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Abstract

Most page segmentation algorithms have user-
specifiable free parameters. However, algorithm designers
typically do not provide a quantitative/rigorous method for
choosing values for these parameters. The free parameter
values can affect the segmentation result quite drastically
and are very dependent on the particular dataset that the
algorithm is being used on. In this paper, we present an
automatic training method for choosing free parameters
of page segmentation algorithms. The automatic training
problem is posed as a multivariate non-smooth function
optimization problem. An efficient direct search method —
simplex method — is used to solve this optimization prob-
lem. This training method is then applied to the training of
Kise’s page segmentation algorithm. It is found that a set
of optimal parameter values and their corresponding per-
formance index can be found using relatively few function
evaluations. The UW III dataset was used for conducting
our experiments.

1 Introduction

Page segmentation is a crucial preprocessing step in OCR
system. In many cases, OCR accuracy heavily depends on
page segmentation accuracy. While numerous segmentation
algorithms have been proposed in the literature [12, 6, 14,
11, 9, 1], relatively little research effort has been devoted to
automatic training of algorithms with user-specifiable free
parameters.

Some research algorithms [6, 11, 5] specify default
parameter values. In performance evaluation literature,
Hoover et al. [4] manually selected the algorithm param-
eters. A common aspect of these training methods is that
a set of “optimal parameter values” are manually selected
based on some assumption regarding the training dataset. To
objectively optimize a segmentation algorithm on a given
training dataset, a set of optimal parameter values should be
automatically found by a training procedure.

In this article, we pose the automatic algorithm training
problem as an optimization problem. We set-theoretically
define a textline based performance metric, which is used
to construct an object function. The objective function
is a function of the algorithm parameters and the training
dataset. This average performance metric on the training
data set is used as the objective function value. The sim-
plex search technique introduced by Nelder and Mead [10],
which belongs to the class of direct search method [2], is
used to find the optimal solution. This method is applied to
Kise’s Voronoi-diagram-based segmentation algorithm on
the University of Washington III dataset [13].

This paper is organized as follows. In Section 2, we
define page segmentation and error metrics. In Section 3,
we pose the automatic training problem as an optimization
problem. In Section 4, we specify the experimental proto-
col. In Section 5, we report experimental results and provide
discussions. Finally, in Section 6, we give our conclusions.

2 The Page Segmentation Problem and
Error Metrics

In this section we define page segmentation and the error
metrics used. These definitions are based on set theory and
mathematical morphology [3].

2.1 Page Segmentation Definition

Let I be a document image, and let G be the groundtruth
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2.2 Error Measurements and Metric Definitions

While a performance metric is typically not unique, re-
searchers can select a particular performance metric to study
certain aspects of page segmentation algorithms, a set of er-
ror measurements is necessary. Let T
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be two length thresholds (number of pixels) that determine
if the overlap is significant or not. Let E(T
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g be a region
of a rectangle centered at (0; 0) with a width of 2T

X

+1 pix-
els and a height of 2T

Y

+ 1 pixels where X(�) and Y (�) de-
note the X and Y coordinates of the argument respectively.
We now define two morphological operations: dilation and
erosion [3]. Let A;B � Z

2. Morphological dilation of A
by B is denoted by A �B and is defined as:
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Morphological erosion of A by B is denoted by A	B and
is defined as:
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Now, we define three types of textline based error mea-
surements:
1) Groundtruth textlines that are missed:
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2) Groundtruth textlines whose bounding box is split:
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3) Groundtruth textlines that are horizontally merged:
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Let the number of groundtruth error textlines be #fC
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the total number of groundtruth textlines is #L. We define
the performance metric �(I;G;R) as textline accuracy:
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We only consider three types of textline errors — split,
missed and horizontally merged. Our textline-based perfor-
mance metric has the following features: 1) it is based on
set theory and mathematical morphology, 2) it is indepen-

dent of shape of zones, 3) it is independent of OCR recog-
nition error, 4) it ignores the background information (white
space, salt and pepper noise etc.), 5) segmentation errors can
be localized, and 6) quantitative evaluations on lower level
(e.g. textline, word and character) segmentation algorithms
can be readily achieved with little modifications. However,
this performance metric needs textline level groundtruth. In
general, �(I;G;R) can be any user-specified function.

