) ---(dy : ng)) can
be decomposed as

4= 4" 9 I, (63)

where A©® is a restricted domain given by the
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Fig. 9. T is a linear transformation from a I3-dimensional s
dilation decompositions (K), to an eight-dimensional space,
side lengths (N).

B-code ({0, 0)i(dg : mo)(d; : ng) -~ (dy : my))
and Kg = ((ia, ja)i).

Proof. The proof follows immediately from the
rule for B-code dilations:

(0, 0) + (4, ja)
(":Aa JA) (66)

(B0 Ga®) + (ikyy Tx0)

and
n§°’ +0 =n,.

Since n{ = n;, A® is just a translated version
of A. Hence it is a restricted domain.

Next consider A9, defined in Lemma 7.1. It
can be represented as the dilation of a horizon-
tal line, a vertical line, and a residual restricted
domain A"), The horizontal line is of length k&,
equal to the smaller of the two horizontal sides
of A® (ie., the minimum of n{” and n™), and
the vertical line is of length k, equal to the
smaller of the two vertical sides of A® (i,

the minimum of n{” and ng). The restricted
domain A® is a structuring element whose hor-
izontal and vertical sides are smaller than those
of A® by amounts k; and ky, respectively, and
whose other sides are equal. The horizontal
and vertical lines can be represented as the ky-
fold dilation of structuring element X, and the
ks-fold dilation of structuring clement K, re-
spectively. An example is depicted in figure 11,
and a formal statement is in Lemma 7.2,

LEMMA 7.2. The restricted domain A® defined

pace, in which the restricted domains are represented in terms of
in which the restricted domains are represented in terms of their

in Lemma 7.1 can be further decomposed as
AD « A“)GB( ® K1) ) ( % K;), (67)
¥

where

Ky = {(0,0){(do : 1)(dq : 1)), (68)

Ky = {(0,0)d; : 1)(ds : 1)), (69)
ko= min[nd, 2™, (70)
ks = min[n, 2"}, (1)

and AN is the restricted domain or diagonal
line with

Gams Jaw) = (0, 0), (72)
a0~k ifi=0
or 4,
2w L g iri=2 (1)
or 6,
n,(o) otherwise.

Proof. We will first prove that any B-coded
shape with the n/s as defined by (73) is a re-
stricted domain or a diagonal line and hence
A s a restricted domain or a diagonal line.
Next, we will show that the restricted domain
obtained by computing the dilation on the right-
hand side of (67) is in fact A©,

From section 6 on restricted domains, for A1)
to be a restricted domain the n?), 0<igT,
must satisfy the following equations:

i+ 40 = 2D 4D 40, 70




70 Kanungo and Haralick

.

® 0

A

Fig. 10. Example of A decomposcd as K9 @ A®, where A® is 4 translated to the origin. Here A = {(7, 3)|(dg : SK4d, :
Ay : 5)(dy : 4)(dy : 6)(ds : 1)(dg : 10)(dy : 2)), and Ko = (7, 3))).

N I N
By using the definition of ngl) given by equation

(73), (74) can be rewritten as follows:

[P0 1] 40 4
=0 4 [o® ] 4 0.
Simplifying, we get

n(()ﬂ) + ngﬂ) + ng)) = ngo) + nﬁo) + ngo). (76)
However, this equation holds, since A® is a

restricted domain. Similarly, we can show that
(75) also holds. Note that A is a diagonal line

K1

if n” =nl #0and n® =0 fori#1,5or
else if n{” = n{” % 0 and n{® = 0 for i # 3, 7.

