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ABSTRACT
Eye tracking experiments have shown that titles of Web search re-
sults play a crucial role in guiding a user’s search process. We
present a machine-learned algorithm that trains a boosted tree to
pick the most relevant title for a Web search result. We compare
two modeling approaches: i) using absolute editorial judgments
and ii) using pairwise preference judgments. We find that the pair-
wise modeling approach gives better results in terms of three of-
fline metrics. We present results of our models in four regions. We
also describe a hybrid user satisfaction evaluation process — search
success — that combines page relevance and user click behavior,
and show that our machine-learned algorithm improves in search
success.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
Web summarization, machine learning, user satisfaction

1. INTRODUCTION
While the “ten blue links” that search engines return in response

to a query are important in the user’s search, the titles and sum-
maries associated with the links can greatly influence a user’s per-
ception of the link’s relevance and the efficiency of the search.
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Furthermore, badly formed abstracts can lead to “click inversions”
where documents ranked lower get more clicks [1].

Titles on the search result page convey the first impression of
relevance of the pages to the user. Most major search engines use
a variety of sources to pick the title for a search result. Common
sources include: HTML title, anchor text, internal anchor text, open
directory page title, various HTML headline titles on the page, Ya-
hoo! directory page title, etc. Thus it is important to have a system-
atic way of picking the best title from the candidate set.

Web page summaries can be query-independent [6] or query de-
pendent [9, 10]. A query-independent summary conveys general
information about the document, and can be computed offline and
cached for fast access. The main problem with query-independent
summaries is that they do not convey to the user why the Web page
is relevant to the query. Query-dependent summarization attempts
to address this by biasing the summaries towards the query. These
summaries are typically constructed at query time.

In this paper, we present a machine-learned algorithm for select-
ing titles. Given a query and a Web page, a query-dependent title
is generated as follows. First, all candidate titles are identified, and
their features are extracted. Next for each title, we get an edito-
rial (human) judgment regarding their relevance to the query and
document on an absolute scale. Then we learn a regression model
using features as the independent variables and the judgment as the
target. We also show how to induce pairwise preference judgments
and train a regression model using the preference judgments.

Machine learning approaches have been recently proposed for
query-dependent sentence selection. Wang et al. [10] showed that
ranking support vector machines (SVMs) outperform SVM clas-
sifiers and BM25 on a test collection that only consisted of 10
queries. Metzler and Kanungo [8] use TREC data for sentence
selection and propose a machine learning framework. However,
they do not apply it to the Web domain and do not provide any
click-based evaluation. The above approaches are similar to those
proposed in the document ranking literature [7, 11].

Numerous evaluation approaches [2, 4, 5] have been used in the
past to to model and measure user satisfaction. Our summariza-
tion work, in contrast is based on large samples of Web data and
we use a hybrid evaluation approach based on clicks and editorial
judgments to judge user satisfaction, in addition to the standard IR
metrics like mean reciprocal rank and discounted cumulative gain.

The key contributions of our work are: i) we present a machine-
learned algorithm for selecting titles of Web pages in Web search
results, ii) we compare absolute regression models for title selec-



tion with pairwise preference based models, iii) we propose a hy-
brid user satisfaction evaluation method that uses clicks and edito-
rial judgments to quantify user satisfaction, and iv) we show results
on the US, Taiwan (TW), Korea (KR) and Japan (JP) regions.

2. STATISTICAL MODELING
In this section, we describe two machine learning algorithms for

title selection. We use Gradient Boosted Decision Trees (GBDT) to
learn models from absolute judgments and Gradient Boosted Rank-
ing (GBRank) to learn from pairwise preference judgments.

2.1 Gradient Boosted Decision Trees
GBDT is a technique that can be used for estimating a regres-

sion model. We use the stochastic variant of GBDTs [3]. GBDTs
compute a function approximation by performing a numerical op-
timization in the function space instead of the parameter space. We
provide an overview of the the GBDT algorithm.

A basic regression tree f(x), x ∈ RK , partitions the space of ex-
planatory variable values into disjoint regions Rj , j = 1, 2, . . . , J
associated with the terminal nodes of the tree. Each region is as-
signed a value φj such that f(x) = φj if x ∈ Rj . Thus the com-
plete tree is represented as:

T (x; Θ) =

JX
j=1

φjI(x ∈ Rj),

where Θ = {Rj , φj}J
1 , and I is the indicator function. Let (xi, yi),

i = 1, . . . , N be the given set of points. For a loss function
L(yi, φj), parameters are estimated by minimizing the total loss:

Θ̂ = arg min
Θ

JX
j=1

X
xi∈Rj

L(yi, φj).