3 Automatic Algorithm Training:
The Optimization Problem

We pose the automatic segmentation algorithm training
problem as an optimization problem. An optimization prob-
lem has three components, the objective function that gives
a quantitative measure of goodness, a set of parameters that
the objective function is dependent on, and a parameter sub-
space that defines acceptable or reasonable parameter val-
ues. The acceptable or reasonable parameter subspace is
typically termed as the constraints of the optimization prob-
lem. The purpose of an optimization procedure is to find
a set of parameter values for which the objective function
gives the “best” (minimum or maximum) measure values.
In this section, we first define the objective function for our
page segmentation algorithm training problem, then we in-
troduce a direct search algorithm to optimize the defined ob-
jective function, and finally we discuss the starting point se-
lection in our optimization problem.

3.1 The Objective Function

Let p

A be the parameter vector for the segmenta-
tion algorithm A, let T be a training dataset, and let
�(I;G; Seg
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(I;p

A

)) where (I;G) 2 T be a performance
metric. We define the objective function f(pA; T ; A; �) to
be minimized as the average textline error rate on the train-
ing dataset:
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where �(G;Seg

A
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)) is given by Equation 1. This
objective function has the following properties: 1) The
function has no explicit mathematical form and is non-
differentiable, 2) Only function evaluations are possible, 3)
Obtaining a function value requires nontrivial computation.
This objective function can be classified as a multivariate
non-smooth function. In the following section, we describe
an optimization algorithm to minimize this objective func-
tion.



3.2 The Simplex Search Method

Direct search methods are typically used to solve the op-
timization problem described in Section 4.1. We choose the
simplex search method proposed by Nelder and Mead [10]
to minimize our objective function.

We give the notation used to describe the simplex
method: Let q
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the stopping criterion. For a segmentation algorithm with n
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3.3 Multiple Starting Point Selection

The objective function corresponding to each segmenta-
tion algorithm need not have a unique minimum. Further-
more, direct search optimization algorithms are local opti-
mization algorithm. Thus, for each (different) starting point,
the optimization algorithm could converge to a different op-
timal solution. We constrain the parameter values to lie
within a reasonable range and randomly choose six start-
ing locations within this range. The optimal solution corre-
sponding to the lowest optimal value is chosen as the best
optimal parameter vector.

4 Experimental Protocol

We select the University of Washington Dataset [13] for
the algorithm training task. A training dataset of 100 doc-
ument pages was randomly sampled from the selected 978
documents in the UW III dataset. The dataset contains ge-
ometric textline and zone groundtruth for each page. We
compute a performance metric only on text regions.

Kise’s algorithm [6] works as follows: 1) label connected
components, 2) remove noise connected components, 3)
generate the Voronoi diagram for each connected compo-
nent using the sample points on its border, 4) delete super-
fluous Voronoi edges according to a area-spacing criterion
to generate zone boundaries, 5) remove noisy zones.

Kise’s algorithm has eleven free parameters and is insen-
sitive to seven of them. We fix the seven parameters as fol-
lows: maximum height and width thresholds of a connected
component, C

h

= 500 pixels and C

w

= 500 pixels, maxi-
mum connected component aspect ratio threshold, C

r

= 5;

minimum area threshold of a zone, A
z

= 50 pixels2 for all
zones, and minimum area threshold,A

l

= 40000pixels, and
maximum aspect ratio threshold,B

r

= 4 for the zones that
are vertical and elongated. The last parameter is the size of
the smoothing window, which is fixed at sw = 2: The opti-
mal values for the other four parameters are searched from
the following ranges recommended by Kise:
1) sampling rate sr: f4-7g, 2) maximum size threshold of
noise connected component nm: f10-40g, 3) margin con-
trol factor for Td2 fr: f0.01-0.5g, 4) area ratio threshold ta:
f40-200g.

The machines we use are Ultra 1,2 and 5 Sun worksta-
tions running Solaris 2.6 operating system. After the train-
ing step, a set of optimal parameter values are found for each
research algorithm.

5 Experimental Results and Discussions

From Figure 1 and Table 1, we can make the following
observations 1:

1) The error rates for all starting points converge in the
range of 4.74% to 5.52%, 2) The convergence rate before
first 30 function evaluations is much faster than that beyond
30
function evaluations, 3) The value parameter nm for most
(five) starting points converges to 11 pixels, 4) There is rel-
atively small variance in the convergence values of param-
eter sr, nm and ta, 5) There is relatively large variance of
the convergence values of parameter fr, 6) There is a rela-
tively large variance of the number of function evaluations
corresponding to six starting points.