Next, we show that the dilation on the right-
hand side of (67) results in the restricted domain

A®, From the dilation rule the following rela-
tions between A® and A® must hold:

(40, Jaw) = (igw, Jaw) + ki, Gi,)
+k3('iK3’ JK‘!)' (77)
o = a4 k(65 + ks(nf),

0<i<?.  (78)

Since (iKanl) = (ilf:ﬂ st) = (éA(lth(l)) =
(0, 0) and (i, Jam) = (0, 0), equation )
holds. Expanding the right-hand side of (78)
for 0 <i <7, we get the following:




)5 5)dy :

i1, 5 or
1% 3, 7.
fie right-
| domain
ing rela-

y jK 1 )
(77)

),
(78)

Jam) =
ion (77)
of (78)
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Hl|

@
AD ©Ky 0Ky

Fig. 11. Example of A decomposed as AM @ ( P K;) & ( 9 K_;) , where Ky and K, are horizontal- and vertical-line
1 '3

Structuring elements (see figurc 8). Here A = (0, 0)|(dy : S)(dy : 4)(d; : 5)dz : 4)(dy : 6)(ds : 1)(dg : 10)(dq : 2)),
ki =5k =5, and AD = (0, 0)](dg : 5)dy : 4)(d3 : 4)(dy : 1)(ds = 1)(dg : S)(dy : 2)).

Case i = 0, 4: Casei=1,3,5%
e + ky(nf) + ky(n)
= 0 + ky(0) + k5(0)

n) + ky(nf) + ky(n)

= [nﬁ‘” - k1] + k(1) + k3(0)

= n®
- ngg)- n.t .
Hence A® is the dilation of A®, the k;-fold
dilation of Ky, and the ks-fold dilation of K.
Case i = 2, 6 Thus Lemma 7.2 holds.

Similarly, we represent the restricted domain

(1 K K:
ng” +ky(n) + ks(n) AW as the dilation of two 45° diagonal lines,

= [0 < k] + E(0) + br(1 a rhombus, and 2 restricted domain 4@, An
[n, 3] 1(0) + &5(1) example of such a decomposition is illustrated in
= n", figure 12, and formal statement is in Lemma 7.3.
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4

AD

A® K3 K4

Fig. 12. Example of A decomposcd as A g ( 8 K,3) ® ( g K;) ® ( ® K4) , where K, and K are diagonal-line
13 4

structuring clements and Ki; is a thombus (scc figure 8). Here A() = ((0, O)iddg : S)(dy : 4X(dy : 4)(dy : 1)(ds : 1)(dg :
5)dy = 2)), A@ = ((0, 0)j(q, : 3)(dy : 2)(dg : INdg : 5)), kiy =1,k =0, and ky = 1.

LEMMA 7.3. The restricted domain A" defined and A® is a restricted domain with
in Lemma 7.2 can be further decomposed as

(aws Ja) = (0, 0), (86)
Fa be —k13 or 5,
EB( > K4)a (19) m o= ok ifi=3 (@87
by ~k3 or 7,
where ngl) otherwisc.
Kiz = ((0,0)|(dy : 1)(d; : 1)
(ds : 1)(dy : 1)), (80)  Proof. The proof is similar to that of Lemma

K = {(0,0)(d : 1)ds : 1)), (81) 7.2, Notice that from the definition of Ky, kg,

_ ) . and ki3 cither k; or kq is equal to zero. Thus
Ko = (000 D@ : D) D) o i on on the Haht e sue ot (79) is

T k3 = min[n?) ) ngl) , ngl) , n;”], (83) defined, since only one diagonal line is involved
= minfn() Oy _ (the other one reduces to a point). AsinLemma
& minfn; s ns '] ~ kg, (84) 7.2, we will proceed by first proving that the B-

ky = min[ng”,' ng’)] — ky3, (85) coded shape with the n's as defined by 87)isa
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restricted domain and hence A? is a restricted
domain, Next, we will show that the restricted
domain obtained by computing the dilation on
the right-hand side of (79) is in fact AM.

For A® to be a restricted domain the n{®, 0 <
i <7, must satisfy the following equations:

nf,z) + n§2) + ngz) = ngz) + n,gz) + n;z) , (88)
nﬁz) + ngz) + ngz ) = ngz )+ ngz) + ngz). (89)

By using the definition of n® given by (87),
(88) can be rewritten as follows:

R -
= [ng” - ks - k!3] +nf
+ [ng) -k~ fm] .
Simplifying, we get
n® 4 1) 4 oD = )+ 0D+ 1 (90)

However, this equation holds, since A® is a
restricted domain. Similarly, we can show that
(89) also holds.

