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Abstract 
We consider the problem of image segmentation and 

describe an algorithm that is based on the Minimum 
Description Length (MDL) principle, is fast, is appli- 
cable to multi-band images, and guarantees closed re- 
gions. We construct an objective €unction that, when 
minimized, yields a partitioning of the image into re- 
gions where the pixel values in each band of each re- 
gion are described by a polynomial surface plus noise. 
The polynomial orders and their coefficients are de- 
termined by the algorithm. The minimization is diffi- 
cult because (1) i t  involves a search over a very large 
space and (2) there is extensive computation required 
at each stage of the search. To address the first of 
these problems we use a region-merging minimization 
algorithm. To address the second we use an incre- 
mental polynomial regression that uses computations 
from the previous stage to  compute results in the cur- 
rent stage, resulting in a significant speed up over the 
non-incremental technique. The segmentation result 
obtained is suboptimal in general but of high quality. 
Results on real images are shown. 

1 Introduction 
1.1 The General Image Segmentation 

This paper’ describes a solution to the problem of 
unsupervised multiband image segmentation. This is 
an extension of a previous algorithm[22]. More pre- 
cisely, the problem we address is the following. We 
are given an image in which the ith pixel has  asso- 
ciated with it two vectors: yi E Rd and xi E Z q .  
The components of x, are the pixel coordinates in a 
discrete, q-dimensional space. The components of yi 
represent the measured intensity levels (greylevels) in 
d different “bands”. These may be spectral bands (e.g. 
“red”, “green” and “blue”), different imaging modal- 
ities (e.g. an optical image and a range image), “fea- 
tures” (using pattern recognition parlance) computed 
from the greylevels of the pixels in some neighborhood 
of pixel i ,  and so on. We assume that the image 
represents a real scene consisting of objects, regions, 
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2Some examples are the local mean, median, maximum, gra- 
dient magnitude/direction, Laplacian. More complicated mea- 
sures are, of course, also possible. 

See [9] for an expanded version. 

surfaces, etc. Our task is to divide this image into a 
number of non-overlapping regions whose union is the 
entire image. The goal is for these regions to corre- 
spond to actual regions, objects, surfaces, etc. in the 
real scene. We want the regions produced by the algo- 
rithm to be homogeneous in some sense. There may 
be a precise measure of homogeneity corresponding to 
a particular application or we may want the grouping 
into regions to be similar to one that would be pro- 
duced by a human given the same task. Our approach 
is to propose a precisely defined problem whose solu- 
tion is, in  many cases of interest, consistent with this 
more general but somewhat imprecise definition. In 
doing so, we will make certain assumptions about the 
images being segmented. In practice these frequently 
may not hold of course, but, taking a pragmatic view, 
we will judge the algorithm by how well it does in 
segmenting images of real scenes. 

The solution to the segmentation problem that we 
present, uses the Minimum Description Length Prin- 
ciple (MDL) to obtain a complexity-based objective 
function. The originality of our approach is in its com- 
bination of generality (multi-band, high-order polyno- 
mial surfaces), speed, and this fixed (no adjustable 
thresholds) MDL-based objective function. 

1.2 Related Work 
Before beginning a detailed description of our ap- 

proach, we will briefly survey related work. We will 
review here only closely related work. For a more 
complete survey of image segmentation techniques see 
[8]. The MDL criterion was first used for the prob- 
lem of image segmentation by Leclerc[l2] where a 
graylevel image was partitioned into regions, with a 
two-dimensional polynomial model defined on each re- 
gion. A continuation minimization procedure led to 
an algorithm for finding the regions and polynomials. 
This work is the most closely related to ours. There 
are, however, important differences between his ap- 
proach and ours: (1) we use a region-merging-based 
optimization procedure whereas Leclerc uses a contin- 
uation scheme. Although the continuation approach 
is less likely to result in a suboptimal (local mini- 
mum) solution than ours, it is much slower and if 
not allowed to run to convergence, may leave bound- 
ary fragments that aren’t closed. Our approach never 
does this; (2) ours treats multiple band images; (3) 
we explicitly count the cost of the encoding parame- 
ters in our MDL formulation; (4) ours is implemented 
by a fast, incremental computation; ( 5 )  Leclerc’s al- 
gorithm, through its application of the continuation 
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approach has a “relaxation” flavor where pixels de- 
termine their new (next iteration) parameter values 
based on the values of those parameters and the grey- 
values of neighboring pixels (and their own) for the 
current iteration. Our approach is region based, how- 
ever, always maintainin and merging regions based 
on t eir statistics and %oundaries. In more recent 
workql3] Lecletc applied the same approach to region 
grouping. Our approach lends itself naturally to that 
problem as well; see [22]. 