1Note that some numbers reported in this paper differ from those re-
ported in our technical report [7]. In [7] we used Numerical Recipes version
of Nelder-Mead algorithm whereas in this paper we use the original [10] al-
gorithm.
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Figure 1. Convergence curves corresponding to six
randomly selected starting points in the training of the
Voronoi algorithm.

Table 1. Optimization results of Voronoi algorithm for
six randomly selected starting points within a reason-
able working parameter subspace.

start parameter values optimal parameter values error rate number of function timing
(sr; nm; fr; ta) (sr; nm; fr; ta) (percent) evaluations (hours)
(6; 25; 0:1; 80) (6; 15; 0:079; 106) 4.80 72 14.06
(7; 10; 0:1;180) (6; 11; 0:083; 199) 4.74 80 14.97
(6; 30; 0:3; 60) (6; 11; 0:147; 148) 5.31 138 39.30
(7; 15; 0:4;120) (8; 11; 0:098; 190) 5.18 116 31.52
(6; 35; 0:25; 120) (6; 11; 0:246; 193) 5.52 95 32.78
(4; 25; 0:05; 140) (4; 11; 0:138; 160) 5.49 66 15.80

From the above observations, we can see that the Voronoi
algorithm objective function has multiple local minima, but
the performance at these local minima is stable. The algo-
rithm only needs about 30 function evaluations to reach a
stable performance. The optimal algorithm performance is
insensitive to the value of parameter fr. The fact that the
optimal value of parameter ta is big implies that the text
and non-text connected components are well separated. The
fact that the values of parameter fr are generally small indi-
cate we should choose a conservative (large) interline spac-
ing threshold. This training methodology is very general
and has been applied to many page segmentation algorithms
[8, 7].

6 Conclusions

We posed the automatic segmentation algorithm training
problem as a multivariate non-smooth function optimiza-
tion problem. A textline based performance metric was de-
fined using set theory and mathematical morphology. This
textline based metric was used to construct the objective

function to be minimized. Nelder-Mead simplex method
was then used to solve the optimization problem. An em-
pirical analysis of the effect of initial parameter values and
scales on optimization results was performed. From the ex-
perimental results, we found that a set of “optimal” parame-
ter values and their corresponding “optimal” objective func-
tion value can be quickly found with relatively less compu-
tation.

References

[1] H. S. Baird, S. E. Jones, and S. J. Fortune. Image segmenta-
tion by shape-directed covers. In Proceedings of International
Conference on Pattern Recognition, pages 820–825, Atlantic
City, NJ, June 1990.

[2] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimiza-
tion, chapter 4. Academic Press, London and New York, 1993.

[3] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision.
Addison-Wesley Publishing Company, Reading, MA, 1992.

[4] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke,
D. B. Goldof, K. W. Bowyer, D. W. Eggert, A. Fitzgibbon, and
R. B. Fisher. An experimental comparison of range image seg-
mentation algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18:673–689, 1996.

[5] A. K. Jain and B. Yu. Document representation and its appli-
cation to page decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20:294–308, 1998.

[6] K. Kise, A. Sato, and M. Iwata. Segmentation of page images
using the area Voronoi diagram. Computer Vision and Image
Understanding, 70:370–382, 1998.

[7] S. Mao and T. Kanungo. A methodology for empirical per-
formance evaluation of page segmentation algorithms. Tech-
nical Report CAR-TR-933, University of Maryland, College
Park, MD, 1999. http://www.cfar.umd.edu/˜kanungo/pubs/tr-
segeval.ps.

[8] S. Mao and T. Kanungo. Empirical performance evaluation of
page segmentation algorithms. In Proceedingsof SPIE Confer-
ence on Document Recognition, San Jose, CA, January 2000.

[9] G. Nagy and S. Seth. Hierarchical representation of optically
scanned documents. In Proceedings of International Confer-
ence on Pattern Recognition, volume 1, pages 347–349, Mon-
treal, Canada, July 1984.

[10] J. Nelder and R. Mead. A simplex method for function min-
imization. Computer Journal, 7:308–313, 1965.

[11] L. O’Gorman. The document spectrum for page layout anal-
ysis. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 15:1162–1173, 1993.

[12] L. O’Gorman and R. Kasturi. Document Image Analysis.
IEEE Computer Society Press, Los Alamitos, CA, 1995.

[13] I. Phillips. User’s Reference Manual. CD-ROM, UW-III
Document Image Database-III.

[14] F. Wahl, K. Wong, and R. Casey. Block segmentation and text
extraction in mixed text/image documents. Computer Vision,
Graphics, and Image Processing, 20:375–390, 1982.