A boosted tree is an aggregate of such trees, each of which is
computed in a sequence of stages. That is,

fM (x) =

MX
m=1

T (x; Θm),

where at each stage m, Θm is estimated to fit the residuals from
the m− 1th stage:

Θ̂m = arg min
Θm

NX
i=1

L(yi, ηfm−1(xi) + φjm).

where η is a the learning rate. In the stochastic version of GBDT,
instead of using the entire data set to compute the loss function, one
sub-samples the data and finds the values φj that minimize the loss
on the test set. The stochastic variant minimizes over-fitting.

In practice, one has to empirically set (by cross-validation) the
parameters: the number of trees M , the number of nodes per tree
P , learning rate η, and sampling rate ρ, (in the stochastic version).

2.2 Pairwise Preference Models
During the process of collecting absolute judgments, an editor

first sees a query and a set of possible titles and then assigns abso-
lute grades to the titles. However, since the editor sees all the titles
simultaneously, we suspect the grades are not independent. That is,
the grades assigned can easily influence the grade of the next title.
This facilitates the use of preference judgments for modeling.

Let S = {(xi, yi)|g(xi) ≥ g(yi), i = 1, . . . , N} be the set of
preference judgments such that xi ∈ RK is the feature vector for
query q(xi) and title t(xi), yi ∈ RK is the feature vector for q(yi)
and title t(yi), and the editorial grades are represented by g(xi)
and g(yi) respectively.

The learning algorithm needs to learn a function h such that
h(xi) ≥ h(yi) for xi, yi ∈ S, or at least try to minimize the num-
ber of disagreements with the editorial judgments. GBRank [11]
tries to achieve this and a sketch of the algorithm is given below.

1. Guess an initial hk for k = 0.

2. For k = 1, . . . , M.

(a) Use hk−1 as an approximation of h and compute:

S+ = {(xi, yi) ∈ S|hk−1(xi) ≥ hk−1(yi) + τ}

S− = {(xi, yi) ∈ S|hk−1(xi) < hk−1(yi) + τ}
where τ = α(g(xi)− g(yi))

(b) Fit any regression function gk (e.g. using GBDT), to
correct the incorrectly classified examples:

{(xi, hk−1(yi)+τ), (yi, hk−1(xi)−τ)|(xi, yi) ∈ S−}
(c) Form the current approximate function:

hk(x) =
khk−1(x) + ηgk(x)

k + 1
,

where η is the learning rate.

As in the case of GBDT, GBRank parameters M, P, α, η, and ρ
have to be experimentally set (by cross-validation). Both GBDT
and GBRank also provide feature importance [3], which is com-
puted by keeping track of the reduction in the loss function at each
feature variable split and then computing the total reduction of loss
function along each explanatory feature variable. The importance
is useful for analyzing which features contribute most to the model.

3. FEATURES
In this section we describe a subset of the features we used in

our experiments. Some features are query-dependent and others
are query-independent.

3.1 Query-Dependent Features
Query-dependent features capture relevance at different levels of

granularity and expressiveness. They include:

UniqueQueryUnitHits: Unique query term hits
DuplicateQueryUnitHits: Repeated query term hits
QueryTermHitsFrac: Fraction of query terms hit
FirstHitOffset: The position of first query term hit
HitsCompactness: Number of hits over the hit offset range
URLMatchQ: Number of title terms found in the URL that are

not query hits.

3.2 Query-Independent Features
Query-independent features attempt to express prior knowledge

about titles. They represent the degree to which the title captures
the document nature and genre. In fact, they can be used, in part,
to pick the best query-independent title. They include:

ClickTextMatch: Fraction of terms that are present in the URL’s
ClickText. ClickText of a URL is the set of queries for which
the URL is clicked, weighted and pruned by a function of
clicks and impressions.

URLMatch: Fraction of terms in URL that also occur in the title
URLMatch: Fraction of title terms that also occur in the URL
ScriptLFrac: extent of foreign language characters or words
TitleSourceX: Binary features indicating title source

Other query-independent features capture structural attributes of
titles, thus addressing readability at more coarse granularity. They
consider fraction of capitalized letters and words, title length in
words and characters, word length, and punctuation, for example.



4. MODELING: PROTOCOL

4.1 Data Sampling and Characteristics
Our train and test data was generated as follows. We randomly

sampled 425 queries from a two-week query stream in the US re-
gion. Each query was issued to the search engine and top 10 URLs
were collected. Then a random subset of 2,169 query-URL pairs
was selected for editorial judgment. On average, a URL has three
title candidates, and URLs for popular queries have up to seven ti-
tles. The final train-test sample consists of 7,456 query-URL-title
triples. Table 1 has an example of titles for a query-URL pair.