Other authors have also used MDL for image seg- 
mentation. Keeler[lO] describes a method in which 
he segments an image by encoding the topology of 
the segments (for which he has an efficient encoding), 
their specific boundaries, and the pixel values in each 
segment as a noise-corrupted constant grey level. The 
segmentation is the one for which the encoding length 
of the topology, boundaries, meens, and deviations 
from means is minimum. h a  and Hanson[7] use MDL 
for a model-based image segmentation. They use ge- 
ometric constraints on object boundaries (e.g. they 
are straight lines), allow certain outlying pixels to be 
excluded to account for shadows, etc. , and model only 
the “objects” in a scene, not the back round. Pent- 
land, Dsrrel and Sclaroff have appliecf MDL in im- 
age segmentation(l7, 61. They use part-based models 
combined with an optimization algorithm that uses a 
modified Hopfield-Tank network and a continuation 
scheme. 

MDL has been used to achieve segmentation by sim- 
ple feature-space clusterin . See for example the work 
of Wallace and Kanade(23f Zhang and Modestino[24] 
use the AIC (Akaike’s information criterion [2]), an 
information-theoretic criterion that is an alternative 
to MDL, for image segmentation, also by simple 
feature-space clustering. 

Keren et. al.[11] apply MDL to the problem of 1D 
waveform segmentation and experiment with exten- 
sion of the technique to images by operating on 1D 
projections of those images. 

Besl and Jain [5] also addressed image segmenta- 
tion using polynomial surface fitting, but the criterion 
function uws a user-specified threshold for acceptable 
noise variance nd does not account for the model 
complexity as t t e  MDL principle does. Another ap- 
proach that uses a similar image model (polynomial 
surfaces plus Gaussian noise) is applied to 2D images 
in [14] and 3D surfaces in (151. This work is also not 
based on MDL however, and uses a different optimiza- 
tion algorithm. 

1.3 The Problem We Solve 
Similar to many of these approaches, to solve this 

problem we will use the common general procedure of 
formulating an objective function, whose global mini- 
mum we assume) corresponds to the best segmenta- 
tion o [ the image, then devisin an optimization pro- 
cedure that attempts to  find t t is  minimum. In for- 
mulating this objective function we assume that the 
images to be analyzed come from a certain stochastic 
process, characterized by a family of stochastic models 
(probability distributions, p(yi)). The model we as- 

sume for this process consists of an ideal partitioning 
(the segmentation we seek) of the image into regions, 
{uj} (Denote this segmentation by n = {uj}.) and a 
separate probability density p ( Y j  IP j )  for each region, 
where Y, represents the collection of yi’s within region 
j and Pj is a vector of parameters characterizing the 
distribution. We will use + { P i }  to denote the collec- 
tion of all the parameters for all the regions in 51. More 
specifically, in the work described here we will assume 
that the pixel values of the regions of the image can 
be described by polynomial (in spatial coordinates) 
greyscale surfaces (one per band) to which “white” 
(spatially uncorrelated) “noise” has been added. We 
further assume that this noise is Gaussian distributed 
with ( i n  general) a non-diagonal covariance matrix i.e. 
there can be correlation among the bands3. Let pj (x) 
be a d-dimensional vector-valued function whose com- 
ponents are the values of the underlying polynomial 
surfaces mentioned above (these can be treated as the 
spatially dependent mean of the Gaussian distribu- 
tion), and Xj is the covariance matrix for the region 
U,. Note that for this model 0 consists of the poly- 
nomial coefficients of the greyscale surfaces and the 
components of the covariance matrices. Notice also 
that in  this description the region boundaries are com- 
posed of the “cracks” between the pixels. In many 
images, for example those where the optical resolu- 
tion of the imaging system (lenses, etc.), expressed in 
units of length, is larger than the pixel size this may 
seem like an unjustified assumption. Our use of poly- 
nomial models allows the existence of “edge” regions 
in such cases, however. 

