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ABSTRACT 
 
The task of biomedical named-entity recognition is to identify 
technical terms in the domain of biology that are of special 
interest to domain experts. While numerous algorithms have 
been proposed for this task, biomedical named-entity 
recognition remains a challenging task and an active area of 
research, as there is still a large accuracy gap between the best 
algorithms for biomedical named-entity recognition and those 
for general newswire named-entity recognition. The reason for 
such discrepancy in accuracy results is generally attributed to 
inadequate feature representations of individual entity 
recognition systems and external domain knowledge. 
 
In order to take advantage of the rich feature representations and 
external domain knowledge used by different systems, we 
propose several Meta biomedical named-entity recognition 
algorithms that combine recognition results of various 
recognition systems. The proposed algorithms – majority vote, 
unstructured exponential model and conditional random field – 
were tested on the GENIA biomedical corpus.  Empirical 
results show that the F score can be improved from 0.72, which 
is attained by the best individual system, to 0.96 by our Meta 
entity recognition approach. 
 

Categories & Subject Descriptors:  

H.3.3  [Information Search and Retrieval]: Text Mining  
 

General Terms: Algorithms 
 

Keywords: Biomedical named-entity recognition; Meta 

recognition 

 

1. INTRODUCTION 
 

Biomedical literature contains a rich set of biomedical entities 
and information regarding the relationships and interactions 
among these entities. These entities and their relationships are 
especially useful for biologists in their quest for information 
[11]. The exponential growth of available biomedical literature 
on the Web and publicly accessible databases requires intelligent 
information systems that help researchers to search and analyze 
information. Therefore, the use of computational techniques to 
automatically extract useful information from biomedical texts 
has received increasing attention. Furthermore, to perform 
higher level biomedical information extraction tasks such as 
event extraction, summarization and question answering, most 
systems first identify technical terms in the domain of molecular 
biology that are of special interests to domain experts [11]. This 
is called named-entity recognition in natural language 
processing community [6]. 
 
The named-entity recognition task for general-purpose domain 
such as newswire data has been studied for a long time [3,6,22]. 
Both handcrafted linguistic rule based methods and machine 
learning based methods have been proposed for this task. 
Machine learning based methods [3,6] have attracted particular 
interest as they avoid the laborious task of manually deriving 
linguistic rules, and also because they can be easily adapted to 
new domains and new languages. Good progress has been made 
in named-entity recognition of newswire data and best 
algorithms can now achieve ‘near human’ performance (e.g., F 
score of about 0.95) [3,6,22].   
 
The named-entity recognition task in the biomedical domain has 
different characteristics from that in the newswire domain. 
Authors tend to use more diverse notations for biomedical 
entities. In addition, biomedical named-entities usually have 
much more diverse capitalization patterns than those in 
newswire domain. A richer set of features, therefore, should be 
used to represent biomedical entities [11]. 
 
A large body of machine learning algorithms has been proposed 
for biomedical named-entity recognition such as hidden Markov 
model (HMM) [8,17,19,24,25], support vector machine (SVM) 
[4,13,16,19,23,25], maximum entropy markov model (MEMM) 
[7,14] and conditional random field (CRF) [12,15,20,23]. In 
order to capture the diverse characteristics of biomedical 
entities, different sets of features such as lexical features, affix 
information, orthographic features or even external resources 
such as gazetteers [7,25] or WWW [7,20] have been 
incorporated into different algorithms. 
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However, biomedical named-entity recognition still remains a 
challenging problem [11]. Despite the near-perfect performance 
of named-entity recognition in newswire data, similar methods 
do not work so well in biomedical domain and there is a large 
accuracy gap of about 20 points in the F score [6,9,11,25]. This 
problem suggests that individual biomedical named-entity 
systems may not cover entity representations with enough rich 
features and no single type of algorithm is optimal to achieve the 
best performance.  
 
One natural idea of boosting performance of biomedical 
named-entity recognition is to combine the results of multiple 
biomedical entity recognition systems. This approach provides 
us the opportunity to combine results from multiple systems that 
collectively use rich and diverse feature representations and also 
take the advantage of utilizing multiple algorithms for achieving 
higher recognition accuracy. 
 
Similar approach of combining results from multiple systems 
has been successfully applied in information retrieval 
community [1], where retrieved ranked lists from multiple 
information retrieval systems are combined together into a final 
ranked list. Empirical evidence has demonstrated that Meta 
retrieval approach substantially improves retrieval accuracy. 
However, Meta retrieval method is different from Meta entity 
recognition method as Meta retrieval method combines 
unstructured results of ranked lists while Meta entity recognition 
combines structured results from different named-entity 
recognition systems.   
 