For each query-URL pair, editors assigned a grade (1-5, 5 being
the best possible grade) for each title. In addition, they chose a
single best title among candidate titles. Data set generation in JP,
TW, and KR was similar. Characteristics of the data are in Table 2.

Table 1: An example query-URL pair and associated titles.

URL http://www.theknot.com/
QUERY the knot
Title Source Title Text Judgment
anchortext the knot 4
headline1 featured content 2
Ydirectory The Knot 5
HTML Wedding Dresses | Wedding Cakes 3

| Wedding Planning | Unique
Wedding Ideas

Table 2: Data Characteristics: “avg # t” is average number of
title candidates for all query URL pairs. “avg Grd” represents
average grade of all titles while “avg B” and “avg NB” are av-
erage grade of best titles and of non-best titles, respectively.

lng # # # avg avg avg avg
q (q, u) (q, u, t) #t Grd B NB

US 425 2,169 7,456 3.4 3.6 4.5 3.2
JP 379 3,346 13,541 4.0 3.4 4.4 3.1

TW 725 6,190 16,980 2.7 2.9 3.6 2.7
KR 507 2,218 3,612 1.6 3.3 3.6 3.0

4.2 Training and Testing
Experiments consisted of multiple trials. In each trial we trained

on a random 70% of data (without replacement) and tested on the
remaining 30%. We report averages over trials and t-tests to deter-
mine whether the optimal model is better than the basic model.

Query popularity is used to influence the tuple weight in training
and testing. We used a scaled, discretized, and smoothed log query
frequency as a weight.

We ran experiments varying GBDT/GBRank parameters (differ-
ent values for M , P , η, and ρ, for example). We chose the optimal
parameter setting via cross-validation.1

4.3 Evaluation Metrics
Several offline measures are used to estimate the quality of a

model. Suppose the test data consists of query-URL pairs D =
(q1, u1)...(qn, uN ). The metrics are as follows:

• Accuracy (ACC): 1
N

PN
i=1 b(rfM (qi, ui, 1))

• Mean Reciprocal Rank (MRR): 1
N

PN
i=1

Pk
j=1

b(rfM
(qi,ui,j))

j
,

where pair i has k titles

1For US pw.optimal: M = 750, P = 20, η = 0.05, ρ = 0.3.
For US gb.optimal: M = 500, P = 6, η = 0.05 and ρ = 0.7.
For JP/TW/KR gr.optimal: M = 1000, η = 0.15 and ρ = 0.7.
For JP/TW P = 10 and for KR P = 8.

• Average Grade (GRD): 1
N

PN
i=1

g(rfM
(qi,ui,1))

maxk
j=1g(rfM

(qi,ui,j))
(note

that this is the same as scaled DCG1.)

where g(t) is the grade of title t and rfM is the ranking function
for the model fM . Thus rfM (qi, ui, j) = ti,j is the jth best title,
according to fM , for the ith query-URL pair. b(tj) = 1 if tj is the
best title picked by the editor, and 0 otherwise.

5. MODELING: RESULTS
We present results for the GBDT and GBRank title selection al-

gorithms for US, JP, TW and KR, and compare the two modeling
approaches. Performance of GBRank in the pairwise setting is sig-
nificantly better than GBDT. We present the timing performance of
these algorithms.There are four types of models:

• gr.basic: A model trained using GBDT and a basic set of
features, consisting of all features except ClickTextMatch or
URLMatch features (for US, also lacking ScriptLFrac).

• pw.basic: Similar to gr.basic, trained using pairwise GBRank.
• gr.optimal: trained using GBDT and a complete set of fea-

tures, including clicktext, URL-match and language features.
• pw.optimal: optimal model trained using pairwise GBRank.

On average over 30 random trials in US, pw.basic had a 0.56%
improvement in ACC over gr.basic. However, adding features and
optimizing to produce gr.optimal yielded a 0.6% improvement over
gr.basic. The model pw.optimal trumps this improvement, resulting
in a 2.76% improvement in performance over gr.basic (see Table 3).
Model pw.optimal is better than pw.basic by 2.17% for US, 3.07%
for JP, 4.09% for TW and 4.35% for KR.

Table 3: Average performance over 30 trials for the three offline
metrics. t-tests show that the optimal model is better than the
basic model for the three regions. In each case we find that the
difference is statistically significant at the 0.05 level.

language experiment ACC MRR GRD
US gr.basic 0.8408 0.9187 0.9732

pw.basic 0.8455 0.9208 0.9743
gr.optimal 0.8460 0.9210 0.9737
pw.optimal 0.8677 0.9318 0.9756

JP gr.optimal 0.8345 0.9074 0.9909
pw.optimal 0.8601 0.9218 0.9924

TW gr.optimal 0.8859 0.9405 0.9825
pw.optimal 0.9221 0.9592 0.9903

KR gr.optimal 0.8739 0.9361 0.9816
pw.optimal 0.9119 0.9556 0.9908

Additionally we use metrics that evaluate the coverage, or frac-
tion of titles that changed, over a set of 3000 random query-url
pairs. Model pw.optimal had 11% coverage with respect to gr.basic.