A problem with performing maximum likelihood 
(ML) estimation in a case such as this is that there 
is no bound on the complexity of the model, M ,  and 
the more complex it is made, the better the fit ob- 
tained until the ridiculous limit of every pixel being 
a separate region is reached. We say that such prob- 
lems are “ill-posed” or “under-constrained” . To cor- 
rect such problems some way of “regularizing” them 
must ba found. The approach we have chosen to 
address this problem is to apply the Minimum De- 
scription Length Principle (MDL)[18, 201. In this ap- 
proach the objective function to be minimized is the 
description length of the data in a suitable “language.” 
We choose MDL for two reasons: (1) It has a strong 
fundariient~al grounding, being based on information- 
theoretic arguments that can be viewed as a formal- 
ization of the physicist’s Uckham’s razor: the simplest 
model explaining the observations is the best 4; and 
(2) I t  results in an objective function with no arbi- 
trary thresholds. To formalize this, the model is used 
to encode ( i n  the sense of data compression) the data 
in such a way that it can be decoded by a decoder 
that “knows” only about the model class (the image 
size, the number of bands and the fact that polynomial 

h 
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Gaussian models will be used). The model that gives 
the shortest description length in bits is then chosen 
aa optimum. 

There are different ways to  reduce this general 
methodology to  an algorithm that can be applied to a 
given problem (See [20]). The one we use is conceptu- 
ally straightforward and typically the easiest compu- 
tationally. It is based on a two-part encoding, where 
one part consists of an encoding of the model and the 
other consists of an encoding of the data using the 
model. Thus the codelength we seek to minimize is: 

where, L(. . .) denotes codelength. This codelength is  
our objective function. In the following section we will 
derive detailed expressions for the terms in this equa- 
tion. If the set of possible models were discrete (count- 
able) and we had a prior probability, P ( M )  on those 
models, we could let let L ( Y I M )  = - logP(Y1M). In 
this case minimizing equation (1) is equivalent to per- 
forming Bayesian maximum a posteriori (MAP) esti- 
mation. If the set of possible models is not countable 
(the more usual case, which is also the case in this 
work), however, the situation is more complicated. 

2 The Objective Function 
As discussed in the introduction, our objective func- 

tion will be divided into two parts: the codelength of 
the model, L ( M ) ,  and the codelength of the data given 
the model (i.e. encoded using the model), L(Y1M) .  
In our approach the specification of the model divides 
naturally into two components, M = { i l , P } :  the 
segmentation, 0, and the distribution parameters, 8. 
Thus our total code length (equation 1) may be writ- 
ten as: 

We begin by deriving an expression for L(dl) .  

2.1 Encoding Region Boundaries: L ( Q )  
We can encode the boundaries by encoding a graph 

whose nodes represent the boundaries' intersections, 
and whose ed es represent the boundary branches ly- 
ing between tfose intersections. To make the bound- 
aries reconstructable from such a graph, we choose one 
node from each connected component of this graph to 
be a reference node. To describe a given connected 
component we start by specifying the location of the 
reference node, followed by the number of branches 
from that node, followed by length of the first bound- 
ary branch (corresponding to a graph edge), followed 
by a chain code representing its path along the rect- 
angular grid between the pixels (this chain-code de- 
scription was also used in [12].). 