In this paper we propose three methods for Meta biomedical 
named-entity recognition. The first method uses majority vote 
from a set of entity recognition systems to produce combined 
results. This simple method does not require any training data. 
The second method trains an unstructured exponential model 
and uses the recognition results from individual systems as 
features to predict the correct recognition result for each word in 
test sentence separately. Finally, a more sophisticated structured 
line chain conditional random field model [12] is applied. This 
model utilizes structure information regarding transition among 
different types of entities. Although some of these techniques 
have been applied in other applications, to our knowledge they 
have never been used for Meta biomedical entity recognition. 
 
An extensive set of empirical study has been conducted on the 
GENIA 1 corpus [10,11] with the task of identifying five 
different types of biomedical named-entities. Entity recognition 
results from eight different systems are considered in the Meta 
recognition system for combination. The best single system 
achieves an F score of 0.72 on the GENIA corpus [25], while the 
Meta recognition system with the linear chain conditional 
random field model achieves an F score of about 0.96. This 
large improvement demonstrates the power of combining 
multiple results for the biomedical named-entity recognition 
task. Furthermore, a careful comparison among different Meta 
recognition algorithms shows that the supervised methods of 
unstructured exponential model and linear conditional random 
field method are more effective than the simple majority vote 
algorithm. The structured conditional random field model 
achieves higher accuracy than the unstructured exponential 
model, which demonstrates the advantage of utilizing structure 
information among named-entity recognition results. 

                                                        
1 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ 

In the next section we discuss prior research related to 
biomedical name-entity recognition algorithms and Meta 
retrieval technology in information retrieval. In Section 3 we 
describe the three proposed Meta entity recognition algorithms 
--- majority vote, unstructured exponential model and structured 
conditional random field model. We outline the experimental 
methodology in Section 4 and finally present the results of our 
empirical study in Section 5.  In Section 6 we conclude by 
summarizing our work and pointing out a few future research 
directions. 

2. RELATED WORK 

 
The approach proposed in this paper combines results from 
multiple biomedical named-entity recognition systems. In the 
next subsection we discuss specific algorithms for Bio-Entity 
recognition, and in the subsequent subsection we describe Meta 
retrieval algorithms used in information retrieval. 
 

2.1 Algorithms for Bio-Entity Recognition 

 
Biomedical named-entity recognition is still an active research 
topic, and numerous algorithms have been proposed using 
different feature representations. For example, in the JNLPBA 
[10,11] shared task of Bio-entity recognition task, eight entity 
recognition systems utilize different learning algorithms and 
different sets of features. The algorithms include variants of 
Support Vector Machine (SVM) [4,13,16,19,23,25], Hidden 
Markov Model (HMM) [8,17,19,24,25], Maximum Entropy 
Markov Model (MEMM) [7,14] and Conditional Random Field 
(CRF) Model [12,15,20,23]. 
 
Besides learning algorithms, feature representation has been 
recognized as a crucial factor to get good performance in 
Bio-Entity recognition. In the JNLPBA task [10,11], lexical 
features are widely used among many systems as biomedical 
named-entities generally have a different vocabulary from 
general English words. When SVM-based systems have trouble 
to incorporate large size of lexical features, different 
generalization of lexical features such as prefixes or suffixes 
(e.g., suffixes as ~in or ~ase for protein names) are utilized. 
Furthermore, some general features such as part of speech tags 
or word shapes as well as domain specific features such as gene 
sequences are also utilized in different systems. More detail can 
found in [11]. 
 
In addition to using features from the biomedical document 
itself, many systems tend to use gazetteers and other external 
resources for better generalization performance. Some systems 
use gene names from biomedical websites such as LocusLink 
[7] or Gene Ontology [7,13], while some other systems use the 
Web and construct lexicon [19,20] by collecting words that 
frequently appear in context with known biomedical 
named-entities. 
  
To summarize, a large body of learning algorithms is available 
for biomedical named-entity recognition. They utilize diverse 
feature representations. It can be expected that the recognition 
results from these systems are also diverse and complementary. 
In the light of these facts, we believe that a good Meta 
biomedical named-entity recognition algorithm can take 



advantage of the diversity of the results from multiple systems 
and improve the results further.   

 

2.2 Meta Retrieval Algorithm 

 
The approach of combining results from multiple systems has 
been successfully utilized in the information retrieval 
community [1,5,18]. 
  