Next, we show that the dilation on the right-
hand side of (79) results in the restricted domain
AW, From the dilation rule the following rela-
tions between AM and A® must hold:

(iA‘z" jAm) + ’“2('5&‘ JK:)
+k4(iKn jK;)

(iam, Jaw)

+k13(ik'1p jku)a (91)
m o= n® 4+ k(nf®) + kel
+k13(niK"‘),
0<ig7. (92)

Sincc (?:Kp j](z) = (”:Ku jK‘) = (iK)jU an) =
(Cams jam) = (0,0) and from Lemma 7.2
(Eam, fam) = (0, 0), equation (91) holds, Ex-
panding the right-hand side of (92)for0<i <7,
we get the following:

Case i =1, 5
2 + ky(nf) + ko(nf) + kis(nf'®)

= [~ ks = kis] + k(1) + k(0) + kys(1)
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Case i=3 7:
0 + ky(nk) + ky(n®) + kya(nf)

= [nf? — ke - kia| + ka(0) + ka(1) + ki3(1)

= n,

Case i=0,2,4,6:
ni + kp(nf) + ky(nf*) + kya(nf®)

= n{"" + ky(0) + ka(0) + ky3(0)
= n{®,

Hence A is the dilation of A®, the k,-fold
dilation of K3, the ky-fold dilation of K, and
the kj3-fold dilation of K{;. Thus Lemma 7.3
holds,

The resulting restricted domain A® is a re-
stricted domain with four or fewer sides that
satisfy the following properties:

nf,z) + ngz) + n.(,z) = ngz) + n,(‘z) + ngz) +(93)
e T

n‘(,z) or ngz) or both = 0, 95)
n? or & or both = 0 (96)
1 5 !
n? or n or both = 0, 97
ngz) or n§2) or both = 0, (98)
and
>0 for0<i<?. (99)

The restricted domain A® can be decom-
posed further. In the case for which A® is a
four-sided restricted domain, it can be decom-
posed as the n-fold dilations of two triangles
from the basis set. If A® is a triangle, then it
can be expressed as the n-fold dilation of one
of the triangles in the basis set. Otherwise, 4
is just one point, the origin, and does not have
to be decomposed any further, This is stated in
the following Jemma.

LeEMMA 7.4. If the restricted doxznain AD i
Lemma 7.3 has some nonzero n{®, it can be
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further decomposed as either the n-fold dila-
tion of one of the triangular basis structuring
elements or the n-fold dilation of two different
triangular structuring elements from the basis
set K.

Proof. 1t can be easily verified from the proper-
ties of A(® that there are only eight four-sided
restricted domains that can satisfy the constraint
equations (93)—(99). They are
(0, 0) | (do : n{)(dy : n®)
(43 : nP)(ds : n@)),  (100)
((0,0) | (dy : n™)(d; : nf)
(ds : n{)(dy - a)),  (101)
{(0,0) | (do : n{")(d; : n?)
(d; : n{P)(ds : APy, (102)
{0,0) | (dy : n)(dy : n{)
@y 2 n{)ds : @),  (103)
{0,0) | (4 : nP)(dy : nP)
(s : nP)(dy : nP)), (104)
{(0,0) | (do : nfP)(ds : n?)
(ds : ni)(dg : n)),  (105)
(0, 0) | (d : n{P)dy : nfP)
dg : n(dy : 0, (106
6 7
(0, 0) | (do : nD)(d, : )
(s : n)(dy : 0P, (107)

..

All the eight possibilities for A®@ are shown in
figure 13. Notice that all the restricted domains
are the rotated versions of one another. Fur-
thermore, some of the "'gz) can be zero and thus
make A?) a trianglc or a point (the origin), de-
pending on whether one or all four n; are zero.
It is not possible for only two n’gz) to be nonzero,
since in that case (93) and (94) will not hold. If
. all the »!® are zero, the 4@ is a single point,
the origin, and does not have to be decomposed
further. The case of only three nonzero n,sz) can

be treated as a special case of the four nonzero
n®, Thus we need to prove that A® with four

L
i

b

14 I

Fig. 13. Tho eight possibilitics for A®, Each is a dilation
of two triangles.

nonzero n,!z’ can be decomposed as the n-fold
dilations of two triangles.