Each element of the chain-code description of a 
branch represents the direction of the next step in the 
chain. Since the number of possible directions is 3, 

i.e. the number of adjacent grid points (excluding 
the last visited grid point), the number of bits re- 
quired for the chain code is li log3. To encode the 
length of the boundary segment we use Rissanen's 
"universal prior" for integers[l9], which gives a code 
length of Lo( l i )  = log'(li) + 1og(2.865064), where 
log'(z) = log+ + loglogt + logloglog+...  up to all 
positive terms. Thus, associated with arc i ,  whose 
length is l i ,  is an encoding cost of Lo(&)  + li log3. 

When the regions are large, the bulk of the result- 
ing codelength will be the length of description of the 
branches, so that we can approximate the descrip- 
tion lengt,h of the boundaries (neglecting the descrip- 
tion length of the graph) by c a l l  branches[li log 3 + 
L0( l i ) ] ,  yielding: L ( 0 )  M Ci(lj log3 + Lo(li))- 

The scheme we have chosen favors segmentations 
with shorter total boundary length for a given image 
size. This means it favors a small number of regions 
with smooth boundaries. This also seems to be a.rea- 
sonable measure of complexity, though it does differ- 
entiate between some cases where the complexity dif- 
ference is not clear such as charging a heavier penalty 
for a large square than for a small one. 

2.2 Encoding the Parameters: L(pIs2) 
For the coding cost of the real-valued parameters, 

P ,  we use the expression derived by Rissanen in his 
optimal-precision analysis[l9]. For encoding K inde- 
pendent real-valued parameters characterizing a dis- 
tribution used to describe/encode n data points the 
codelength he derives is: ( K / 2 )  log n. Rissanen derives 
this expression for the encoding cost of real-valued pa- 
rameters by optimizing the precision to  which they are 
encoded. Encoding them to infinite precision would 
require an infinite number of bits and there is a trade- 
off point. a t  which the gain (i.e. decrease) in the code- 
length of t,he data due to increasing the precision of the 
paramcters is exactly offset by increased codelength 
for t,he parameters. This codelength corresponds to 
that optfinial precision, but is an asymptotic form for 
large n. During the writing of this paper we have be- 
come aware of recent results in this area[l6, 211. These 
results derive better expressions valid for small n. In 
future work we will utilize these new results. 

Applyin this result in our case we will have one 
such t,rrm for each re ion, which results in a total pa- 
rameter codelength of: 

(3) 

where K p ,  is the number of free parameters in pj and 
nj  is the number of pixels in region j .  For our model 
we have: 

(4) 

where mj is the number of polynomial coefficients per 
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band in region j. The first term on the right hand side 
of equation (4) is the number of free parameters in the 
covariance matrix, Cj. The second term is the num- 
ber of polynomial coefficients in the spatially varying 
mean vector, p j ( x ) ,  which is equal to the number of 
terms in 8. For maximum polynomial degree kj and a 
two-dimensional (q  = 2) imagemj = (kj+l)(kj+2)/2. 
Substituting into equation (4) yields, for a two dimen- 
sional image: 

2.3 Encoding the Residuals: L(Yl0,P) 
In this section we will describe the encoding of the 

residuals (the data given the model) and derive an ex- 
pression for L ( Y I M )  = L(YlSa,p). Since our model 
includes polynomial surfaces fit to the greyvalues in 
each region, we mi ht think of this step as that of en- 
coding the residua% between the polynomial surface 
and the actual data. 

Now let Y = [y1y2.. .yJt (the total collection of 
pixel values for the entire image), let Yj denote those 
belonging to the j t h  region and let nj represent the 
number of pixels in region j. Bear in mind that both 
n, and Y, are functions of the image partitioning, 
Sa. Let p(y(,Bj) be conditional distribution of a sam- 
ple y belonging to the j t h  region which is character- 
ized by the parameter vector ,Bj and let the parame- 
ter set &(PI,. I .  , P J } ,  where J is the total number 
of re ions in Sa. Then, the conditional distribution 
p(Y 'i; Sa,P) is obtained by forming a product of the 
individual conditional distributions for all the regions 
in Sa. 

A 

F'rom Shannon's theorems (see [l]) we know that, 
when such a distribution is known, the shortest code- 
length for Y is given by L(YJM) = -logp(YJSa,B) = cj -logp(Yj I pi), where the logarithms are base- 
two. 