Simple methods like Borda Count [1] do not require training 
data and favor documents that are retrieved by more individual 
systems against documents that are retrieved by fewer or no 
systems. More sophisticated algorithms that utilize training data 
include Naive Bayesian method [1] and logistic regression 
model [5]. The Naive Bayesian method makes an independence 
assumption among results from multiple systems, which may be 
inaccurate in many cases. The logistic regression model does not 
make the independence assumption and uses retrieved results 
from multiple systems as features to predict the probability of 
relevance for each document candidate. It has been shown that 
this method achieves satisfactory Meta combination results. 
 
Although some Meta retrieval algorithms have been proposed 
for information retrieval, they cannot be directly used for the 
Meta biomedical named-entity recognition task. In particular, 
Meta retrieval algorithms treat only the binary case -- relevance 
or irrelevance of any retrieved document -- while biomedical 
named-entity recognition generally involves multiple types of 
named-entities. In addition, information retrieval systems 
provide unstructured ranked lists while name-entity recognition 
systems provide structured results of annotated sentences. These 
characteristics of Meta biomedical named-entity recognition task 
are investigated in the next section in detail. 
 

3. ALGORITHMS FOR META BIO-ENTITY 

RECOGNITION 

 
In this section, we present three algorithms for Meta biomedical 
named-entity recognition. All the three algorithms deal with 
recognition of multiple types of biomedical named-entities. The 
first algorithm is a simple majority vote algorithm that requires 
no training; the second is an unstructured exponential model that 
learns relative weights but does not incorporate structure 
information, and the third is a conditional random field model 
that takes full advantage of the structure information among 
biomedical named-entities and learns relative weights. 
 
We now introduce the formal notation used in this paper. Let an 

annotated sentence be composed of words of iw and annotated 

entities  is . The training data is comprised of I annotated 

sentences: )},(),(),,{( ,2211 II swswswD
KK

= , where the 

pair ),( ii sw denotes the ith annotated sentence. We assume 

that the ith annotated sentence contains 
iN  words and denote 

the jth surface word and the corresponding named-entity 

by ),( ijij sw . We associate a category value for each type of 

named-entity and an additional “Non-entity” category for 

general English words. Each 
ij

s can attain any of the K category 

values. Assume that L annotated results are provided from L 
biomedical named-entity recognition systems. Thus, for the ith 
sentence the lth system’s candidate results are denoted as: 

},,,{ _1_1_ iiNlilil ccc KK , where each item has a category 

value out of K choices. Finally, the task of Meta named-entity 
recognition algorithm is to combine the L candidate entity 

recognition results into a single result ts for each test sentence 

t. 
 

3.1 Simple Majority Vote Algorithm 

 

The majority vote algorithm assumes that named-entities are 
correctly recognized by most individual systems, while different 
systems make mistakes at different places [1].  
 
Let us introduce the binary indicator feature function 

),( _ tjlckf , which has a value 1 when the lth entity recognition 

system annotates the jth word in the test sentence as the entity of 
type k, and 0 when this is not true. Then the recognition rule of 
majority vote algorithm can be described formally as follows: 

 where t represents the test sentence and 
^

tjS is the annotated 

entity result for the jth word in the test sentence. 
 
One particular issue about majority vote is that votes from 
inaccurate entity recognition systems may not be reliable and 
may deteriorate the final results. Therefore, a variant of majority 
vote algorithm, which only considers votes from top few 
accurate systems, is often used in practice. This algorithm is also 
considered in this paper. 

 
3.2 Unstructured Exponential Model 

Algorithm 

 
One problem with the majority vote algorithm is that it treats the 
votes from different entity recognition systems equally. 
However, it is clear that more accurate systems should have 
more influence for the final decision than less accurate systems. 
The unstructured exponential model algorithm automatically 
derives appropriate weights for different systems from the 
training data, which means that those systems that are more 
accurate on training data are assigned with larger weights to 
recognize entities on test data. This type of bias is reasonable as 
long as the training data is representative. 
 
Formally, the lth individual biomedical named-entity 

recognition system is associated with a weight lλ  and the 

probability of assigning entity of category k to the jth word in ith 
sentence is calculated as: 
 
 
 

),(maxarg _

^

∑=
l

tjl
k

tj ckfS  (1) 



 

Note that no feature from the surface word itself is used in the 
current formulation yet. It may be useful to incorporate surface 
word features for more complicated combination strategy. 
However, empirical study in Section 5 demonstrates that this 
model can achieve very good performance with very limited 
amount of training data. Adding a lot of surface word features 
may cause overfitting problem with limited amount of data. 
 