We will solve the decomposition problem for
the eight possible A® on a case-by-case basis:

Case (i),

AP = ((0,0)|(dy : nP)(dy : n®)
@ : n)de : n)  (108)

For this case, the restricted domains obtained : ;
after decomposition should necessarily have
ny = ng = ns = ny = 0, because from the
dilation rule the dilation of a restricted domain
having a nonzero n; with any restricted domain
will have a nonzero n;, This is also evident

from (62). The only basis structuring elements
that satisfy the above conditions are K and K.
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Thus we should now find & and ky, such that

A<2>=(<DK) (@K).
&g )@ kn n
If we compute the dilation on the right-hand

side, we see that kg and k;; must satisfy the
following relations:

2)

ng = ks (109)
2® = gy, (110)
nP = ks ky, (111)
n® = ks + 2y (112)

If we let kg = n‘()z) and ky; = nﬁz), we see from
(93) and (94) that the above equations (111)
and (112) hold. Thus we have found a decom-
position for 4@,

All the other seven cases can be approached
in a similar fashion. We give the results below:

Case (ii).

AD

(0, 0)i(dy : n$P)(d; :
(s : 2P (dy : nP))

( ® Kg) e;( o Km), (113)

where kg = gz) and kjg = nfz).

]

Case (iii),

AP

i

{(0, 0)|(do : n{)(d, : P
(ds : n)(ds : n®))
( 5 K5)®( 6 Kg). (114)

where ks = ngz) and kg = ngz’.

(]

Case (iv).

AD = (©,0)/d : iP)es : nf)

(de : nP)(dg : n))
( ® K1)ea( @ Ku), (115)

where kyy = n® and &, = nﬁz).

il
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Case (v).
AD = (0, 0l(d; : nP)(dy : nP)
(ds : nP)(dy : nP))

- (28)o(g ). o

where kg = nﬂz) and ky, = -ngz).
Case (vi).

AB = ((0,0)(dy : nP)(ds : n{)
@s : n{)(dg : 2@y (117)

= ® K, ® Ko}, (118
( & 6) GB( @ 9) (118)
where kg =n§2 ) and kg = n,(sz).

Case (vii).

AD = (0, 0)l(dy 1 nP)(dy : )
(g : n)(d : 2P))  (119)

= & K )l @ K ), 120
( b 7) ( by 10 (120)
where ky = ngz) and ki = ngz).

Case (viii).

AP = ((0,0){(dy : nPY(dz : n)

s : nP)dr : nP))  (121)
(g7)e (g ma).

where ks = n(? and ky, = n®. An example is
shown in figure 14.

il

The remaining case is the case for which A@ is
a triangle, that is, three of the n;’s are nonzero.
We can still approach the decomposition prob-
lem by using the solution for the four-sided case.
The only difference in this case is that one of
the two k; will turn out to be zero. We have
thus proved lemma 7.4

Now we can formally state the decomposition
problem as the following theorem:
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1
14

A@)

ESE

K K
? 1 7

Fig. 14. Example of decomposition of 1 four-sided A@ as dilation of two triangles, A®) = ( @ Kn) & ( g K7> , where
1

Kyi and Ky are triangles (see figure 8). Here 4@ = ((u, 08y : 3)(d3 = 2)(dy : 1)(dg : 5)), ky; =2, and ky = 1.

THEOREM 7.1. Any restricted domain A can
be decomposed as the k;th-fold dilations of 13
basis structuring clements K

A = Ko@( ?Kx)ﬂé(?ffz)@
"'69( e K]}), (123)
k3

where K; € K, the basis set of structuring cl-
ements, are given by the B-codes in figure 8
and &; are nonnegative integers representing the
number of times K; is dilated.

Proof. From Lemmas 7.1, 7.2, and 7.3 we see
that there is a sequence of constructive steps
by which we can find a decomposition of any
restrictcd domain A as the n-fold dilations of
dilations of 13 basis structuring elements X; € X..