Parameter α, described in section 2, allows judgment grades to
influence the score (τ = α(g(xi) − g(yi))). Value α = 0 uses
only pairwise preferences. Figure 1 suggests that graded judgments
decrease performance when used in this way (for 0 < α < 0.1 the
same pattern occurred). One possible explanation is that pairwise
preferences are more reliable than graded judgments in a pairwise
setting, and the grades do not add much to the data point.

Table 3 suggests that with the addition of a richer feature vocab-
ulary, GBRank performance improves, while GBDT performance
may saturate. GBDT modeling may be more sensitive to sparse
training datasets than pairwise models, since it requires sufficient
data for each grade. Additionally, while GBDT has N training ex-
amples for each query-URL pair, GBRank has C(N, 2) pairs of
feature vectors (43% more datapoints than GBDT).

Both approaches select titles in real-time. Based on 96,545 ran-
domly selected query-URL pairs, on average, gr.optimal spent 0.12



ms to select the best title, while pw.optimal spent 0.24 ms. The
difference can be explained partly by the fact that pw.optimal uses
750 trees while pw.basic uses 500 trees. The performance numbers
were collected on a 1.8GHz Intel Xenon machine running Linux.

According to feature importance, for GBDT, the top two features
were structural. QueryTermHitsFrac, URLMatch, ClickTextMatch
and TitleHTML were also important. GBRank was similar, but
ranked TitleHTML, FirstHitOffset, ClickTextMatch and URLMatch
relatively higher than GBDT.
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Figure 1: α vs performance for the average over all parameter
configurations as well as for the top three performing configu-
rations. pw.optimal uses M = 750 trees; other models use the
same parameters but M = 500 or M = 250.

6. USER SATISFACTION
6.1 “Search Success” Metric

We measured user satisfaction with the “search success” metric
(S), which is defined per query as follows:

• S=1 if the user clicks through to at least one document of
good or better quality for non-navigational queries

• S=1 if the user clicks through to at least one document of
perfect or excellent quality for navigational queries

• S=0 otherwise

6.2 Experimental Methodology
We randomly sampled a few thousand queries from the control

(Ncontrol) and test (Ntest) populations over the same week. For
each clicked result, the query document relevance was measured
by editorial staff, and whether the query was navigational or not.
The search success S was measured for every query and the mean
search success for test S̄test and control S̄control was computed.
A Gaussian approximation to the binomial distribution was used to

estimate the error: σ =

q
S̄·(1−S̄)

N
.

6.3 Results
Overall search success rates for the control sample are shown in

Table 4, along with click through rate (CTR) for the query results
returned at ranks 1 (CTR1) and 2 (CTR2). We have divided the
queries into navigational vs non-navigational, as well as the cases
where the query result document relevance at rank 1 (g1) is better
or worse than the query result document relevance at rank 2 (g2).

The test sample showed a decrease in CTR1 by 2%, an increase
in CTR2 by 1%, and a statistically significant increase in mean
search success S̄ by 0.7% (> 0.1% at 95% confidence). We found
that the queries which had g1 < g2 contributed to the decrease

Table 4: CTR vs Search Success for US
query ranking % CTR@1 CTR@2 S̄

non-nav g1 ≥ g2 59.5% 33.4% 11.6% 25.4%
non-nav g1 < g2 9.4% 27.7% 18.1% 18.1%

nav g1 ≥ g2 30.0% 65.3% 7.7% 68.3%
nav g1 < g2 1.1% 36.4% 18.2% 36.4%

in CTR1; in particular, we observed a decrease of clicks on bad
and fair documents with the improved summaries. The increase
in CTR2 (and lower) was due to more clicks on good or better
documents. The combination of these effects resulted in an increase
in S̄, which we interpret to be an improvement in user satisfaction.
We obtained similar results to those in Table 4 for TW and JP.

7. CONCLUSIONS
Titles and abstracts shown on a search result page influence user

perception of a link’s relevance. In this paper we presented a fast
query-dependent machine-learned algorithm for selecting titles for
links to Web pages on a Web search result page. We presented a
model trained using absolute human judgments, and pairwise pref-
erence judgments. We find that the pairwise training algorithm per-
forms better than the absolute judgment model. We also presented
a hybrid metric, search success, that uses clicks and editorial judg-
ments to quantify user satisfaction, and show that our algorithm
performs better than the baseline.
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