In fact, the exponential model can be seen as a multi-category 
extension of the logistic regression model for Meta retrieval 
system of information retrieval [1,5]. The graphical 
representation of this probabilistic model is shown in Figure 1. It 
can be seen from Figure 1 that given the entity features from 
multiple systems and model parameters, the named-entities are 
generated for each word separately without any interaction. That 
is why this model is called unstructured model. 
 
The training criterion of this model is to maximize the 
conditional log-likelihood of the training data. Formally the 
parameter estimation problem is: 
 

∑ ===
kji

ijijijij cwkSPkSP
,,

_*

^^*

}),{|(log)(maxarg
λ

λ  (3) 

Where )(
^

kSP ij = is the empirical probability distribution for 

different types of named-entities of a specific word. It is 1 for 
one type of name-entity and zero for all the others. 
 
The objective function in Equation (3) is a convex function and 
the optimization method of iterative scaling is used to obtain 
optimal parameter value. More detailed information about the 
iterative scaling method can be found in [2]. 
 

3.3 Conditional Random Field Algorithm 

 

One important piece of useful information that is missing in the 
unstructured exponential model is the structure information. The 
named-entities assigned to nearby words are actually correlated 
with each other. If the previous word is recognized as a part of 
protein name, it is likely that the current word has a higher 
probability to be a part of protein entity than a cell_line entity. 
Conditional random field method [12] can be used to model the 
correlation between biomedical named-entities. 
 
More specifically, the conditional random field model calculates 
conditional probabilities for whole annotated sentences instead 
of individual entities. In this paper, a linear chain conditional 
random field model is used. This is formally represented as: 
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In particular, each feature function is associated with two 
concatenated entities and the corresponding candidate entity 
results from multiple entity recognition systems. The graphical 
model of linear chain conditional random field is shown in 
Figure 2. It can be seen that adjacent named-entities are 
associated with each other. This characteristic allows the 
conditional random field method to take advantage of structure 
information among entities. 
 
The training criterion of conditional random field has a similar 
objective function to that of unstructured exponential model:  

∑=
i

iii cwsP })),{|(log(maxarg *_*

*

λ

λ  (5) 

The conditional likelihood function involves a sentence-scale 
normalization factor as indicated in Equation (4); the training 
computational complexity is much larger than that of 
unstructured exponential model. Quasi-Newton optimization 
method [21] has been shown to be more efficient than several 
other alternatives such as conjugate gradient and iterative 
scaling. This method is used in this work to train the linear chain 
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Figure 2. Graphical representation of linear conditional random 

field model (shadowed part is observed 
*_* i

c as features from 

multiple entity recognition systems.) Given the entity candidate 
features from multiple systems and model parameters, the 
named-entities within a sentence are generated with interaction. 

 
 

Figure 1. Graphical representation of unstructured exponential 

model (shared part is observed 
ij

c
_*

as features from multiple 

entity recognition systems). Given the entity candidate features 
from multiple systems and model parameters, the named-entities 
are generated for each word separately. 



conditional random field model for Meta biomedical 
named-entity recognition. 
 
Given the estimated model, the recognition step of conditional 
random field is also more complicated than that of exponential 
model. A dynamic programming solution is utilized here to 
calculate the most likely named-entity sequence given the test 
sentence. Specially, a forward-backward inference algorithm 

like that for HMM is applied. The ‘forward value’ )( kSa tjj =  

is defined as the probability of being in entity of type k at jth 

position given the observation up to time j and )( kStjj =β is 

the probability of being in entity of type k at jth position given 
the observation after time j. Recursive steps are applied to 
calculate the whole set of forward and backward values: 
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Viterbi algorithm is applied with forward and backward values 
and finally the optimal sequence of named-entities is computed. 

4. EXPERIMENTAL METHODOLOGY 

 
We used the entity recognition results from eight different 
biomedical named-entity recognition systems that participated in 
the JNLPBA competition 2. In the JNLPBA competition [11], 
each entity recognition system is required to recognize five 
types of entities as protein, DNA, RNA, cell_type and cell_line 
within documents in the GENIA corpus [10]. We utilize these 
results to construct Meta biomedical entity recognition system in 
this paper. 
 
The recognition results are evaluated using the F score. F score 

is defined as: )/()2( RPPRF += , where P denotes Precision, 

which is the ratio of the number of correctly recognized 
named-entities to the number of recognized named-entities. R 
denotes Recall, which is the ratio of the number of correctly 
recognized entities to the number of true entities [11]. 