7.3.2 Homogenous solution. The homogeneous
equation associated with (63) is given as

T-K =0 (124)

The solution of (124) is the null subspace of the
space spanned by the rows of the matrix T or,
in other words, the kernel of the transformation
T. To.determine the dimension of the kernel
and a set of basis vectors spanning it, we can
transform the matrix T to the echelon form [20).

On doing so we get the equation

™ .K = (, (125)

where

100000 1 1
010000 1 0

g (001000 1 1
“J]ooo100 0 1
0000101 0
000001 0-1

Since the number of rows in the matrix T® is
six, the transformation T is a mapping of a 13-
dimensional space onto a six-dimensional space
with a seven-dimensional null space. This space
is, of course, a subset of the 13-dimensional
domain space. A set of basis vectors h;, 1 <
J £ 7, that span the null space can be found
by assigning ks«; = 1 and the other ky, ..., ki3
to zero and then solving the linear system (126)
to determine the corresponding ki, ..., k¢. The
set of basis vectors obtained on doing so is

B = [by by by by by b by] (127)




) , where

(125)

0
1
0
1
0

P e ea O

-10
(126)

¢ T s
»f a 13-
il space
is space
nsional
bji 1 S
> found
vy Ky
m (126)
ks. The
ois

(127)

B ANABN AT

[~1 -1 0-2 0 0 0]
-1 0 0~1-1 0-1
-1-1 1~1-1-1 0
0~1 0-1 0-1-1
I 0-1 1 1-1 ¢
0 1-1 1-1 1 0

={ 1000 0 0 0f.(128)
010 0 0 ¢ 0
6 061 0 0 0 0
0 0 01 0 0 0
0 000 1 0 0
0 06 0 6 0 1 0
L 00 0 0 0 0 1]

The homogeneous solution K* of T are, then,
all the vectors expressible as the linear combi-

nation of the basis vectors of the null space.
That is,

7
K'=3"eob;, o€R (129)

i=]

7.3.3 General solution. From linear spaces we
know that the general solution to (63) is the sum
of the particular solution and the homogeneous
solution. That is,

K7 = KF+K* (130)

7
= KP+> ab, aeR (i31)
i=1
However, we know that the general solution
can have only nonnegative entries, since they
represent the n-fold dilation of the structur-
ing elements. Furthermore, the entries of the
particular solution K? are nonnegative integers,
Thus the a;’s must belong to Z instead of to R.
Thus the equation becomes

7
K9 =K+ ab;, el (132)
i=1
We notice that (62) provides upper and lower
bounds for the ks, since the right-hand sides
are additions of nonnegative integers k;, which
cannot exceed the nonncgative integer constants
on the left-hand sides. For example, two equa-
tions involving k; in (62) are

ng = ky+ ks + ks + 2k, (133)
ng = k+ ky 4 kg + 2k, (134)
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where the n; are the side lengths of the re-
stricted domains and the k; are nonnegative in-
tegers representing the k;th-fold dilation of the
K; basis structuring element. Thus both n; and
k; are nonnegative integers, and it follows that
ki attains the maximum value when al] other
k; are zero. Thus the maximum value that
ky can attain with the above two constraints is
minfng, ns]. Furthermore, since we know that
the lower bound of n; is zero, the lower bound
of the ks is zero. We can similarly compute
the upper and lower bounds for all ks, All the
bounds obtained are

0< k< minfny, ny}, (135)
0< k < minfny, ng, (136)
0< ks < minfny, ng), (137)
0< k < min[ng, n-;], (138)
0 < ks < min[no, na, n5], (139)
0< ks < minfng, ns, ng), (140)
05 &k < minfny, ng, ngl, (141)
0< ks < minfny, ny, ny), (142)

0< ke < min[]_ng/Zj, n3, ns], (143)

0< ko <minfng, (ng/2), ny], (144)

0< ki <minfny, ns, [ng/2]), (145)

0< %k < min[[nz/ZJ, ns, n7], (145)

0< ks <minfny, na, ns, ny].  (147)

We will represent these bounds compactly by
using matrices:

0 <K < K™, (148)

where K™ is a vector having the 13 upper
bounds as its elements. Using (132), we get

7
OSK'+3 b K™, o,eZ  (149)
i=1

Rearranging, we obtain

7
~K? <Y o SK™ - K?, o;€Z. (150)
f=]
From the bottom seven rows of the inequality,

we get upper and lower bounds on «;’s. Thus
the bounds on «; are

-KE, S o SKE-KE,, for1<i<T,
(151)
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Thus the general solution K? can be found by
substituting the o; values from the valid domain
defined in (151) in (132). It must be verified
that the K9 thus obtained is within the bounds
given in (148), in which case it is a solution.
Thus must be done for all points in the o space.

7.4 Algorithms

This section revicws the algorithm for findi ng the
particular and general decompositions of the re-
strictcd domains. The algorithm for finding the
particular solution gives us one possible decom-
position. The algorithm for finding the general
solution gives us all the possible decompositions
of the restricted domain. Algorithm 3 is for
finding the particular solution and is based on
subsection 7.3.1. Algorithm 4 is for generating
all the solutions of the decomposition problem.
It is explained in detail in subsections 7.3.2 and
7.3.3.

ALGORITHM 3. Particular solution of the de-
composition.

procedure DecomposeGeneral(4, K*)

Input:
RDObject 4;
Output:
ArrayObject K»;

begin

STEP 1:
Initialize all ks, 1 < { < 13, and K to
2€10;

STEP 2:
Ko = ((i4, 54)});
n =n, 0<i<T;

STEP 3:
k= min[nf,m, nﬁo)];
ks = min[n{’, n{};

n® ~k ifi = Oord,

n,m =¢ p — k3 ifi=2or6,

?
ngﬂ) otherwise.

" STEP 4:
13 = minfn”, n{), o, n)

ky = min[ngl), ngl)] — k133
ks = minfnf, n{] ~ kyy;
M _ky— ks ifi = 1or5,

n,(z) = n}l) ~ kg — k13 iff = 301‘7,
) otherwise.
STEP 5:

jCount the number of nA” that are
nonzero.
;The count can be 0, 3, or 4.
case count equals 4:
if (nff’ # (0 and n?) #0)
ke = nf,z) and k; = ngz);
it (n? # 0 and n{? # 0)
ks = 05 and &y = n;
if (n? # 0 and n® # 0)
ks = ngz) and kg = ngz);
if (0 # 0 and n{ # 0)
ki = ngz) and &y = nﬁz);
if (o # 0 and n® # 0)
kg = nf) and k;; = n_ff);
if (n # 0 and n® # 0)
kg = ngz) and kg = nf.?’;
if (n) # 0 and n % 0)
kr = nd and ki = n;
if (n # 0 and nf # 0)
ks = n((,Z) and kq; = ngz);
case count equals 3;
if (nf? % 0 and n{® # 0 and o # 0)

ks = nf?;

if (n{” # 0 and n{? # 0 and n@ # 0)
ks = n{;

if (n # 0 and n{® # 0 and n@® # 0)
ki = nf’;

if (5 # 0 and 2 # 0 and n® # 0)
ks = nl;

if (0 # 0 and n # 0 and n? # 0)
by = n?;

if (2P # 0 and nf® # 0 and nD # 0)
b =%

if (v # 0 and n® % 0 and n® # ()




orS$,
vor7,

ise.

that are

P % 0)
& #0)
K #0)
&2 % 0)
P #0)
£ #0)

2 #0)
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kiy = i,
if (05" # 0 and n % 0 and n® # 0)
ki = n@;
case count equals 0:
break;

end DecomposeParticular;

ALGORITHM 4.
composition,

General solution of the de-

procedure DecomposeGeneral(4, K?, K?)

Input:
RDObject 4;
ArrayOhject K7;
Output:
ArrayObject K9;

begin
Initialize K™ by using the set of equations
in (147);
Initialize the bounds on o : -K§
K —-KE,, for1<ig<7;
for each & within bound de
Construct K¢ = K* + B - oy
if 0 < K7 < Kmax
Store K9;
end For;
end DecomposeGeneral;

<a <

7.5 Complexity of the Algorithms

Algorithm 3 for the particular solution of the
decomposition of a restricted domain consists
of only assignment statements and comparisons
and contains no loops. Thus the algorithm is
finite time.