We now derive an expression for this codelength us- 
ing the specific assumptions of our model. We use 
the assumed Gaussian distributions but in order to 
use these, we need an expression for p j ( x ) ,  which is a 
vector-valued function whose components are polyno- 
mial greyvalue surfaces of the form: 

where pjl is the lth component of the vector pj and 
6 j l k  is the scalar coefficient for the jth region, the I t h  
band and the kth polynomial basis function. The ba- 

sis functions { & ( X ) }  are products of various powers 
of the components of x. (i.e. the two image spatial 
coordinates). In matrix form this may be written as: 
pj = @,0j where pj is an nj x d matrix of the fit- 
ted polynomial surface values (p  values); one for each 
of the d bands for each of the n j  points in region w j .  
Also, 8 j  is an nj x m matrix of basis function values; 
one for each of the m basis functions for each of the nj 
points. The n, x m matrix of regression coefficients is 
represented by 0,. Then, using these definitions, we 
may rewrite the terms on the right side of Equation 
(6) as: 

exp [-%trace {E;'sj I] 
2 

where I . .  .I denotes the determinant and S j  is the 
sample covariance matrix defined by: S j = k ( Y j  - 
@jOj)(Yj - OjOj)'. See [9] for a derivation. 

Using the results presented thus far we can write 
our objective function as follows. 

A 

where Ci is a sum over all boundary segments and cj 
is a sum over all regions (not to be confused with the 
covariance matrix E,). The three summations cor- 
respond to L ( 0 ) ,  L(p l f2)  and L(YISa,p) from left to 
right i n  that order. 

Since Y is fixed, we can think of this as an ob- 
jective function that must be minimized over Sa and 
p. Fortunately, part of this minimization can be per- 
formed analytically. In fact, for a given Sa all the real- 
valued components of p have analytical expressions. 
For example, for Gaussian distributions the ML es- 
timate (which is also minimum-codelength) for !Zj is 
i j  = sj. Using this result gives: trace ~ = j  sj} = 
d .  The remainin components of fl are the polym- 
mial coefficients, $0j } , which don't appear explicitly 
in Equation (9), but are required to compute Sj. Ex- 
pressions for these are derived in the following section. 

Further siinplifying Equation (9) yields the follow- 
ing objective function that can be minimized over all 
0. We use the notation, L(a) (i.e. no functional de- 
pendence on Y and p)  to emphasize the point that 
during the minimization process, the data, Y, are 
fixed and the parameters, p, have analytical expres- 
sions in terms of Y that would appear in an expanded 
expression for S,. These are derived in the following 

i 

612 



section. tem of equations 

Evaluating this expression (Equation (10) requires 
computing the sample covariance matrices, { S i } .  

3 The Regression Problem 
In the previous section we obtained an expres- 

sion for our objective function, (C(tl);Equation (lo)), 
which we would like to minimize over all a. The sam- 
ple covariance matrices, {Sj} appear in this equation 
and their calculation involves the problem of fitting 
multivariate polynomial functions (surfaces) to dis- 
crete multivariate data (i.e. Y). In fact they (the Sj  ) 
partially characterize the statistics of the deviations of 
the data from these surfaces. In this section we treat 
the general problem of fitting multivariate polynomial 
functions (surfaces) of the form f : Zq -+ Z d ,  where 
Z is the set of integers. In the case of one band, 2- 
D rayscale images, q = 2 and d = 1; if the number 
of %and is two, d = 2. A discussion on multivariate 
regression relevant to MDL can be found in [20]. 

The multivariate regression data model can be writ- 
ten as 

where the yi are d x 1 vectors representing the gray 
values in the d bands at the i"' pixel, @j are m x 1 
vector of regression coefficients for the it* band, and 
q ! ~ ~  are n x 1 vector of Gaussian noise values in the 
i th band and distributed as N ( 0 , a 2 Z ) ,  (I is an n x R 
identity matrix and 9 is an n x m matrix). We can 
write the above equation in a more compact form as 

where Y and !J! are n x d matrices, 0 is a m x d matrix 
and 9 is a n x m matrix. 