                                                        
2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html 

Since the eight systems provide results only on the test set of 
JNLPBA task that contains 404 documents of the GENIA 
corpus, we split the test data of JNLPBA into training and test 
data for our experiments. There are altogether 404 Medline 
abstracts, which are composed of 4260 sentences. The 
biomedical entity distribution is tabulated in Table 1. In order to 
fully investigate the behavior of different Meta recognition 
algorithms, two different training configurations were used in 
this work: i) 10 annotated documents for training and ii) 5 
annotated documents for training. The 5 (or 10) documents that 
contain all the five types of annotated biomedical named-entities 
were randomly chosen from the 404 abstracts as training data 
and the remaining documents were used as test data. The 
training set has about 50 (or 100) sentences with about 1,250 (or 
2,500) words. The random split process was repeated five times 
for each experiment and the evaluation results were averaged. 
 
The performance of eight different systems on the whole corpus 
(404 abstracts and no training) is shown in Table 2. Three out of 
eight systems achieve F score around 0.7 while the F-score of 
other systems ranges from 0.5 to 0.65. 

5. EXPERIMENTAL RESULTS 

 
In this section we present the results of applying the proposed 
Meta biomedical named-entity recognition algorithms on the 
GENIA corpus and compare these results to individual systems. 
Two particular issues are investigated by the empirical study in 
this section: 
 
1. Whether Meta biomedical named-entity recognition 

approach improves recognition accuracy over individual 
systems, and how do different Meta biomedical entity 
recognition algorithms compare against each other? 

2. Detailed analysis for different types of named-entities is 
provided to carefully compare the results from individual 
systems and different Meta recognition algorithms. 

 

5.1 Overall Recognition Accuracy 

 
The first set of experiments was conducted to study the 
effectiveness of the simple majority vote algorithm. In order to 
show the full spectrum of its behavior, we vary the number of 
systems that are considered for voting. In particularly, we sort 
all the systems by their F scores as shown in Table 2 and use the 
simple majority vote algorithm to combine the results from best 

 Protein DNA RNA Cell_type Cell_line All 

Num of occurrences 5,067 1,056 118 1,921 500 8,662 

Percent of total words  12.5% 2.6% 0.3% 4.8% 1.2% 21.4% 
 

Table 1. Num of occurrences and percentage of total words for five types of biomedical named-entities in the corpus. 
 

 Zho [25] Fin [7] Set [20] Son [23] Zha [24] RÖs [19] Par [16] Lee [13] 

Recall 0.760 0.716 0.703 0.678 0.691 0.674 0.665 0.508 

Precision 0.694 0.686 0.693 0.648 0.610 0.610 0.598 0.476 

F-Score 0.726 0.701 0.698 0.663 0.648 0.640 0.630 0.491 
 

Table 2. Performance of individual systems. Systems are ranked by their F scores from the highest (Left) to the lowest (Right). 
 



two systems (M_2), best three systems (M_3) and so on. The 
detailed experiments are shown in Table 3. While the majority 
vote algorithm does not have to be trained, we made the 
experimental setup identical to that used for the trainable Meta 
algorithms to make the evaluation results comparable: 10 
documents were held for training in each of the five random 
splits and the remaining 394 documents were used for test (the 
results when 5 documents were used for training are almost 
identical with these results and are not shown). The majority 
voting algorithms did not use the 10 (and 5) training documents 
– only the trainable algorithm made use of them. 
 
Note a particular issue of simple majority vote algorithm is tie 
breaking. If the votes from multiple systems are the same for 
some entities, the preference is given in the order to protein, 
DNA, RNA, cell_ type, cell_line and “Non-entity”. 
 
It can be seen from Table 3 that simple majority vote algorithm 
does achieve more accurate result than single best system. 
However, its performance varies with the number of systems of 
combination. The best results are achieved when top three or 
four systems are considered for voting and the accuracy drops 
significantly when more and more low accuracy systems are 
added into the combination. This behavior suggests that 
appropriate weights should be assigned to individual systems in 
order to achieve optimal performance of Meta named-entity 