The complexity of Algorithm 4 for generating
all the possible decompositions of a restricted
domain is a function of the size of the re-
stricted domain. The complete o domain must
be searched for all the legal Ks. Thus the
complexity of the algorithm is of the order of
the number of o vectors:

Complexity = O((K7™) x (KP™) x
X (KE). (152)

Thus we have proved that any restricted do-
main can be decomposed as the n-fold dila-

tions of 13 basis structuring elements. We have
framed the decomposition problem as a linear-
space problem and have shown that the solution
is not unique. Furthermore, we have shown that
all the decompositions of a restricted domain can
be expressed as the sum of a particufar solution
and the homogeneous solution of a vector-space
problem. We have provided an algorithm for
decomposing any restricted domain as n-fold
dilations of 13 basis structuring ¢lements. Fi-
nally, we have provided a second algorithm for
constructing all possible decompositions of the
testricted domain.

& Future Work

Muny extensions to the work presented here are
being tried out. Here we list a few of them.

The algorithms presented in this paper can be
generalized for the case of any discretely convex
shape. In that casc the polygon edges can be
at any angle. These angles can be defined in
terms of the basic angles that can be formed by
a vector starting from the origin and ending on
any pixel (m, n) such that m and » are coprime.

The problem of decomposing nonconvex
shapes is difficult. One way to attack this prob-
lem is to first represent the nonconvex shape
as a union of restricted domains and then to
decompose each of the restricted domains of
the union. Another approach is to represent a
shape A as a union of disjoint scts A! and K 1
where K' is the largest restricted domain that
is a subset of A and A = A! - K. This process
can be repeated, and the shape A can be rep-
resented as A = K'UK2y...UK™, where each
restricted domain K* can then be decomposed
further. The proposed approach is related to
the approach in [4].

Morphological dilation on nonconvex shapes
will have to be carried out by first representing
the shape as a union of restricted domains, Mor-
phological erosion of nonconvex shapes can be
accomplished by representing the shapes as the
intersection of restricted domains and comple-
ments of restricted domains. How to decompose
a nonconvex shape as a union of restricted do-
mains and the intersection of restricted domains
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remains a problem, and an algorithm for doing
this has yet to be developed. Furthermore, a
representation scheme of nonconvex shapes in
terms of half planes and B-codes is necessary.

9 Conclusion

We defined restricted domains—a restricted
class of two-dimensional shapes. Two boundary
schemes for representing restricted domains, the
B-code and the discrete half-plane representa-
tion, werc introduced. Morphological dilation,
erosion, n-fold dilation, n-fold erosion, open-
ings, and closings of restricted-domains structui-
ing elements, which are also restricted domains,
werc cxpressed in terms of B-codes and half
planes. Algorithms for performing these oper-
ations were provided and were proved to have
constant-time complexity.

We proved that any restricted domain can be
decomposed as n-fold dilations of 13 basis struc-
turing elements and hence can be represented
in a 13-dimensional space. This 13-dimensional
space is spanned by the 13-basis structuring ele-
ments consisting of lincs, triangles, and a rhom-
bus. A constant-time algorithm was provided
for finding a decomposition of any restricted do-
main as the n-fold dilations of the basis struc-
turing elements. We showed that there is a
linear transformation from this 13-dimensional
space to an eight-dimensional space wherein a
restricted domain is represented in terms of its
side lengths. Furthermore, we showed that the
decomposition in general is not unique and that
all the decompositions can be constructed by
finding the homogeneous solutions of the trans-
formation and adding them to the particular
solution. An algorithm for finding all possible
decompositions was provided.

Suggesting have been madc as to how the
algorithms can be generalized to any arbitrary
two-dimensional discretely convex shape. Point-
ers also have been given on how to approach
the more difficult problem of decomposing non-
convex shapes. -
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