The multivariate regression problem, then, is to find 
the 6 that minimizes the sum of squared residuals 

c2 = trace {(Y - 9 . 0)'(Y - 0 0 ) )  . (13) 

The above operator in this case is cssentially the sum 
of squares of all entries of the error matrix E = (Y - 
9 0). The solution to the minimization problem is 
(see [9]): 

Same solution can also be obtained by solving the sys- 

Now the sample covariance, S, is given by 

n s = [Y - &]'[Y - &)I , (16) 

which can be shown [9] to be equal to, 

3.1 The Incremental Regression Problem 
Because we seek only the image segmentation a, we 

wouldn't need to compute the regression coefficients, 
0 (They don't appear explicitly in Equation (24).) if 
it weren't for the fact that they are required to  com- 
pute the covariance matrix estimates {E,}. For this 
reason, anything that can be done to improve the ef- 
ficiency of their calculation and that of the {Xj} will 
be valuable. In this section we derive incrementalfor- 
mulas for computing these polynomial regression co- 
efficients and the covariance matrix of a new merged 
region from those of the two individual regions merged 
without having to perform an explicit regression on 
the data of the merged region. 

Consider the following two independent multivari- 
ate regressions: 

where Yi is a n, x d data vector, 9i is a ni x m re- 
gression matrix, ei is a ni x d noise matrix, 0 is a 
m x d rcgression coefficient matrix. 

Assume that the optimal ($1 and ($2 have already 
been computed. Now consider the following "concate- 
nated" problem: 

Let Y = [Y: @:I*. Then the 
above equation can be written as Y = 90 + rE. The 
problem: find a computationally efficient method for 
computing O and (nl + nz)S = [y - 901t[Y - 901 
for the concatenated system. 

Matrix in- 
verse computations.can be unstable and it is better 
to compute 6 by solving the linear system of equa- 
tions 9 'Y = 9'90. Expanding 8 and Y we get 

Yi]' and let 9 = [ai 

Incremental Computation of 6: 

and, 
9'9 = [@;9,+@;02] 
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Notice that the matrix products @:Yi and @f@i are 
available since they must have been computed for the 
individual systems. Moreover, although the matrices 
iE and Y are of varying dimensions, the matrix prod- 
ucts @'Y and @'@ are of always of constant small 
(relative to the number of pixels in most regions) di- 
mensions, independent of the dimensions of 0 and Y, 
which change with the number of pixels in a region. 
That is, the matrix product 9 ' Y  is m x d and e'@ is 
m x m. 

Incremental Computation of Covariances 
Matrices Sj: From Equation (17) we have: 

nS = Y t Y  - 6'[**Y]. (23) 

In the incremental computation we utilize the fact that 
Y'Y = Y:Y1+ YiY2, and QS'Y = [*\YI+ @iY2], 
which reduces the number of computations in the in- 
cremental computation of the covariance matrix. Fur- 
thermore, all the matrices involved in the computation 
of S (&) and 0 have fixed dimensions and therefore 
the bookkeeping involved with dynamically changing 
region sizes is reduced. 

4 Segmentation Algorithm 
The problem our algorithm must solve is one of find- 

ing the minimum of Equation (10) over all J z .  Ob- 
taining the absolute (global) minimum is infeasible 
because the search space is so large. For this reason 
we use a hierarchical algorithm similar to that used 
in [22, 41 to find a good, though perhaps local, mini- 
mum. It starts with an initial segmentation of the im- 
age. This may be just the image itself, with each pixel 
considered to be a separate region, or it may consist 
of larger regions produced by some heuristic device. 
Starting with this initial se mentation, the algorithm 

vided that the mergers decrease the t o t 3  code-length. 
At each step the pair of regions producing the greatest 
codelength decrease are merged. 