recognition; and this is exactly the goal of the unstructured 
exponential model and conditional random field model  
More experiments were conducted to study four types of Meta 
biomedical entity recognition algorithms. The algorithms are: 
M_8 (majority vote algorithm form all of the eight individual 
systems); M_3 (majority vote algorithm from three most 
accurate individual systems as Zho [25], Fin [7] and Set [20]); 
EXP (unstructured exponential model) and CRF (conditional 
random field model). Both the EXP and CRF algorithms take 
advantage of training data. Table 4 shows the results when 10 
documents were available for training. It can be seen that EXP 
and CRF achieve a significant improvement over the best single 
system and also are much more accurate than the simple 
majority algorithm. More careful analysis shows that EXP and 
CRF algorithms automatically assign appropriate weights for 
individual systems. For example, EXP assigns more weights to 
the top three systems than the other systems. Furthermore, CRF 
algorithm generates more accurate results than the EXP 
algorithm. This demonstrates the power of utilizing the structure 
information among entities. 
 
Another set of experiments was designed to test the behavior of 
different Meta entity recognition algorithms with more limited 
amount of training data. The experiments shown in Table 5 use 
only 5 documents as training data. It can be seen from Table 5 
that the performance of M_8 and M_3 algorithms remain at 

 

 B1 M_2 M_3 M_4 M_5 M_6 M_7 M_8 

Recall 0.761 0.876 0.859 0.850 0.786 0.797 0.770 0.778 

Precision 0.696 0.739 0.802 0.771 0.724 0.727 0.712 0.707 

F-Score 0.727 0.802 0.830 0.808 0.754 0.761 0.740 0.741 
 

Table 3. Performance (in F score) of simple majority vote algorithms compared with the best single system (10 documents are used for training and 
results are averaged by five random splits). Simple majority vote algorithms combine results from different number of top systems (B1: best single 
system; M_2 means combination of two most accurate systems and so on). 
 

M_8 M_3 EXP CRF 
 

B1 

(Baseline) F Score Impr(%) F Score Impr(%) F Score Std Impr(%) F Score Std Impr(%) 

Recall 0.761 0.778 (+2.2%) 0.859 (+12.9%) 0.926 0.016 (+21.7%) 0.956 0.012 (+25.6%) 

Precision 0.696 0.707 (+1.6%) 0.802 (+15.2%) 0.920 0.021 (+32.2%) 0.971 0.010 (+39.5%) 

F-Score 0.727 0.741 (+1.9%) 0.830 (+14.2%) 0.923 0.015 (+27.0%) 0.964 0.011 (+32.6%) 
 

Table 4. Performance of Meta biomedical named-entity systems compared with the best single system (10 documents are used for training and 
results are averaged by five random splits; F Score: F measure; Std: standard deviation across 5 random splits; Impr(%): Relative improvement 
over baseline ). B1: Best single system; M_8: majority vote from eight systems; M_3: majority vote from best three systems; EXP: unstructured 
exponential model: CRF: conditional random field. (Standard deviation of M_8 and M_3 are not reported as they are very small) 
 

M_8 M_3 EXP CRF 
 

B1 

(Baseline) F Score Impr(%) F Score Impr(%) F Score Std Impr(%) F Score Std Impr(%) 

Recall 0.759 0.777 (+2.4%) 0.858 (+13.0%) 0.907 0.026 (+19.4%) 0.921 0.024 (+21.3%) 

Precision 0.694 0.706 (+1.7%) 0.801 (+15.4%) 0.879 0.035 (+26.7%) 0.953 0.018 (+37.3%) 

F-Score 0.725 0.740 (+2.0%) 0.829 (+14.3%) 0.893 0.030 (+23.3%) 0.937 0.021 (+29.2%) 
 
 

Table 5. Performance of Meta biomedical named-entity systems compared with the best single system (5 documents are used for training and results 
are averaged by five random splits; F Score: F measure; Std: standard deviation across 5 random splits; Impr(%):  Percentage improvement over 
baseline ). Algorithm descriptions are the same as the above. 



about the same level as those in Table 4 since these algorithms 
do not utilize training data and their accuracy does not depend 
on the size of training data. The accuracy of EXP and CRF 
algorithms drops slightly with more limited amount of training 
data. However, their advantage over best single system or 
simple majority vote recognition algorithm is still very large. 
This set of experiments suggests that Meta biomedical 
named-entity recognition algorithms can acquire very accurate 
results even with very limited amount of training data (i.e., 
about 50 training sentences). 
 
Other configurations with more training data have also been 
studied. When 15, 20 or more documents are used for training, 
the accuracy of EXP and CRF methods increase. However, the 
improvement over the results of less training data (i.e., 5 or 10 
documents.) is small due to the high performance of EXP and 
CRF methods with limited amount of training data. 
 
