
Scalable Online Services and
Data Processing Architectures
Milind Mahajan

Overview

● Online Services
○ Hosting
○ Architecture
○ Storage
○ Toolset

● Data Processing
○ Batch
○ Streaming
○ Online Machine Learning

Online Services

Hosting

● Public Cloud Providers
○ On-demand scalability
○ Pay as you go
○ Reliable and well tested platform
○ No operational overhead
○ Leading providers: Amazon AWS, Microsoft Azure, Google Cloud

● PaaS and IaaS
○ Ease of use with some limitations vs.

Full flexibility but more work
○ Cost difference
○ Ability to switch vendors

Service Architecture Choices

● Monoliths and Microservices
○ Monolith -- single service which does everything
○ Many services -- each focused on single logical responsibility
○ Appropriate choice depends on stage

● Monoliths -- at small scale
○ Easy to understand, deploy
○ Less up-front design/architecture work
○ Infrastructure efficiency is less of an issue at small scale
○ One team
○ Local calls between components

○ Later -- everything changes with size

Microservices
● Benefits

○ Force clear interfaces and contracts
○ Allow teams to operate independently -- large orgs
○ Each service remains easy to understand
○ Allow mix of technologies
○ Decouple deployments
○ Scale each service independently
○ Improve robustness through isolation

○ Upfront design, documentation, backward compatibility
○ RPC/REST calls between services
○ Communicate only through interfaces
○ Deployment co-ordination, scale decisions -- devops

Different types of storage
● Instance based storage
● Persistent disk storage
● Object store: large blob data, cheap, standalone
● Key-value store

○ Primary key for sharding
○ Secondary key for range queries
○ High scalability, low latency
○ Limit on size of value

● Relational databases
○ Provide transactions
○ Ease of use -- powerful programming model
○ Scalability - cost

● Caching -- can be used to reduces storage access and latency

Other toolset
● Deployment
● Dashboards and visualization
● Monitoring & alerting
● Log search
● Payment gateways

Data Processing

Hadoop
● Map-Reduce programming model
● HDFS Storage
● High scale -- large data and compute
● Fault tolerance -- deals with failures
● Well-understood
● Available as hosted service from cloud providers
● Higher level platforms: Hive, Pig, Scalding

● Data is written back to HDFS between map-reduce steps
● High latency

Spark
● Fast and general cluster based data processing
● Avoids disk I/O -- keeps data in memory where possible
● Efficient data sharing

○ Much faster for iterative algorithms
○ Enables functionality such as streaming and interactive queries

● Resilient Distributed Dataset (RDD)
○ Immutable distributed collection of objects
○ Transformations form a DAG
○ Lazily evaluated after action
○ Possible to persist RDD in memory for reuse

● Fault tolerance
○ Track lineage and recompute if needed

● Powerful components: Spark SQL, MLLib, GraphX, Spark Streaming

Spark Streaming
● Break input data streams into micro-batches
● Each micro-batch is RDD
● Process each micro-batch to produce stream of results

● Abstraction is Discretized stream (DStream) of RDDs
● Stateless and stateful transforms on DStreams
● State captures information across micro-batches

● Fault-tolerance
○ Input data is replicated
○ State is checkpointed to avoid long recompute chains
○ Trade-off between checkpoint overhead and recovery overhead

Real-time streams
● Hosted real-time streams
● Publisher pushes data: user interaction data or service generated
● Multiple consumers, low latency
● Build topologies by chaining streams
● Open source: Kafka

Lambda Architecture
● Combines the advantages of batch and stream processing

Data

Batch Layer

Speed Layer

Batch
Results

Speed
Results

Service level
Aggregation

● Batch layer: high latency, high throughput, consistent
● Speed layer: low latency, (relatively) low throughput, may not be consistent
● Backfill is easier on code changes
● Results must be additive
● Data is immutable, append only

Online Machine Learning
● Online prediction: features are available only at the time of the request
● Build prediction service
● Need to ensure that features used for training and prediction match

○ Log features passed to prediction service
○ Build common libraries and configs which are used for both online and

offline feature extraction
● Features need to be simple to compute in streaming
● Online training

○ Stream processing
○ Lambda architecture for adapting a batch trained model

Questions