The MDL codelength decrease, &,, , due to a merger 
between two neighboring regions, wi and w u ,  can be 
deduced from Equation (10): 

successively merges pairs o li neighborin regions pro- 

where St, denotes the sample covariance matrix of the 
combined region wt Uw, .  As mentioned above, at  each 
step in the algorithm we search for the two regions 
wt,wv that yield the greatest codelength decrease btu 
when merged. The first term expresses the savings 
due to the fact that a boundary branch drops when 
the merger occurs. The second term is the increase in 
the codelength of the actual data values themselves. 
This results from goin to a single distribution from a 
separate distribution k r  each region. The third term 
is the savings associated with the fact that we have 

fewer model parameters to describe after the merger. 
I{@,,  K p W  and represent the number of parame- 
ters in  the models representing the regions t ,  u ,  and 
t u ,  respectively. 

The totsal number of merger steps needed to reach 
the final classification equals the number of initial r e  
gions ro minus the final number of regions R (usually 
R << ro). The regions are ordered with a heap-based 
priority queue to select the best merger and at each 
step a time proportional to log ro is required to main- 
tain the queue, thus making the run time proportional 
to ro log ro. The memory size required by the alg- 
rithni equals the total number of regions (both the ini- 
tial and the newly created, summing up, in the worst 
case, to 2ro) multiplied by the memorysize required by 
the data set. of a single region, which is roughly propor- 
tional to t,he average number of neighbors of a single 
region. This last number is usually much smaller than 
P o ,  and therefore the memory requirements of this hi- 
erarchical algorithm are also proportional to ro, bein 
modest when compared to conventional hierarchicd 
clustering procedures that try to merge every possi- 
ble pair regardless of spatial location, and therefore 
requiring a memory size proportional to irO(r0 - 1). 
Moreover, some of the items of the data sets of inactive 
regions may be erased to save memory space. 

The algorithm is run by first fixing the maximum 
degree of regression polynomials to 0. That is, re- 
gion greyvalues are represented by piecewise constant 
functions. After the algorithm converges to a segmen- 
tation (because it is more expensive to encode the im- 
age if any further merging is done), merging is at- 
tempted with first order polynomials representing the 
merged regions. This is continued until the merging 
converges. The process of incrementing the regres- 
sion polynomial order and merging until convergence 
is continued until no merging is accomplished for a 
particular degree of the polynomial. Note that this 
process can be stopped at  any degree of fit and will 
still result in closed region boundaries. 

5 Experimental Results 
To test the algorithm, we implemented it in C on an 

IBM RISC-System/6000 model 970. Here we show re- 
sults from running it on two real images. The segmen- 
tation results for various maximum polynomial order 
fits are shown. The computation time for images of 
size 128 x 128 was on the order of 180 seconds. 

Our first, real image test case (Figure 1) was a real 
128 x 128 two-band (red and blue) image of a small 
fragment. of an electronic circuit. Figure 2 is the seg- 
mentation result when the maximum degree of poly- 
nomial allowed is two. 

Our second real image test case waa the real 128 x 
128 pixel image of a house in Figure 3. This is a 
single-band grayscale image. The segmentation result 
allowing 2"d-order polynomials is shown in Figure 4. 
Note that when maximum allowed degree of fit is two 
(quadratic surfaces), some of the regions still can have 
piece-wise constant and linear surfaces since the MDL 
criterion might find it cheaper to encode those regions 
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that way. This model selection is, of course, done 
automatically using the MDL criterion - there are no 
heuristic thresholds. 

6 Discussion and Conclusions 
We have developed an MDL-based objective func- 

tion for multi-band image segmentation and an ef- 
ficient segmentation al orithm that performs a sub- 
optimal minimization of this criterion. The algorithm 
is incremental and makes use of com utations per- 
formed in previous stages. The algoritgm was tested 
on both synthetic and real images. The speed and 
performance of the algorithm on the test ima es were 
quite good and no manually adjusted threshofds were 
required. It should be mentioned that this algorithm 
can be used to treat texture-based segmentation by us- 
ing the ap ropriate texture operators to compute the 
input ban& for this algorithm. Natural extensions of 
this algorithm/work are discussed in [9]. 
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