Both unstructured exponential algorithm and conditional random 
algorithm are very efficient. They are implemented using 
Matlab. It takes about 30 seconds to train the exponential model 
and about 2 minutes to train the conditional random field model 
in the case of 10 training documents. It only takes about 30 
seconds for CRF to generate combined results for 394 
documents while several seconds for the exponential model. 
 

5.2 Recognition Accuracy for Different Types 

of Biomedical Named Entities 
 
This set of experiments shows how Meta entity recognition 
algorithms improve the recognition accuracy for each type of 
biomedical named entity. 
 
Figure 3 shows the performance of best single system and Meta 
recognition algorithms for different types of biomedical named- 
entities. Note that different individual systems may be optimal 
for different types of biomedical named-entities. For example, 
the system by Fin [7] has a better performance for RNA entities 
than the system by Zho [25]. More detail can be found in [11]. 
 
It can be seen from Figure 3 that Meta recognition algorithms 
CRF, EXP and M_3 achieve better performance than single best 

system. Unstructured exponential model and conditional random 
field model achieve better result than other algorithms in most 
cases by assigning appropriate weights to the results from 
multiple systems. In fact, the weights of different systems are 
also varied for the recognition of different types of entities. 
Furthermore, the CRF method provides the most accurate results 
in most cases, which again demonstrates the power of utilizing 
structure information.  

6. CONCLUSION AND FUTURE WORK  

 
Due to the large vocabulary and very diverse notations of 
biomedical entities, the performance of current biomedical 
named-entity recognition systems is still not satisfactory. 
Possible reasons are inadequate feature representations of 
individual systems and ineffectiveness of individual algorithms. 
 
This paper proposes a Meta biomedical named-entity 
recognition approach by combining results from multiple 
systems. Three types of Meta recognition algorithms are 
proposed. Empirical study shows that Meta biomedical 
named-entity methods can substantially improve recognition 
accuracy over individual systems. The best results are obtained 
with a conditional random field method that takes the advantage 
of structure information for recognition.  With a small amount 
of training data, this method provides recognition results with an     
F score of 0.96 while the F score of the best single system is 
only 0.72 [11,25] 
 
As more and more trainable biomedical named-entity systems 
are available, we will apply the Meta entity recognition 
approach on other biomedical corpus for more complete 
evaluation. Training data can be used to train both individual 
named-entity recognition systems and the Meta recognition 
system. Furthermore, more sophisticated model which considers 
surface word features to combine results will be investigated in 
future work. 

REFERENCES 
 

[1] J. A. Aslam and M. Montague (2001). Models for 
Metasearch. In Proceedings of the 24th Annual 

          (a)                                                (b)                                                           
Figure 3. Performance of best single systems and Meta recognition algorithms for different types of biomedical named entities. (a) is the 
case with 10 documents for training while (b) is the case with 5 documents for training. For B1, system from Zho [21] is used to predict 

protein, DNA, cell_type and cell_line while the system from Fin [5] is used to predict RNA. 



International ACM SIGIR Conference on Research and 

Development in Information Retrieval. 

[2] A. Berger. (1997). A gentle introduction to iterative scaling. 
http://www-2.cs.cmu.edu/~aberger/maxent.html 

[3] D. M. Bikel, R. L. Schwartz and R. M. Weischedel. (1999). 
An algorithm that learns what's in a name. Machine 

Learning, vol. 34, no. 1-3, pp. 211-231, 1999. 

[4] Christopher J.C. Burges. (1998) A Tutorial on Support 
Vector Machines for Pattern Recognition. Data Mining and 

Knowledge Discovery 2, 121-167. 

[5] A. Le Calvé, J. Savoy (2000): Database Merging Strategy 
Based on Logistic Regression. Information Processing & 

Management, 36(3), 341-359. 

[6] DARPA. (1995). Proceedings of the Sixth Message 

Understanding Conference (MUC-6), Columbia, MD, USA, 
November. Morgan Kaufmann. 

[7] J. Finkel, S. Dingare, H. Nguyen, M. Nissim, G. Sinclair 
and C. Manning. (2004). Exploiting Context for 
Biomedical Entity Recognition: From Syntax to the Web. 
In Proceedings of the Joint Workshop on Natural Language 

Processing in Biomedicine and its Applications 

(JNLPBA-2004), Geneva, Switzerland. 

[8] T. Kanungo. HMM software learning toolkit. University of 
Maryland Institute for Advanced Computer Studies, 
http://www.cfar.umd.edu/~kanungo/software/software.html 

[9] J. D. Kim, T. Ohta, Y. Tateisi and J. Tsujii. (2002). 
Corpus-Based Approach to Biological Entity Recognition. 
In Proceedings of the Second Meeting of the Special 

Interest Group on Test Data Mining of ISMB 

(BioLink-2002), Edmonton, Canada. 

[10] J. D. Kim, T Ohta, Y. Tateishi and J. Tsujii. (2003). GENIA 
corpus - a semantically annotated corpus for bio-textmining. 
Bioinformatics, 19 (Suppl.1): 180-182. 

[11] J. D. Kim, T Ohta, Y. Tateishi and J. Tsujii. (2004). 
Introduction to the Bio-Entity Recognition Task at 
JNLPBA. In Proceedings of the Joint Workshop on Natural 

Language Processing in Biomedicine and its Applications 

(JNLPBA-2004), Geneva, Switzerland.  

[12] J. Lafferty, A. McCallum and F. Pereira. (2001). 
Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data. In Proceedings of 

the International Conference on Machine Learning. 
Williamstown, MA, U.S.A. 

[13] C. Lee, W.  J.  Hou and H.-H. Chen. (2004). Annotating 
Multiple Types of Biomedical Entities: A Single Word 
Classification Approach. In Proceedings of the Joint 

Workshop on Natural Language Processing in Biomedicine 

and its Applications (JNLPBA-2004), Geneva, Switzerland. 

[14] A. McCallum, Dayne Freitag and Fernando Pereira. 
Maximum Entropy Markov Models for Information 
Extraction and Segmentation. (2000). In Proceedings of the 

International Conference on Machine Learning. 
Williamstown, MA, U.S.A. 

[15] A. McCallum and W. Li. (2003). Early results for named 

entity recognition with conditional random fields, feature 
induction and web-enhanced lexicons. In Proceedings of 

the Conference on Natural Language Learning, pages 
188–191. Edmonton, Canada. 

[16] K. M. Park, S. H. Kim, D. G. Lee and H. C. Rim. (2004). 
Boosting Lexical Knowledge for Biomedical Named Entity 
Recognition. In Proceedings of the Joint Workshop on 

Natural Language Processing in Biomedicine and its 

Applications (JNLPBA-2004), Geneva, Switzerland. 

[17] L. R. Rabiner. (1989) A tutorial on hidden Markov models 
and selected applications in speech recognition. Proc. IEEE, 
77:257—286. 

[18] C. J. van Rijsbergen. (1979). Information Retrieval. 
Butterworths, London. 

[19] M. Rössler. (2004). Adapting a NER-System for German to 
the Biomedical Domain. In Proceedings of the Joint 

Workshop on Natural Language Processing in Biomedicine 

and its Applications (JNLPBA-2004), Geneva, Switzerland. 

[20] B. Settles. (2004). Biomedical Named Entity Recognition 
Using Conditional Random Fields and Novel Feature Sets. 
In Proceedings of the Joint Workshop on Natural Language 

Processing in Biomedicine and its Applications 

(JNLPBA-2004), Geneva, Switzerland. 

[21] F. Sha and F. (2003).  Shallow Parsing with Conditional 
Random Fields. In Proceedings of Human Language 

Technology-NAACL 2003, Edmonton, Canada. 

[22] E. F. Tjong, K. Sang and F. De Meulder. (2003). 
Introduction to the CoNLL-2003 shared task: 
Language-independent named entity recognition. In 

Proceedings of the Seventh Conference on Natural 

Language Learning (CoNLL-2003), pages 142-147. 
Edmonton, Canada. 

[23] Y. Song, E. Kim, G. Geunbae Lee and B. K. Yi. (2004). 
POSBIOTM-NER in the shared task of BioNLP/NLPBA 
2004. In Proceedings of the Joint Workshop on Natural 

Language Processing in Biomedicine and its Applications 

(JNLPBA-2004), Geneva, Switzerland. 

[24] S. J. Zhao. (2004). Name Entity Recognition in Biomedical 
Text using a HMM model In Proceedings of the Joint 

Workshop on Natural Language Processing in Biomedicine 

and its Applications (JNLPBA-2004), Geneva, Switzerland. 

[25] G. D. Zhou and J. Su. (2004). Exploring Deep Knowledge 
Resources in Biomedical Name Recognition. In 
Proceedings of the Joint Workshop on Natural Language 

Processing in Biomedicine and its Applications 

(JNLPBA-2004), Geneva, Switzerland. 

 

 

 


